用户名: 密码: 验证码:
光子晶体波导输出光分束与准直新结构设计及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光子晶体的禁带特性和自准直效应开发的光子晶体线缺陷波导和自准直波导,在光子晶体研究领域中占有非常重要的地位。对于基于光子晶体器件的光集成,光通信以及光传感技术,光子晶体波导都是最基本的器件,也是设计其它各种光子晶体器件的基础。在实际应用中,为了更好的把光子晶体波导器件同其它多个光学器件或一个光学器件进行耦合,需要对波导输出光进行分束或准直。因此,如何实现光子晶体波导输出光的分束或准直,是光子晶体器件开发时的一个重要研究方向。本论文把光子晶体线缺陷波导与自准直波导作为研究对象,通过数值模拟与理论分析相结合的方法,探索对输出光进行分束和准直的方法。
     采用平面波展开法结合超原胞技术,数值研究了光子晶体-空气界面以及光子晶体-光子晶体界面的表面模色散关系,得到了光子晶体-空气界面非耦合表面模特性随表面修饰介质柱半径的变化规律,以及光子晶体-光子晶体界面耦合表面模特性随表面修饰层之间的距离和表面修饰介质柱半径的变化规律。研究结果为本文中表面结构的设计奠定了基础。
     利用修饰光子晶体输出表面与引入点缺陷相结合的方法,设计出了一种新型的光子晶体线缺陷波导输出光分束结构。通过数值模拟与理论分析相结合的方法对修饰输出表面与引入点缺陷的作用进行了分析。在此基础上,利用时域有限差分法数值模拟了所设计分束结构的输出场特性,并研究了输出空间中光束的数量随着点缺陷位置的变化规律。研究结果表明,当点缺陷之间的距离为晶格周期的2n倍时,在输出空间中出现n束光。利用相干点光源之间的干涉原理对数值研究的结果进行了很好的解释。此外,还进一步研究了输出表面上被修饰的介质柱个数对输出光强度和强度比的影响;研究了次输出表面层上两个额外的点缺陷对输出各光束的增强特性。
     利用分支波导与附加修饰相结合的新方法,实现了光子晶体线缺陷波导输出光的分束。利用时域有限差分法对分束现象进行了模拟,并用干涉原理对模拟结果进行了很好的解释。通过在光子晶体中设计双分支波导结构,实现了输出光的1到N(奇数)分束。系统地研究了N的大小随双分支间距与入射光波长之比的变化规律,并分析了只能实现奇数条分束的原因。通过在双分支波导结构的一个分支中引入附加修饰的方法,实现了输出光的1到M(偶数)分束,对引入附加修饰的作用进行了理论分析。为了说明设计方法的灵活性,又进一步对具有附加修饰的三分支波导结构的输出场分束特性进行了研究。
     通过激发光子晶体-空气表面波、光子晶体-光子晶体表面波相结合的方法,设计出了一种由表面修饰光子晶体组成的新型复合结构,该结构对不同频率的入射光,能够实现光束的T型、Y型和L型传输。光束T型和L型传输时,输出光是在光子晶体表面上传播的。基于该设计方法,能够制作出比传统的T型和L型波导面积更小的光子晶体表面波波导。用平面波展开法对该新型复合结构的色散关系进行了研究,得到了复合结构实现光束的T型、Y型和L型传输时的频率范围。用时域有限差分法模拟了光束的T型、Y型和L型传输现象,通过对结果分析得到了输出光强度的变化规律。
     提出在光子晶体自准直波导后引入双层介质柱的新方法,实现了自准直波导输出光的准直传输,解决了输出光严重发散的问题。通过分析光子晶体自准直波导结构的等频率曲线,以及双层介质柱结构实现自准直的原理,得到了由光子晶体自准直波导与双层介质柱构成的新型复合结构,实现了光子晶体自准直波导输出光的高效准直传输。数值模拟结果表明,输出光的发散角为6°,透射效率为68%。此外,还进一步研究了自准直波导与双层介质柱之间距离对输出场特性的影响。
In photonic crystal (PC) research, PC line defect waveguides and PC self-collimating waveguides based on the forbidden band characteristics and auto-collimation play an important part. PC waveguide is the most essential component foroptic integrated circuit, photo-communication and light sensing technology based on PCdevices. Moreover, it is also the foundation of designing other PC devices. In realapplication, in order to couple PC waveguide devices with other optical devices more oron, it’s necessary to split or collimate the output light of waveguide. So how to realizesplitting or calibration of PC waveguide output light to couple with other optical devices,is an important direction in develop PC waveguide. Aimed at PC line defect waveguidesand PC self collimating waveguides, this thesis combines numerical stimulation andtheoretical analysis to explore the methods for the output photon of collimation andbeam splitting.
     In order to lay the foundation for surface structure design in this thesis, using planewave expansion method and super cell technology, dispersion relations of surface maskfrom PC to air and from PC to PC was simulated. From the analysis of the stimulationresult, the variation law for characteristics of PC-air uncoupling surface mask with thesize of surface adjusted dielectric cylinder was obtained, and the variation law forcharacteristics of PC-PC coupling surface mask with the distance of surface and the sizeof surface adjusted dielectric cylinder was obtained.
     By PC output surface masking and adding point defects, a new PC line defectwaveguide output splitting structures was proposed. Combining numerical stimulationand theoretical analysis, the effects of output surface masking and adding point defectswere analyzed. Using the FDTD method, the characteristics of designed splittingstructure output were numerically stimulated, and the variation law for the number ofoutput space beam with the change of point defect position was studied. The resultshows that when the distance between point defect L=2na, there are n beams in outputspace. The interference principle of coherent point sources can explain stimulationresult. In addition, the influence of both the number of adjusted dielectric cylinder onoutput surface and two additional point defects on secondly output surface on intensityof output light and splitting ratio was further studied.
     We proposed a new method of combining PC branched waveguide channels andextra modificcation. With this new method, we realized the splitting of PC line defectwaveguide emission, then we stimulated this splitting with FDTD method, theinterference principle of coherent point sources can explain stimulation result very well. Through designing double branch waveguide channels in PC, we got the1—N (oddnumber) splitting of output emission. The variation law of N with ratio of distancebetween double branch to input wavelength was studied systematically, and the reasonwhy N is odd number was analyzed. By adding modification in one of the doublebranch waveguide channels, we got the1—M (even number) splitting of outputemission, the effect of adding modification was studied theoretically. In order to showthe efficiency and flexibility of the designed method, we further investigated outputbeam property of three branched waveguide modified by extra dielectric cylinder.
     With the method of excite surface waves of PC-air and PC-PC together, a newcompound structure made up of surface masked PC was proposed, which makes itpossible for incident with different frequency propagates with T-shape, Y-shape and L-shape. When the beam propagates with T-shape and L-shape, the output light spreadsalong the PC surface. Based on such design method, the PC surface wave waveguidewith smaller area compared to traditional T-shaped and L-shaped waveguide. Thedispersion relations of this new compound structure were studied with plane-waveexpansion method, the frequency range of T-shaped, Y-shaped and L-shapedpropagation in compound structure was got. We stimulated the T-shaped, Y-shaped andL-shaped propagation with the Finite-difference Time-Domain (FDTD), and got thevariation law of output light intensity by analyzing the stimulation result.
     To avoid the scattering of self-collimated beams of waveguide, we proposed themethod of adding two layers structure to the PC self-collimated waveguide. Throughanalyzing PC self-collimated waveguide same-frequency curve and the principle of self-collimated two-layer dielectric cylinders, we have achieved highly directional beamingof self-collimated beams from PC structures. Numerical stimulation results show thatdivergence angle of output light is6°, efficiency is68%. In addition, the influence ofdistance between two-layer dielectric cylinders on output distribution was furtherstudied.
引文
[1] Yablonovitch E. Inhibited Spontaneous Emission in Solid-state Physics andElectronics[J]. Physical Review Letters,1987,58(20):2059-2062.
    [2] John S. Strong Localization of Photons in Certain Disordered DielectricSuperlattices[J]. Physical Review Letters,1987,58(23):2486-2489.
    [3] Guo S. Photonic Crystals: Modeling and Simulation[M]. Norfolk: Old DominionUniversity,2003:9-101.
    [4] Krauss T F, De La Rue R M, Brand S. Two-Dimensional Photonic-BandgapStructures Operating at Near-infrared Wavelengths[J]. Nature,1996,383(6602):699-702.
    [5] Yablonovitch E, Gmitter T J, Leung K M. Photonic Band Sttucture: The Face-Centered-Cubic Case Employing Nonspherical Atoms[J]. Physical ReviewLetters,1991,62(17):2295-2298.
    [6] Yablonovitch E, Gmitter T J, Meade R D, et al. Donor and Acceptor Modes inPhotonic Band Structure[J]. Physical Review Letters,1991,67(24):3380-3383.
    [7] Foresi J S, Villenuve P R, Ferrera J, et al. Photonic-Bandgap Microcavities inOptical Waveguides[J]. Nature,1997,390(6656):143-145.
    [8] Benisty H. Modal Analysis of Optical Guides with Two-Dimensional PhotonicBand-Gap Boundaries[J]. Journal ofApplied Physics,1996,79(10):7483-7492.
    [9] Do Y R, Kim Y C, Song Y W, et al. Enhanced Light Extraction Efficiency fromOrganic Light Emitting Diodes by Insertion of a Two-Dimensional Diodes byInsertion of a Two-Dimensional Photonic Crystal Structure[J]. Journal of AppliedPhysics,2004,12(96):7629-7636.
    [10] Boroditsky M, Krauss T F, Coccioli R, et al. Light Extraction from OpticallyPumped Light-Emitting Diode by Thin-Slab Photonic Crystals[J]. AppliedPhysics Letters,1999,75(8):1036-1038.
    [11] Fink Y, Winn J N, Fan S, et al. ADielectric Omnidirectional Reflector[J]. Science,1998,282(5394):1679-1682.
    [12] Brown E R, Paker C D, Yablonovitch E. Radiation Properties of a Planar Antennaon a Photonic-Crystal Substrate[J]. Journal of the Optical Society America B,1993,10(2):404-407.
    [13] Coccioli R, Yang F R, Ma K P, et al. Aperture Coupled Patch Antenna on UC-PBGSubstrate[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2123-2130.
    [14] Qian Y X, Coccioli R, Sievenpiper D, et al. A Microstrip Patch Antenna usingNover Photonic Band-Gap Structures[J]. Microwave Journal,1999,42(1):1-4.
    [15] Kesler M P, Maloney J G, Shirley B L, et al. Antenna Design with the Use ofPhotonic Bandgap Materials as All Dielectric Planer Reflectors[J]. Microwaveand Optical Technology Letters,1996,11(4):169-174.
    [16]付云起,袁乃昌,温熙森.微波光子晶体天线技术[M].北京:国防工业出版社,2006:9-11.
    [17] Mekis A, Chen J C, Kurland I, et al. High Transmission through Sharp Bends inPhotonic Crystal Waveguides[J]. Physical Review Letters,1996,77(18):3787-3790.
    [18] Fan S, Villeneuve P R, Joannopolous J D, et al. Channel Drop Tunneling throughLocalized States[J]. Physical Review Letters,1998,80(5):960-963.
    [19] Yoshie T, Vu kovi J, Scherer A, et al. High Quality Two-dimensioanl PhotonicCrystal Slab Cavities[J]. Applied Physics Letters,2001,79(26):4289-4291.
    [20] Park H G, Kim S H, Kwon S H, et al. Electrically Driven Single-Cell PhotonicCrystal Laser[J]. Science,2004,305(5689):1444-1447.
    [21] Gralak B, Enoch S, Tayeb G. Anomalous Refractive Properties of PhotonicCrystals[J]. Journal of the Optical SocietyAmerica A,2000,17(6):1012–1020.
    [22] Vynck K, Felbacq D, Centeno E, et al. All-Dielectric Rod-Type Metamaterials atOptical Frequencies[J]. Physical Review Letters,2009,102(13):133901.
    [23] Kuang J G, Jin Yi, He S L. An Open Wedge Cavity Based on The NegativeRefraction of a Photonic Crystal[J]. IEEE Microwave and Wireless ComponentsLetters,2006,16(11):582-584.
    [24] Witzens J, Loncar M, Scherer A. Self-Collimation in Planar Photonic Crystals[J].IEEE Journal of selected topics in quantum electronics,2002,8(6):1246-1257.
    [25] Kosaka H, Kawashima T, Tomita A, et al. Superprism Phenomena in PhotonicCrystals: Toward Microscale Lightwave Circuits[J]. Journal of LightwaveTechnology,1999,17(11):2032-2038.
    [26] Liscidini M, Sipe J E. Enhancement of Diffraction for Biosensing Applicationsvia Bloch Surface Waves[J]. Applied Physics Letters,2007,91(25):253125.
    [27] Gaspar-Armenta J A, Villa F, López-Ríos T. Surface Waves in Finite One-Dimensional Photonic Crystals: Mode Coupling[J]. Optics Communications,2003,216(4-6):379-394.
    [28] Robertson W M, May M S. Surface Electromagnetic Wave Excitation on One-Dimensioan Photonic Band-Gap Arrays[J]. Applied Physics Letters,1999,74(13):1800-1802.
    [29] Ederra I, Iriarte J C, Gonzalo R, et al. Surface Waves of Finite SizeElectromagnetic Band Gap Woodpile Structures[J]. Progress in ElectromagneticsResearch B,2011,28(5):19-34.
    [30] Yi X M, Pochi Y, John H. Nonexistence of Well-Confined Surface Waves onObiliquely cut Surfaces of One-Dimensional Photnic Crystals[J]. Journal of theOptical SocietyAmerica B,2001,18(3):352-357.
    [31] Vandenbem C. Electromagnetic Surface Waves of Multilayer Stacks: CouplingBetween Guided Modes and Bloch Modes[J]. Optics Letters,2008,19(33):2260-2262.
    [32] Feng S, Sang H Y, Li Z Y, et al. Sensitivity of Surface States to the StackSequence of One-Dimensional Photonic Crystals[J]. Journal of Optics A: Pureand Applied Optics,2005,7(8):374-381.
    [33] Vala A S, Rezaei E, Hoseini N, et al. Electro-Tuning of Surface State in Two-Dimensional Photonic Crystals[J]. Physics Status Solidi A,2011,208(8):1854-1857.
    [34] Vingradov AP, Dorofeenko AV, Merzlikin AM, et al. Surface States in PhotonicCrystals[J]. Physics-Uspekhi,2010,53(3):243-256.
    [35] Che M, Li Z Y. Analysis of Surface Modes in Photonic Crystals by a Plane-WaveTransfer-Matrix Method[J]. Journal of the Optical Society America A,2008,25(9):2177-2184.
    [36] Smigaj W. Modal of Light Collimation by Photonic Crystal Surface Modes[J].Physical Review B,2006,75(20):205430.
    [37] Lawrence F J, Botten L, Dossou K B, et al. Photonic-Crystal Surface ModesFound from Impedances[J]. Physical Review A,2010,82(5):053840.
    [38] Robertson W M, Arjavalingam G, Meade R D, et al. Observation of SurfacePhotons on Periodic Dielectric Arrays[J]. Optics Letters,1993,18(7):528-530.
    [39] Ishizaki K, Noda S. Manipulation of Photons at the Surface of Three-dimensioanlPhotonic Crystals[J]. Nature,2009,460(7253):367-370.
    [40] Wu H, Jiang L Y, Li H P, et al. A Concave Photonic Crystal Waveguide with aCorrugated Surface for High-Quality Focusing[J]. Chinese Optics Letters,2011,9(1):011301.
    [41] Xiao S S, Qiu M. Optical Microcavities Based on Surface Modes in Two-Dimensional Photonic Crystals and Silicon-on-Insulator Photonic Crystals[J].Journal of the Optical SocietyAmerica B,2007,24(5):1225-1229.
    [42] Xie Y Y, Xu C, Kan Q, et al. ASing-Fundamental-Mode Photonic Crystal VerticalCavity Surface Emitting Laser[J]. Chinese Physics Letters,2010,27(2):024206.
    [43] Khoo E H, Cheng T H, Liu AQ, et al. Transmitting Light Efficiently on PhotonicCrystal Surface Waveguide Bend[J]. Applied Physics Letters,2007,91(17):171109.
    [44] Rahachou A I, Zozoulenko I V. Waveguiding Properties of Surface States inPhotonic Crystals[J]. Journal of the Optical Society America B,2006,23(8):1679-1683.
    [45] Miklyaev Y V, Meisel D C, Blanco A, et al. Three-Dimensional Face-Centered-Cubic Photonic Crystal Templates by Laser Holography: Fabrication, OpticalCharacterization, and Band-Structure Calculations[J]. Applied Physics Letters,2003,82(8):1284-1286.
    [46] Yariv A, Xu Y, Lee R K, et al. Coupled-Resonator Optical Waveguide: AProposaland Analysis[J]. Optics Letters,1999,24(11):711-713.
    [47] Mookherjea S, Yariv A, Dispersion Characteristic of Coupled-Resonator OpticalWaveguide[J]. Optics Letters,2005,30(18):2406-2408.
    [48] Kosaka H, Kawashima T, Tomita A, et al. Self-Collimating Phenomena inPhotonic Crystals[J]. Applied Physics Letters,1999,74(9):1212-1214.
    [49] Chigrin D, Enoch S, Torres C S, et al. Self-Guiding in Two-Dimensioal PhotonicCrystals[J]. Optics Express,2003,11(10):1203-1211.
    [50] Lin S Y, Hietala V M, Wang L, et al. Highly Dispersive Photonic Band-GapPrism[J]. Optics Letters,1996,21(21):1771-1773.
    [51] Witzens J, Scherer A. Efficient Excitation of Self-Collimated Beams and SingleBloch Modes in Planar Photonic Crystlas[J]. Journal of the Optical SocietyAmerica A,2003,20(5):935-940.
    [52] IIiew R, Etrich C, Lederer F. Self-Collimation of Light in Three-DimensionalPhotonic Crystals[J]. Optics Express,2005,13(18):7076-7085.
    [53] Xu Y, Chen X J, Lan S, et al. The All-Angle Self-Collimating Phenomenon inPhotonic Crystals with Rectangular Symmetry[J]. Journal of Optics A: Pure andApplied Optics,2008,10(8):085201.
    [54] Li Z F, Chen H B, Song Z T, et al. Finite-Width Waveguide and WaveguideIntersections for Self-collimated Beams in Photonic Crystals[J]. Applied PhysicsLetters,2004,85(21):4834-4836.
    [55] Wang M, Yun M J, Kong W J, et al. Beam Splitter and Beam Bends Based onSelf-Collimation Effect in Two-Dimensioanl Photonic Crystals[J]. Journal ofModern Optics,2009,10(56):1159-1162.
    [56] Chen H B, Li Z F, Liu W, et al. Line Defect Splitters for Self-Collimated Beamsin Photonic Crystals[J]. Optics Communication,2006,262(1):120-124.
    [57] Zhao D, Zhang J, Yao P, et al. Photonic Crystal Mach-Zehnder InterferometerBased on Self-Collimation[J]. Applied Physics Letters,2007,90(23):231114.
    [58] Bethe H A. Theory of Diffraction by Small Holes[J]. Physical Review,1944,66(7-8):163-182.
    [59] Lezec H J, Degiron A, Devaux E, et al. Beaming Light from a SubwavelengthAperture[J]. Science,2002,297(5582):820-822.
    [60] Moussa R, Wang B, Tuttle G, et al. Effect of Beaming and EnhancedTransmission in Photonic Crystals[J]. Physical Review B,2007,76(23):235417.
    [61] Chung K B. Analysis of Directional Emission via Surface Modes on PhotonicCrystals[J]. Optics Communications,2008,281(21):5349-5354.
    [62] Chen H B, Zeng Y, Chen X S, et al. Modulation of Focus using Photonic CrystalWaveguide[J]. Physics LettersA,2008,372(30):5096-5100.
    [63] Moreno E, Garcia-Vidal F J, Martin-Moreno L. Enhanced Transmission andBeaming of Light via Photonic Crystal Surface Modes[J]. Physical Review B,2004,69(12):121402.
    [64] Morrison S K, Kivshar Y S. Engineering of Directional Emission from Photonic-Crystal Waveguides[J]. Applied Physics Letter,2005,86(8):081110.
    [65] Gan D, Qi Y, Yang X, et al. Improved Directional Emission by Resonant DefectCavity Modes in Photonic Crystal Waveguide with Corrugated Surface[J].Applied Physics B,2008,93(4):849-852.
    [66] Chen H B, Chen X S, Wang J, et al. Tunable Beam Direction and Transmission ofLight Using Photonic Crystal Waveguide[J]. Physica B,2008,403(23-24):4301-4304.
    [67] Jiang L Y, Jia W, Li H P, et al. Inverse Design for Directional Emitter and PowerSplitter Based on Photonic Crystal Waveguide with Surface Corrugations[J].Journal of the Optical Socirty ofAmerica B,2009,26(11):2157-2160.
    [68] Jiang L Y, Li H P, Jia W. Genetic Optimization of Photonic Crystal WaveguideTermination for Both On-Axis and Off-Axis Highly Efficient DirectionalEmission[J]. Optics Express,2009,17(2):10126-10135.
    [69] Tang D H, Chen L X, Liu Y, et al. Emissions of Photonic Crystal Waveguideswith Discretely Modulated Surfaces[J]. Chinese Physics Letters,2009,26(5):054214.
    [70] Jia W, Jiang L Y, Chen K, et al. Design of Photonic Crystal Power Beam Splittersvia Corrugated and Gratinglike Surfaces[J]. Optics Communications,2010,283(20):4078-4084.
    [71] Mahdieh B, Nosrat G. Directional Emission from Phtonic Crystal WaveguideOutput by Terminating with CROW and Employing the PSO Algorithm[J].Journal of the Optical Society of Korea,2011,15(2):187-195.
    [72] Wang Q, Yu Q Q, Ouyang Z B, et al. Highly Directional Emission from Multi-Channel Photonic Crystal via Beam Splitting[C]. Proceeding of the IEEEInternational Conference on Information and Automation,2011:701-704.
    [73] Tang D H, Chen L X, Ding W Q. Efficient Beaming from Photonic CrystalsWaveguide via Self-Collimation Effect[J]. Applied Physics Letters,2006,89(13):131120.
    [74] Chen C C, Pertsch T, Iliew R, et al. Directioanal Emission from Photonic CrystalWaveguides[J]. Optics Express,2006,14(6):2423-2428.
    [75] Zhu Z H, Ye W M, Ji J R, et al. Enhanced Transmission and Directional Emissionvia Coupled-Resonator Optical Waveguides[J]. Applied Physics B,2007,86(2):327-331.
    [76] Li Z F, Aydin K, Ozbay E. Highly Directional Emission from Photonic Crystalswith a Wide Bandwidth[J]. Applied Physics Letters,2007,91(12):121105.
    [77] Li Z F, Aydin K, Ozbay E. Wide Bandwidth Directional Beaming via WaveguidePorts in Photonic Crystals[J]. Journal of Physics D,2008,41(15):155115.
    [78] Kurt H. Theoretical Study of Directional Emission Enhancement from PhotonicCrystal Waveguides with Tapered Exits[J]. Photonics Technology Letters,2008,20(20):1682-1684.
    [79] Kurt H. The Directional Emission Sensitivity of Photonic Crystal Waveguides toAir Hole Removal[J]. Applied Physics B,2009,95(2):341-344.
    [80]汤冬华.二维光子晶体波导输出输入耦合特性研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:43-50.
    [81] Liang W Y, Dong J W, Wang H Z. Directional Emitter and Beam Splitter Basedon Self-Collimation Effect[J]. Optics Express,2007,15(3):1234-1239.
    [82] Park J M, Lee S G, Park H Y, et al. Efficient Beaming of Self-Collimated Lightfrom Photonic Crystals[J]. Optics Express,2008,16(25):20345-20367.
    [83] Ho K M, Chan C T, Soukoulis C M. Existence of a Photonic Gap in PeriodicDielectric Structures[J]. Physical Review Letters,1990,65(25):3152-3155.
    [84] McCall S L, Platzman P M. Microwave Propagation in Two DimensionalDielectric Lattices[J]. Physical Review Letters,1991,67(15):2017-2020.
    [85] Taflove A, Hagness S C, Computational Electrodynamics: The Finite-DifferenceTime-Domain Method[M]. London: Artech House Publishers,2000:3-95.
    [86] Pendry J B, Mackinnon A. Calculation of Photon Dispersion Relations[J].Physical Review Letters,1992,69(19):2772-2775.
    [87] Hiett B P, Generowicz J M, Cox S J, et al. Application of Finite Element Methodsto Photonic Crystal Modeling[J]. IEE Proceedings Science, Measurement andTechnology,2002,149(5):293-296.
    [88] Davies A J. The Finite Element Method[M]. Oxford: Clarendon Press,1980:10-86.
    [89] Leung K M, Qiu Y. Multiple-Scattering Calculation of the Two-dimensionalPhotonic Band Structure[J]. Physical Review B,1993,48(11):7767-7771.
    [90] Bulter W H. One-dimensional Model for Transition Metals and Their Alloys[J].Physical Review B,1976,14(2):468-478.
    [91] Ohtaka K, Ueta T, Amemiya K. Calculation of Photonic Bands Using VectorCylindrical Waves and Reflectivity of Light for an Array of Dielectric Rods[J].Physical Review B,1998,57(4):2550-2568.
    [92]葛德彪,闫玉波.时域有限差分法[M].西安:西安电子科技大学,2005:1-85.
    [93] Engquist B, Majda A. Absorbing Boundary Conditions For the NumericalSimulation of Waves[J]. Mathematics of Computation,1977,31(139):629-651.
    [94] Liao Z P, Wong H L, Yang B P, et al. A Transmitting Boundary for TransientWaveAnalysis[J]. Science China Mathematics,1984,27(10):1063-1076.
    [95] Gasper-Armenta J A, Villa F. Photonic Surface-Wave Excitation: Photnic Crystal-Metal Interface[J]. Journal of the Optical Society America B,2003,20(11):2349-2354.
    [96] Villa F, Gasper-Armenta J A. Photonic Crystal to Photonic Crystal Surface Modes:Narrow-Bandpass Filters[J]. Optics Experss,2004,12(11):2338-2355.
    [97] Villa F, Gaspar-Armenta J A. Electromagnetic Surface Wave: Photonic Crystal-Photonic Crystal Interface[J]. Optics Communications,2003,223(1-3):109-115.
    [98] Choi H G, Oh S S, Lee S G, et al. Coupling Characteristics of Surface Modes inTruncated Two-Dimensional Photonic Crystals[J]. Journal of Applied Physics,2006,100(12):123105.
    [99] Ramos-Mendieta F, Halevi P. Surface Electromagnetic Waves in Two-DimensinalPhotonic Crystals: Effect of the Position of the Surface Plane[J]. Physical ReviewB,1999,59(23):15112-15120.
    [100] Yu T B, Zhou H F, Gong Z, et al. Ultracompact Multiway Beam Splitters UsingMultiple Coupled Photonic Crystal Waveguides[J]. Journal of Physics D,2008,41(9):095101.
    [101] Ghaffari A, Djavid M, Abrishamian M S. Power Splitters with Different OutputPower Levels Based on Directional Coupling[J]. Applied Optics,2009,48(8):1606-1609.
    [102] Luan P G, Chang K D. Periodic Dielectric Waveguide Beam Splitter Based on Co-Directional Coupling[J]. Optics Express,2007,15(8):4536-4545.
    [103] Bayindir M, Temelkuran B, Ozbay E. Photonic-Crystal-Based Beam Splitters[J].Applied Physics Letters,2000,77(24):3902-3904.
    [104] Sondergaard T, Dridi K H. Energy Flow in Photonic Crystal Waveguides[J].Physical Review B,2000,61(23):15688-15696.
    [105] Pottier P, Mastroiacovo S, De La Rue R M. Power and Polarization Beam-Splitters, Mirrors, and Integrated Interferometers Based on Air-Hole PhotonicCrystals and Lateral Large Index-Contrast Waveguides[J]. Optics Express,2006,14(12):5617-5633.
    [106] Chen C C, Chien H D, Luan P G. Photonic Crystal Beam Splitters[J]. AppliedOptics,2004,43(33):6187-6190.
    [107] Park I, Lee H S, Kim H J, et al. Photonic Crystal Power-Splitter Based onDirectional Coupling[J]. Optics Express,2004,12(15):3599-3604.
    [108] Boscolo S, Midrio M, Krauss T F. Y Junctions in Photonic Crystal ChannelWaveguides: High Transmission and Impedance Matching[J]. Optics Letters2002,27(12):1001-1003.
    [109] Fan S H, Johnson S G, Joannopoulos J D, et al. Waveguide Branches in PhotonicCrystals[J]. Journal of the Optical Socirty ofAmerica B,2001,18(2):162-165.
    [110] Sugimoto Y, Ikeda N, Carlsson N, et al. Light Propagation Characteristics of Y-Branch Defect Waveguides in AlGaAs-Based Air-Birdge-Type Two-DimensionalPhotonic Crystal Slab[J]. Optics Letters,2002,27(6):388-390.
    [111] Ghaffari A, Djavid M, Abrishamian M S. Bi-Periodic Photonic Crystal Y-Splitter[J]. Physica E.2009,41(8):1495-1499.
    [112] Djavid M, Ghaffari A, Monifi F, et al. Photonic Crystal Power Dividers Using L-Shaped Bent Based on Ring Resonators[J]. Journal of the Optical Socirty ofAmerica B,2008,25(8):1231-1235.
    [113] Yu X F, Fan S H. Bends and Splitters for Self-Collimated Beams in PhotonicCrystals[J]. Applied Physics Letters,2003,83(16):3251-3253.
    [114] Shi S Y, Sharkawy A, Chen C H, et al. Dispersion-Based Beam Splitter inPhotonic Crystals[J]. Optics Letters,2004,29(6):617-619.
    [115] Pustai D M, Shi S Y, Chen C H, et al. Analysis of Splitter for Self-CollimatedBeams in Planar Photonic Crystals[J]. Optics Express,2004,12(9):1823-1831.
    [116] Yao P J, Chen B, Zhang J Y, et al. Y-Shaped Beam Splitters for Self-CollimatedBeams in2D Photonic Crystals[J]. Europhysics Letters,2005,70(2):197-203.
    [117] Zhang Y L, Zhao D Y, Zhou C H, et al. Directional Light Emission through aMetallic Nanostructure[J]. Journal ofApplied Physics,2009,105(11):113124.
    [118] Liu T, Zakharian A R, Fallahi M, et al. Multimode Interference-Based PhotonicCrystal Waveguide Power Splitter[J]. Journal of Lightwave Technology,2004,12(22):2842-2846.
    [119] Moosburger J, Kamp M, Forchel A, et al. Enhanced Transmission throughPhotonic Crystal Based Bend Waveguides by Bend Engineering[J]. AppliedPhysics Letters,2001,79(22):3579-3581.
    [120] Momeni B, Adibi A. Adiabatic Matching Stage for Coupling of Light to ExtendedBloch Modes of Photonic Crystals[J]. Applied Physics Letters,2005,87(17):171104.
    [121] Notomi M. Theory of Light Propagation in Strongly Modulated Photonic Crystals:Refractionlike Behavior in the Vicinity of the Photonic Band Gap[J]. PhysicalReview B,2000,62(16):10696-10705.
    [122] Dai W, Soukoulis C M. Converging and Wave Guiding of Gaussian Beam byTwo-Layer Dielectric Rods[J]. Applied Physics Letters,2008,93(20):201101.
    [123] Lee S G, Choi J S, Kim J E, et al. Reflection Minimization at Two-DimensionalPhotonic Crystal Interfaces[J]. Optics Express,2008,16(6):4270-4277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700