用户名: 密码: 验证码:
六维非自治非线性系统的复杂动力学研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,研究低维非线性系统的动力学问题已经不能满足一些实际工程的需要。为了得到非线性系统中更加详细的复杂动力学行为,我们需要研究更高维数的非线性动力学系统。但是与研究低维系统的非线性动力学行为相比较,研究高维系统的非线性动力学问题的理论是很困难的。特别是为了得到与原始系统较为接近的理论分析结果,我们需要直接研究高维非自治非线性系统的复杂动力学问题。这与以前的研究方法相比,减少了中间化简的过程,保留了更多原始系统的特性,因此研究高维非自治非线性系统的复杂动力学行为具有重要的科学意义和工程应用价值。
     本文在研究四维非自治非线性动力学系统的基础上,将一些方法推广应用到六维非自治非线性系统,并研究一些六维非自治非线性系统的复杂动力学问题,如下:
     (1)将研究单脉冲混沌动力学的多自由度Melnikov方法推广应用到六维非自治非线性动力学系统。并利用此方法研究面内激励作用下四边简支屈曲矩形薄板的单脉冲混沌动力学。首先对面内激励作用下四边简支矩形薄板的运动方程进行三阶Galerkin离散,得到一个三自由度非自治非线性动力学方程。利用规范形理论对系统进行分析,将一些对系统影响较小的项视为扰动项。最后,通过理论分析和数值模拟发现面内激励作用下四边简支屈曲矩形薄板存在单脉冲混沌运动。此外,利用此方法研究了面内激励与横向激励联合作用下四边简支屈曲矩形薄板的单脉冲混沌动力学。
     (2)将研究多脉冲混沌动力学的广义Melnikov方法推广到混合坐标系下六维非自治非线性动力学系统。在研究过程中,引进了横截面,这样就将混合坐标系下六维非自治非线性动力学系统化成七维自治非线性动力学系统。并应用归纳法证明了Melnikov函数的计算过程。
     利用改进后的广义Melnikov方法研究三种板的多脉冲混沌动力学,例如面内激励作用下四边简支屈曲矩形薄板、面内激励与横向激励联合作用下四边简支屈曲矩形薄板和面内激励与横向激励联合作用下压电复合材料层合矩形板。在计算过程中,由于这三个系统比较复杂,无法直接利用改进后的方法进行研究,我们首先利用三阶规范形程序对三自由度非线性动力学方程进行计算。然后,通过坐标变换把这三个系统化成后四维是极坐标并且前两维与后四维是解耦的Hamilton系统。分析解耦系统的前两维方程发现这三个系统存在同宿分叉。研究解耦系统的后四维方程发现这三个系统存在Shilnikov型多脉冲混沌运动。在计算Melnikov函数时,由于一些积分比较复杂,我们利用Taylor级数进行展开和留数理论得到了这三个系统的k-脉冲Melnikov函数。最后通过数值模拟发现这三个系统存在多脉冲混沌运动,进一步验证了理论分析的结果。
     (3)将广义Melnikov方法推广到直角坐标系下六维非自治非线性动力学系统并在理论上做了证明。在研究过程中,引进了横截面,这样就将直角坐标系下六维非自治非线性动力学系统化成七维自治非线性动力学系统。
     利用此方法研究了横向激励作用下四边简支复合材料层合矩形板和面内激励与横向激励联合作用下四边简支蜂窝夹层矩形板的多脉冲混沌动力学。在研究过程中,首先应用三阶规范形程序对这两个系统进行分析。经过规范形分析后发现系统中的一些项不存在,根据规范形理论的本质,说明这些项在系统中起次要的作用,因此我们把这些项放在扰动项中进行研究。然后,通过坐标变换将这两个系统的未扰动系统化为六维直角坐标系下的Hamilton系统并且系统的前两维与后四维是解耦的系统。接下来,考虑解耦系统的前两维方程分别发现横向激励作用下四边简支层合矩形板存在异宿轨道,而面内激励与横向激励联合作用下四边简支蜂窝夹层矩形板存在同宿轨道。在共振的情况下,研究这两个系统的后四维方程,发现这两个系统存在Shilnikov型多脉冲混沌运动。最后数值计算也发现了这两个系统存在多脉冲混沌运动,进一步验证了理论分析的结果。
With the development of science and technology, study of the dynamical problem forthe low-dimensional nonlinear dynamical system cannot satisfy the requirement in someof practical engineering. In order to accurately analyze the complicated dynamicalproblem of nonlinear system, the higher-dimensional nonlinear dynamical system needs tobe considered. However, compared with the research of the dynamical problem for thelow-dimensional nonlinear system, it is difficult to study the theory of high-dimensionalnonlinear system. Especially, In order to obtain the theoretical results which closer to theoriginal system, the complicated dynamics of the high-dimensional non-autonomousnonlinear system is investigated directly. The process of simplification is reducedcomparing with the previous methods. Then more characteristics of the original system areretained. Therefore, study of the complicated dynamics for the high-dimensionalnon-autonomous nonlinear system is very important subject in science and engineeringapplications.
     Based on the method of study four-dimensional non-autonomous nonlineardynamical system, some of methods are improved and applied to study thesix-dimensional non-autonomous nonlinear dynamical system. The complicated dynamicsof some six-dimensional non-autonomous nonlinear systems is investigated using thesemethods as follows.
     (1) The multi-degree-of-freedom Melnikov method which studied the single-pulsechaotic dynamics is improved to investigate the six-dimensional non-autonomousnonlinear dynamical system. The single-pulse chaotic dynamics of a four-edge simplysupported buckled rectangular thin plate under in-plane excitation are investigated usingthe improved method. Firstly, the Galerkin method is employed to discretize the motionequations of the four-edge simply supported buckled rectangular thin plate under in-planeexcitation. A non-autonomous nonlinear dynamics equation with three-degree-of-freedomis derived. Then, the three-order normal form is used to analyze this system. Somenonlinear terms in this system have less effect than other terms. So these terms areconsidered as perturbation terms. In the end, the single-pulse chaotic motions of thefour-edge simply supported buckled rectangular thin plate under in-plane excitation arefound from theoretical analysis and numerical simulation. Furthermore, the single-pulsechaotic dynamics of a four-edge simply supported buckled rectangular thin plate under thecombination of in-plane and transversal excitations is investigated using this method.
     (2) The extended Melnikov method which studied the multi-pulse chaotic dynamicsis improved to investigate the six-dimensional non-autonomous nonlinear dynamicalsystem in mixed coordinate. In the process of investigation, when a cross-section is appled to the six-dimensional non-autonomous nonlinear dynamical system, a seven-dimensionalautonomous nonlinear dynamical system is obtained. The finite inductive approach is usedto prove the Melnikov function.
     The multi-pulse chaotic dynamics of three kinds of plate are investigated using theimproved extended Melnikov method. Such as the four-edge simply supported buckledrectangular thin plate under in-plane excitation, the four-edge simply supported buckledrectangular thin plate under the combination of in-plane and transversal excitations and afour-edge simply supported composite laminated piezoelectric rectangular plate underin-plane and transversal excitations. In the process of computation, because these systemsare too complex to study using the improved method, the three-order normal form is usedto simplify the three-degree-of-freedom nonlinear dynamical equations. Then the lastfour-dimensional equations are transformed into the polar form, and the first two equationsare decoupled with the last four equations by coordinate transformation. A homoclinicbifurcation is found from the first two equations and a multi-pulse Shilnikov type chaoticmotion is found from the last four equations when studing these decoupled systems. Whencalculating the Melnikov functions, some of integrals are too complex to calculate.The k-pulse Melnikov function of these systems are obtained using the Taylor series andthe residue theory. In the end, the multi-pulse chaotic motions of these systems are foundfrom the numerical simulations which further verify the result of theoretical analysis.
     (3) The extended Melnikov method is improved to investigate the six-dimensionalnon-autonomous nonlinear dynamical system in Cartesian coordinate and correctness ofsuch a method is theoretically proved. In the process of investigation, when a cross-sectionis appled to six-dimensional non-autonomous nonlinear dynamical system, aseven-dimensional autonomous nonlinear dynamical system is obtained.
     The multi-pulse chaotic dynamics of a four-edge simply supported compositelaminated rectangular plate subjected to transversal excitation and a four-edge simplysupported honeycomb sandwich rectangular plate under in-plane and transversalexcitations are investigated using the improved extended Melnikov method. In the processof computation, the three-order normal form is used to analyze these systems. Somenonlinear terms of these systems disappear after the normal form calculation. By virtue ofthe theory of the normal form, these nonlinear terms in these systems have less effect thanother terms. So these terms are considered as perturbation terms in these systems. Theunperturbed systems of these systems are transformed into Hamiltonian systems and thefirst two equations are decoupled with the last four equations by coordinatetransformation. When studing the first two equations of these decoupled systems, aheteroclinic orbit is found from the four-edge simply supported laminated rectangularplate subjected to transversal excitation, and a homoclinic orbit is found from thefour-edge simply supported honeycomb sandwich rectangular plate under in-plane and transversal excitations. Multi-pulse Shilnikov type chaotic motions of these systems arefound in the condition of resonance. In the end, multi-pulse chaotic motions of thesesystems are found from numerical simulations which further verify the result of theoreticalanalysis.
引文
1. G. Chen and X. Dong, From chaos to order: methodologies, perpectives andapplications, Singapore, World Scientific,1998.
    2.刘秉正,彭建华,非线性动力学,高等教育出版社,北京,2004.
    3. S. Wiggins, Introduction to applied nonlinear dynamics systems, Springer-Verlag,New York,1990.
    4. J. Guckenheimer and P. J. Holmes, Nonlinear oscillators, dynamical systems andbifurcations of vector fields, Springer-Verlag, New York,1983.
    5. J. Holmes and J. E. Marsden, Melnikov’s method and Arnold diffusion forperturbations of integrable Hamiltonian systems, Journal of Mathematical Physics23,p669-675,1982.
    6. S. Wiggins, Global bifurcations and chaos, Springer-Verlag, New York, p330-418,1988.
    7. G. Kovacic and S. Wiggins, Orbits homoclinic to resonances, with an application tochaos in a model of the forced and damped sine-Gordon equation, Physica D57,p185-225,1992.
    8. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class ofnear-integrable Hamiltonian systems, Journal of Dynamics and DifferentialEquations5, p559-597,1993.
    9. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class ofnear-integrable dissipative systems, SIAM Journal of Mathematical Analysis26,p1611-1643,1995.
    10. G. Kovacic, Hamiltonian dynamics of orbits homoclinic to a resonance band, PhysicsLetters A167, p137-142,1992.
    11. G. Kovacic, Dissipative dynamics of orbits homoclinic to a resonance band, PhysicsLetters A167, p143-150,1992.
    12. M. Rudnev and S. Wiggins, Existence of exponentially small separatrix splittings andhomoclinic connections between whiskered tori in weakly hyperbolic near-integrableHamiltonian systems, Physica D114, p3-80,1998.
    13. K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-freedomHamiltonian systems, Nonlinearity12, p799-822,1999.
    14. K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators,Nonlinear Dynamics20, p319-359,1999.
    15. K. Yagasaki, Codimension-two bifurcations in a pendulum with feedback control,International Journal of Nonlinear Mechanics34, p983-1002,1999.
    16. K. Yagasaki, Horseshoe in two-degree-of-freedom Hamiltonian systems withsaddle-centers, Archive for Rational Mechanics and Analysis154, p275-296,2000.
    17. K. Yagasaki, Homoclinic and heteroclinic orbits to invariant tori inmulti-degree-of-freedom Hamiltonian systems with saddle-centers, Nonlinearity18,p1331-1350,2005.
    18. K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos intwo-degree-of freedom Hamiltonian systems with saddle centers, Nonlinearity16,p2003-2012,2003.
    19. K. Yagasaki, Chaotic dynamics of quasi-periodically forced oscillators detected byMelnikov method, SIAM Journal on Mathematical Analysis23, p1230-1254,1992.
    20. K. Yagasaki, Homoclinic tangles, phase locking, and chaos in a two-frequencyperturbation of Duffing’s equation, Journal of Nonlinear Science9, p131-148,1999.
    21. K. Yagasaki and T. Wagenknecht, Detection of symmetric homoclinic orbits tosaddle-centre in reversible systems, Physica D214, p169-181,2006.
    22. R. Camassa, On the geometry of an atmospheric slow manifold, Physica D84,p357-397,1995.
    23. S. K. Tin, Transversality of double-pulse homoclinic orbits in the inviscidLorenz-Krishnamurthy system, Physica D83, p383-408,1995.
    24. Z. C. Feng and K. M. Liew, Global bifurcations in parametrically excited systemswith zero-to-one internal resonance, Nonlinear Dynamics21, p249-263,2000.
    25. B. Sandstede, S. Balasuriya, C. K. R. T. Jones and P. Miller, Melnikov theory forfinite-time vector fields, Nonlinearity13, p1357-1377,2000.
    26. S. Balasuriya, C. K. R. T. Jones and B. Sandstede, Viscous perturbations ofvorticity-conserving flows and separatrix splitting, Nonlinearity11, p47-77,1998.
    27. M. Wechselberger, Extending Melnikov theory to invariant manifolds onnon-compact domains, Dynamical Systems17, p215-233,2002.
    28. V. Rottschafer and T. J. Kaper, Geometric theory for multi-bump, self-similar,blowup solutions of the cubic nonlinear Schr dinger equation, Nonlinearity16,p929-961,2003.
    29. L. Nana, T. C. Kofane and E. Kaptouom, Horseshoe-shaped maps in chaoticdynamics of long Josephson junction driven by biharmonic signals, Chaos, Solitonsand Fractals11, p2259-2271,2000.
    30. O. Koltsova, L. Lerman, A. Delshams and P. Gutierrez, Homoclinic orbits toinvariant tori near a homoclinic orbit to center-center-saddle equilibrium, Physica D:Nonlinear Phenomena201, p268-290,2005.
    31. G. Hek, A. Doelman and P. Holmes, Homoclinic saddle-node bifurcations andsub-shifts in a three-dimensional flow, Archive for Rational Mechanics and Analysis145, p291-329,1998.
    32. R. H. Goodman, P. Holmes and M. I. Weinstein, Interaction of sine-Gordon kinks
    33. J. Shatah and C. C. Zeng, Orbits homoclinic to centre manifolds of conservativePDEs, Nonlinearity16, p591-614,2003.
    34. J. Shatah and C. C. Zeng, Homoclinic orbits for the perturbed sine-Gordon equation,Communications on Pure and Applied Mathematics53, p283-299,2000.
    35. C. C. Zeng, Homoclinic orbits for a perturbed nonlinear Schr dinger equation,Communications on Pure and Applied Mathematics53, p1222-1283,2000.
    36. D. D. Holm, G. Kovacic and T. A. Wettergren, Near-integrability and chaos in aresonant-cavity laser model, Physics Letters A200, p299-307,1995.
    37. A. Aceves, D. D. Holm, G. Kovacic and I. Timofeyev, Homoclinic orbits and chaosin a second-harmonic generating optical cavity, Physics Letters A233, p203-208,1997.
    38. C. S. Trevino and T. J. Kaper, Higher-order Melnikov theory for adiabatic systems,Journal of Mathematical Physics37, p6220-6249,1996.
    39. M. L. Frankel, G. Kovacic, V. Roytburd and I. Timofeyev, Finite-dimensionaldynamical system modeling thermal instabilities, Physica D137, p295-315,2000.
    40. P. Veerman and P. Holmes, The existence of arbitrarily many distinct periodic orbitsin a two degree of freedom Hamiltonian system, Physica D: Nonlinear Phenomena14, p177-192,1985.
    41. P. Veerman and P. Holmes, Resonance bands in a two degree of freedomHamiltonian system, Physica D: Nonlinear Phenomena20, p413-422,1986.
    42. Z. C. Feng and S. Wiggins, On the existence of chaos in a class oftwo-degree-of-freedom, damped, strongly parametrically forced mechanical systemswith broken O (2)symmetry, ZAMM-Journal of Applied Mathematics and Mechanics44, p202-248,1993.
    43. N. Malhotra and N. Sri, Chaotic dynamics of shallow arch structures under1:2resonance, Journal of Engineering Mechanics123, p612-619,1997.
    44. N. Malhotra and N. Sri, Chaotic motion of shallow arch structures under1:1internalresonance, Journal of Engineering Mechanics123, p620-627,1997.
    45. C. Xu and Z. J. Jing, Shilnikov’s orbit in coupled Duffing’s systems, Chaos, Solitonsand Fractals11, p853-858,2000.
    46. W. Li and P. C. Xu, The existence of Shilnikov’s orbit in four-dimensional Duffing’ssystems, Acta Mathematicae Applicatae Sinica19, p677-690,2003.
    47. Z. J. Jing, Z. Y. Yang and T. Jiang, Complex dynamics in Duffing-Van der Polequation, Chaos, Solitons and Fractals27, p722-747,2006.
    48. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate,Journal of Sound and Vibration239, p1013-1036,2001.
    49. W. Zhang and Y. Tang, Global dynamics of the cable under combined parametricaland external excitations, International Journal of Non-linear Mechanics37,p505-526,2002.
    50. W. Zhang, F. X. Wang and M.H. Yao, Global bifurcations and chaotic dynamics innonlinear non-planar oscillations of a parametrically excited cantilever beam,Nonlinear Dynamics40, p251-279,2005.
    51.王凤霞,柔性悬臂梁的非线性振动与全局动力学的研究,北京工业大学工学硕士学位论文,2002.
    52.高美娟,张伟,姚明辉,六维粘弹性传动带的异宿轨道与混沌动力学,第11届全国非线性振动会议暨第8届全国非线性动力学和运动稳定性会议论文集,石家庄,2007.
    53. M. J. Gao, W. Zhang and M. H. Yao, Singular-pulse orbits and chaotic dynamics asix-dimensional viscoelastic moving belt, Proceedings of the Fifth InternationalConference on Nonlinear Mechanics, Shanghai,2007.
    54.高美娟,张伟,姚明辉,郭翔鹰,复合材料层合板的复杂动力学研究,2008年航空航天航海科学与技术全国博士生学术论坛论文集,西安,2008.
    55. D. X. Cao and W. Zhang, Global bifurcations and chaotic dynamics for a string-beamcoupled system, Chaos, Solitons and Fractals37, p858-875,2008.
    56. B. L. Guo and H. L. Chen, Homoclinic orbit in a six-dimensional model of aperturbed higher-order nonlinear Schr dinger equation, Communications inNonlinear Science and Numerical Simulation9, p431-441,2004.
    57. J. H. Zhang and W. Zhang, An extended high-dimensional Melnikov analysis forglobal and chaotic dynamics of a non-autonomous rectangular buckled thin plate,Science China: Physics, Mechanics&Astronomy55, p1-12,2012.
    58. T. J. Kaper and G. Kovacic, Multi-bump orbits homoclinic to resonance bands,Transactions of the American Mathematical Society348, p3835-3887,1996.
    59. R. Camassa, G. Kovacic and S. K. Tin, A Melnikov method for homoclinic orbitswith many pulses, Archive for Rational Mechanics and Analysis143, p105-193,1998.
    60.姚明辉,张伟,用广义Melnikov方法分析柔性悬臂梁非平面运动的多脉冲轨道,中国力学学会学术大会论文集,北京,2005.
    61. J. H. Zhang and W. Zhang, Global bifurcation and chaotic dynamics for anon-autonomous buckled thin plate, Journal of Dalian University of Technology46,p1-6,2006.
    62. W. Zhang, J. H. Zhang and M. H. Yao, Multi-pulse chaotic motion for anon-autonomous buckled plate by using the extended Melnikov method, Proceedingsof the ASME International Mechanical Engineering Congress and Exposition, Seattle,2007.
    63. J. H. Zhang and W. Zhang, Global dynamics for a non-autonomous buckled platewith parametrically and externally excitation, Proceedings of the5th InternationalConference on Nonlinear Mechanics, Shanghai,2007.
    64. J. H. Zhang, W. Zhang, M. H. Yao and X. Y. Guo, Multi-pulse Shilnikov chaoticdynamics for a non-autonomous buckled thin plate under parametric excitation,International Journal of Nonlinear Sciences and Numerical Simulation9, p381-394,2008.
    65. W. Zhang, J. H. Zhang and M. H. Yao, The extended Melnikov method fornon-autonomous nonlinear dynamical system of a buckled thin plate, NonlinearAnalysis: Real World Application11, p1442-1457,2010.
    66. W. Zhang, J. H. Zhang, M. H. Yao and Z. G. Yao, Multi-pulse chaotic dynamics ofnon-autonomous nonlinear system for a laminated composite piezoelectricrectangular plate, Acta Mechanica211, p23-47,2010.
    67. W. Zhang, M. H. Yao and J. H. Zhang, Using extended Melnikov method to studymulti pulse global bifurcations and chaos of a cantilever beam, Journal of Sound andVibration319, p541-569,2009.
    68. J. H. Zhang and W. Zhang, Multi-pulse chaotic dynamics of non-autonomousnonlinear system foe a honeycomb sandwich plate, Acta Mechanica223, p1047-1066,2012.
    69. M. H. Yao, W. Zhang and J. W. Zu, Multi-pulse chaotic dynamics in non-planarmotion of parametrically excited viscoelastic moving belt, Journal Sound andVibration331, p2624-2653,2012.
    70. G. Haller and S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case,Physica D66, p298-346,1993.
    71. G. Haller and S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modaltruncation of the damped-forced nonlinear Schr dinger equation, Physica D85,p311-347,1995.
    72. G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of3-DOFHamiltonian systems, Physica D90, p319-365,1996.
    73. G. Haller, Multi-dimensional homoclinic jumping and the discretized NLS equation,Communications in Mathematical Physics193, p1-46,1998.
    74. G. Haller, Homoclinic jumping in the perturbed nonlinear Schr dinger equation,Communications on Pure and Applied Mathematics LII, p1-47,1999.
    75. G. Haller, G. Menon and V. M. Rothos, Shilnikov manifolds in coupled nonlinearSchr dinger equations, Physics Letters A263, p175-185,1999.
    76. G. Haller, Chaos near resonance, New York: Springer-Verlag, p91-158,1999.
    77. N. Malhotra, N. Sri and R. J. Mcdonald, Multi-pulse orbits in the motion of flexiblespinning discs, Journal of Nonlinear Science12, p1-26,2002.
    78. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics innonlinear non-planar motion of a cantilever beam, International Journal ofBifurcation and Chaos15, p3923-3952,2005.
    79. M. H. Yao and W. Zhang, Multi-pulse homoclinic orbits and chaotic dynamics inmotion of parametrically excited viscoelastic moving belt, International Journal ofNonlinear Sciences and Numerical Simulation6, p37-45,2005.
    80.张伟,姚明辉,两自由度机械系统的Shilnikov型多脉冲轨道,中国力学学会学术大会论文集,北京,2005.
    81. W. Zhang, M. H. Yao and L. Bai, A new multi-pulse chaotic motion forparametrically excited viscoelastic axially moving string, Proceedings of the ASME2005International Design Engineering Technical Conferences, Long Beach,2005.
    82. W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic dynamics in motion ofparametrically excited viscoelastic moving belt, Chaos, Solitons and Fractals28,p42-66,2006.
    83. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics of aparametrically and externally excited thin plate, International Journal of Bifurcationsand Chaos17, p1-25,2007.
    84. W. Zhang and M. H. Yao, Theories of multi pulse global bifurcations for highdimensional systems and applications to cantilever beam, International Journal ofModern Physics B22, p4089-4141,2008.
    85.高美娟,张伟,姚明辉,六维粘弹性传动带的混沌动力学研究,中国力学学会学术大会’2007论文集,北京,2007.
    86. M. J. Gao, W. Zhang and M. J. Gao, Global analysis and chaotic dynamics ofsix-dimensional nonlinear system for an axially moving viscoelastic belt,International Journal of Modern Physics B25, p2299-2322,2011.
    87.高美娟,张伟,姚明辉,郭翔鹰,复合材料层合板的多脉冲混沌动力学研究,第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集,镇江,2009.
    88. W. Zhang and M. J. Gao, Chaotic dynamics in a higher-dimensional nonlinear systemfor a composite laminated plate, Proceedings of the ASME2009International DesignEngineering Technical Conferences, San Diego,2009.
    89.高美娟,张伟,姚明辉,姚志刚,压电复合材料层合板的混沌动力学研究,振动与冲击1, p82-85,2009.
    90. W. Zhang, M. J. Gao, M. H. Yao and Z. G. Yao, Chaotic dynamics of asix-dimensional laminated composite piezoelectric rectangular plate, Proceedings ofthe2009ASME International Mechanical Engineering Congress&Exposition,Florida,2009.
    91. W. Zhang, M. J. Gao, M. H. Yao and Z. G. Yao, Higher-dimensional chaoticdynamics of a composite laminated piezoelectric rectangular plate, Science in ChinaSeries G: Physics, Mechanics&Astronomy39, p1105-1115,2009.
    92.高美娟,张伟,姚明辉,张君华,李双宝,压电复合材料层合矩形板的混沌动力学,2008年国际航天航空工程会议第二届全国博士生学术会议论文集,北京,2008.
    93. R. H. Rand and P. J. Holmes, Bifurcation of periodic motions in two weakly coupledVan der Pol oscillators, International Journal of Non-linear Mechanics15, p387-399,1980.
    94. P. J. Holmes, Center manifolds, normal forms and bifurcations of vector fields withapplication to coupling between periodic and steady motions, Physica D, p449-481,1981.
    95. P. Holmes, J. Jenkins and N. E. Leonard, Dynamics of the Kirchhoff equations I:Coincident centers of gravity and buoyancy, Physica D118, p311-342,1998.
    96. S. A. Campbell and P. Holmes, Heteroclinic cycles and modulated traveling waves ina system withD4symmetry, Physica D59, p52-78,1992.
    97. P. R. Sethna and S. W. Shaw, On codimension-three bifurcations in the motion ofarticulated tubes conveying a fluid, Physica D24, p305-327,1987.
    98. C. Baesens, J. Guckenheimer, S. Kim and R. S. Mackay, Three coupled oscillators:mode-locking, global bifurcations and toroidal chaos, Physica D49, p387-475,1991.
    99. P. Hirschberg and E. Knobloch, Shilnikov-Hopf bifurcation, Physica D62, p202-216,1993.
    100. N. Malhotra and N. Sri, Global dynamics of parametrically excited nonlinearreversible systems with non-semisimple1:1resonance, Physica D89, p43-70,1995.
    101. R. Grauer, Nonlinear interactions of tearing modes in the vicinity of a bifurcationpoint of codimension two, Physica D35, p107-126,1989.
    102. C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation ofperiodic solutions in coupled oscillators, Journal of Differential Equations112,p407-447,1994.
    103. J. Gruendler, Homoclinic solutions for autonomous ordinary differential equationwith non-autonomous perturbations, Journal of Differential Equations122, p1-26,1995.
    104. V. G. Leblanc and W. F. Langford, Classification and unfoldings of1:2resonantHopf bifurcation, Archive for Rational Mechanics and Analysis136, p305-357,1996.
    105. J. Porter and E. Knobloch, New type of complex dynamics in the1:2spatialresonance, Physica D159, p125-154,2001.
    106. L. H. Anna and R. K. Vered, Parabolic resonances in3degree of freedom nearintegrable Hamiltonian systems, Physica D164, p213-250,2002.
    107. K. Toshihiro, Chaos in a four-dimensional system consisting of fundamental lagelements and the relation to the system eigenvalues, Chaos, Solitons and Fractals23,p1413-1428,2005.
    108. T. Uzer, C. Jaffe, J. Palacian and S. Wiggins, The geometry of reaction dynamics,Nonlinearity15, p957-992,2002.
    109. K. Yagasaki, Detection of homoclinic bifurcation in resonance zones of forcedoscillators, Nonlinear Dynamics28, p285-307,2002.
    110. K. Yagasaki, Melnikov’s method and codimension-two bifurcations in forcedoscillators, Journal of Differenital Equations185, p1-24,2002.
    111. R. V. Abramov, G. Kovacic and A. J. Majda, Hamiltonian structure and statisticallyrelevant conserved quantities for the truncated Burgers-Hopf equation,Communications on Pure and Applied Mathematics56, p1-46,2003.
    112. C. Chandre, S. Wiggins and T. Uzer, Time-frequency analysis of chaotic systems,Physica D181, p171-196,2003.
    113. T. Bakri, R. Nabergoj, A. Tondl and F. Verhulst, Parametric excitation in nonlineardynamics, International Journal of Nonlinear Mechanics39, p311-329,2004.
    114. B. L. Guo and Y. H. Wu, Global existence and nonexistence of solution of a forcednonlinear Schr dinger equation, Journal of Mathematics Physics36, p35-55,1995.
    115. B. L. Guo and H. L. Chen, Homoclinic orbits for a perturbed quintic-cubic NLSequation, Communication in Nonlinear Science and Numerical Simulation6,p227-230,2001.
    116.徐鉴,陆启韶,黄克累,两自由度非对称三次系统非线性模态的奇异性质,应用数学和力学22, p869-878,2001.
    117. B. D. Feo, Qualitative resonance of Shilnikov-like strange attractors, part I:experimental evidence, International Journal of Bifurcation and Chaos14, p873-891,2004.
    118. B. D. Feo, Qualitative resonance of Shilnikov-like strange attractors, part II:mathematical analysis, International Journal of Bifurcation and Chaos14, p893-912,2004.
    119. W. Zhang and X. P. Zhan, Periodic and chaotic motions of a rotor-active magneticbearing with quadratic and cubic terms and time-varying, Nonlinear Dynamics41,p331-359,2005.
    120. W. Zhang, Chaotic motion and its control for nonlinear non-planar oscillations of aparametrically excited cantilever beam, Chaos, Solitons and Fractals26, p731-745,2005.
    121.陈祎,张伟,六维非线性动力系统三阶规范形的计算,动力学与控制学报2,p31-35,2004.
    122. W. Zhang, Y. Chen and D. X. Cao, Computation of normal forms foreight-dimensional nonlinear dynamical system and application to a viscoelasticmoving belt, International Journal of Nonlinear Sciences and Numerical Simulation7, p35-58,2006.
    123. W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaosof a symmetric cross-ply laminated thin plate under parametric excitation,International Journal of Bifurcation and Chaos16, p325-347,2006.
    124. D. X. Cao and W. Zhang, Analysis on nonlinear dynamics of a string-beam coupledsystem, International Journal of Nonlinear Science and Numerical Simulation6,p47-54,2005.
    125. M. Ye, Y. H. Sun, W. Zhang, X. P. Zhan and Q. Ding, Nonlinear oscillations andchaotic dynamics of an anti-symmetric cross-ply laminated composite rectangularthin plate under parametric excitation, Journal of Sound and Vibration287, p723-758,2005.
    126. W. Zhang, M. H. Yao and X. P. Zhan, Multi-pulse chaotic motions of a rotor-activemagnetic bearing system with time-varying stiffness, Chaos, Solitons and Fractals27,p175-186,2006.
    127. W. Zhang, M. H. Yao, X. P. Zhan and L. L. Bai, Multi-pulse chaotic motions of arotor-active magnetic bearing with time-varying stiffness, Proceedings of the ASMEInternational Design Engineering Technical Conferences&Computers andInformation in Engineering Conference, Long Beach,2005.
    128. G. Hek, Fronts and pulses in a class of reaction-diffusion equations: a geometricsingular perturbation approach, Nonlinearity14, p35-72,2001.
    129. R. Champenys and J. Hartenich, Cascade of homoclinic orbits to a saddle-centre forreversible and perturbed Hamiltonian systems, Dynamics and Stability of Systems15,p231-252,2003.
    130. W. Zhang and D. X. Cao, Experimental investigation of non-planar chaotic vibrationsin a cantilever beam with vertical base excitation, Proceedings of the ASME2007International Design Engineering Technical Conferences&Computers andInformation in Engineering Conference, Las Vegas,2007.
    131.曹东兴,张伟,矩形截面悬臂梁倍周期分叉和混沌运动的实验研究,全国非线性动力学和运动稳定性学术会议论文集,石家庄,2007.
    132.曹东兴,机械柔性结构的非线性振动、分叉和混沌动力学,北京工业大学工学博士学位论文,2007.
    133. W. Zhang and C. Z. Song, Research on higher-dimensional periodic and chaoticoscillations for a parametrically excited viscoelastic moving belt with multipleinternal resonances, International Journal of Bifurcation and Chaos17, p1637-1660,2007.
    134. R. Abraham and J. E. Marsden, Foundations of mechanics2nd, Addison-Wesley,Redwood City,1978.
    135. K. R. Meyer and G. R. Hall, Introduction to Hamiltonian dynamical systems and then-body problems, Springer, New York,1992.
    136. A. Vanderbauwhede, Center manifolds, normal forms and elementary bifurcation,Dynamics Reported2, p89-169,1989.
    137. K. Kato, Perturbation theory for linear operators, Springer, Berlin,1980.
    138. J. Gruendler, The existence of homoclinic orbits and the method of Melnikov forsystems inR n, SIAM Journal on Mathematical Analysis16, p907-931,1985.
    139. Hadian and A. H. Nayfe, Modal interaction in circular plates, Journal of Sound andVibration142, p279-292,1990.
    140. L. Yang and P. R. Sethna, Local and global bifurcations in parametrically excitedvibrations nearly square plates, International Journal of Non-linear Mechanics26,p199-220,1990.
    141. Z. C. Feng and P. R. Sethna, Global bifurcations in the motion of parametricallyexcited thin plate, Nonlinear Dynamics4, p389-408,1993.
    142. P. Yu, W. Zhang and Q. Bi, Vibration analysis on a thin plate with the aid ofcomputation of normal forms, International Journal of Non-linear Mechanics36,p597-627,2001.
    143. W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externallyexcited thin plate, Nonlinear Dynamics24, p245-268,2001.
    144. J. Awrejcewicz, V. A. Krysko and A. V. Krysko, Spatio-temporal chaos and solitonsexhibited by von kármán model, International Journal of Bifurcation and Chaos12,p1465-1513,2002.
    145. J. Awrejcewicz and A. V. Krysko, Analysis of complex parametric vibrations of platesand shells using Bubnov-Galerkin approach, Archive of Applied Mechanics73,p467-532,2003.
    146. Q. Han, L. Dai and M. Dong, Bifurcation and chaotic motion of an elastic plate oflarge deflection under parametric excitation, International Journal of Bifurcation andChaos15, p2849-2863,2005.
    147. W. Zhang and S. B. Li, Resonant chaotic motions of a buckled rectangular thin platewith parametrically and externally excitations, Nonlinear Dynamics62, p673-686,2010.
    148. M. Feckan and J. R. Gruendler, The existence of chaos for ordinary differentialequations with a center manifold, Bulletin of the Belgian Mathematical Society11,p77-94,2004.
    149. W. Q. Yu and F. Q. Chen, Global bifurcations of a simply supported rectangularmetallic plate subjected to a transverse harmonic excitation, Nonlinear Dynamics59,p129-141,2010.
    150. W. Q. Yu and F. Q. Chen, Multi-pulse jumping orbits and homoclinic trees in motionof a simply supported rectangular metallic plate, Archive of Applied Mechanics80,p1103-1123,2010.
    151. P. F. Pai and A. H. Nayfeh, Arefined nonlinear model of composite plates withintegrated piezoelectric actuators and sensors, International Journal of Solids andStructures30, p1603-1630,1993.
    152. M. Ishihara and N. Noda, Nonlinear dynamic behavior of a piezothermoelasticlaminated plate with anisotropic material properties, Acta Mechanica166, p103-106,2003.
    153. M. Ishihara and N. Noda, Control of mechanical deformation of a laminate bypiezoelectric actuator taking into account the transverse shear, Archive of AppliedMechanics74, p16-28,2004.
    154. X. L. Huang and H. S. Shen, Nonlinear free and forced vibration of simply supportedshear deformable laminated plates with piezoelectric actuators, International Journalof Mechanical Sciences47, p187-208,2005.
    155. S. J. Lee and J. N. Reddy, Nonlinear finite element analysis of laminate compositeshells with actuating layers, Finite Elements in Analysis and Design43, p1-21,2006.
    156. R. A. Arciniega and J. N. Reddy, Large deformation analysis of functionally gradedshells, International Journal of Solids and Structures44, p2036-2052,2007.
    157. H. Santors and J. N. Reddy, A finite element model for the analysis of3Daxisymmetric laminated shells with piezoelectric sensors and actuators, CompositeStructures75, p170-178,2006.
    158. F. H. Zhu and Y. M. Fu, Analysis of nonlinear dynamic response and delaminationfatigue growth for delaminated piezoelectric laminated beam-plates, InternationalJournal of Fatigue30, p822-833,2008.
    159. Y. M. Fu and X. Q. Wang, Analysis of bifurcation and chaos of the piezoelectric plateincluding damage effects, International Journal of Nonlinear Sciences andNumerical Simulation9, p61-74,2008.
    160. W. Zhang, Z. G. Yao and M. H. Yao, Periodic and chaotic dynamics of compositelaminated piezoelectric rectangular plate with one-to-two internal resonance, Sciencein China Series E: Technological Sciences52, p731-742,2009.
    161.姚志刚,压电复合材料结构的非线性动力学与控制研究,北京工业大学工学博士学位论文,2009.
    162. Y. F. Zheng, F. Wang and Y. M. Fu, Nonlinear dynamic stability of moderately thicklaminated plates with piezoelectric layers, International Journal of NonlinearSciences and Numerical Simulation10, p459-468,2009.
    163. S. Panda and M. C. Ray, Active control of geometrically nonlinear vibrations offunctionally graded laminated composite plates using piezoelectric fiber reinforcedcomposites, Journal of Sound and Vibration325, p186-205,2009.
    164. P. Dash and B. N. Singh, Nonlinear free vibration of piezoelectric laminatedcomposite plate, Finite Elements in Analysis and Design45, p686-694,2009.
    165. Y. Q. Mao and Y. M. Fu, Nonlinear dynamic response and active vibration control forpiezoelectric functionally graded plate, Journal of Sound and Vibration329,p2015-2028,2010.
    166. M. H. Yao, W. Zhang and Z. G. Yao, Multi-pulse orbits dynamics of compositelaminated piezoelectric rectangular plate, Science China: Technological Sciences54,p2064-2079,2011.
    167. W. Zhang, M. J. Gao, M. H. Yao and Z. G. Yao, Higher-dimensional chaotic dynamicsof a composite laminated piezoelectric rectangular plate, Science in China Series G:Physics, Mechanics&Astronomy52, p1989-2000,2009.
    168. S. Pradyumna and A. Gupta, Nonlinear dynamic stability of laminated compositeshells integrated with piezoelectric layers in thermal environment, Acta Mechanica218, p295-308,2011.
    169. V. Fakhari and A. Ohadi, Nonlinear vibration control of functionally graded platewith piezoelectric layers in thermal environment, Journal of Vibration and Control17,p449-469,2011.
    170. Y. S. Shih and P. T. Blotter, Non-linear vibration analysis of arbitrarily laminated thinrectangular plates on the elastic foundation, Journal of Sound and Vibration167,p433-459,1993.
    171. J. H. Argyris and L. Tenek, Nonlinear and chaotic oscillations of composite plates andshells under periodic heat load, Computer Methods in Applied Mechanics andEngineering122, p351-377,1995.
    172. K. Oh and A. H. Nayfeh, Nonlinear resonances in cantilever composite plates,Nonlinear Dynamics11, p143-169,1996.
    173. V. Balamurugan, M. Ganapathi and T. K. Varadan, Nonlinear dynamic instability oflaminated composite plates using finite element method, Computers&Structures60,p125-130,1996.
    174. A. Abe, Y. Kobayashi and G. Yamada, Two-mode response of simply supportedrectangular laminated plates, International Journal of Non-linear Mechanics33,p675-690,1998.
    175. A. Abe and Y. Kobayashi, There-mode response of simply supported, rectangularlaminated plates, International Journal Series-Mechanical Systems MachineElements and Manufacturing41, p51-59,1998.
    176. P. Ribeiro and M. Petyt, Non-linear vibration of composite laminated plates by thehierarchical finite element method, Composite Structures46, p197-208,1999.
    177. M. Ganapathi, B. P. Patel, P. Boisse and M. Touratier, Non-linear dynamic stabilitycharacteristics of elastic plate subjected to periodic in-plane load, InternationalJournal of Non-linear Mechanics35, p467-480,2000.
    178. B. Harras, R. Benamar and R. G. White, Geometrically nonlinear free vibration offully clamped composite laminated rectangular composite plates, Journal of Soundand Vibration25, p579-619,2002.
    179. K. K. Shukla, J. M. Chen and J. H. Huang, Nonlinear dynamic analysis of compositelaminated plates containing spatially oriented short fibers, International Journal ofSolids and Structures41, p365-384,2004.
    180. M. Ye, J. Lu, Q. Ding and W. Zhang, Nonlinear dynamics of a parametrically excitedrectangular symmetric cross-ply laminated composite plate, Acta Mechanica Sinica37, p64-71,2004.
    181. M. Ye, J. Lu, W. Zhang and Q. Ding, Local and global nonlinear dynamics of aparametrically excited rectangular symmetric cross-ply laminated composite plate,Chaos, Solitons and Fractals26, p195-213,2005.
    182. A. K. Onkar and D. Yadav, Nonlinear free vibration of laminated composite platewith random material properties, Journal of Sound and Vibration272, p627-641,2004.
    183. M. K. Singha and R. Daripa, Nonlinear vibration and dynamic stability analysis ofcomposite plates, Journal of Sound and Vibration328, p541-554,2009.
    184.郭翔鹰,张伟,姚明辉,陈丽华,复合材料层合板的混沌运动分析,振动与冲击28, p139-144,2009.
    185. W. Zhang, X. Y. Guo and S. K. Lai, Research on periodic and chaotic oscillations ofcomposite laminated plates with one-to-one internal resonance, International Journalof Nonlinear Sciences and Numerical Simulation10, p1567-1583,2009.
    186. X. Y. Guo, W. Zhang and M. H. Yao, Nonlinear dynamics of angle-ply compositelaminated thin plate with third-order shear deformation, Science in China Series E:Technological Sciences53, p612-622,2010.
    187.张君华,张伟,非自治复合材料层合板的混沌动力学,力学季刊30, p127-132,2009.
    188. M. Amabili, K. Karazis and K. Khorshidi, Nonlinear vibrations of rectangularlaminated composite plates with different boundary conditions, International Journalof Structural Stability and Dynamics11, p673-695,2011.
    189. K. M. Liew, L. Jiang, M. K. Lim and S. C. Low, Numerical evaluation of frequencyresponses for delaminated honeycomb structures, Computers and Structures55,p191-203,1995.
    190. L. Jiang, K. M. Liew, K. M. Lim and S. C. Low, Vibratory behavior of delaminatedhoneycomb structures: A3-D finite element modeling, Computers and Structures55,p773-788,1995.
    191. K. M. Liew and C. S. Lim, Analysis of dynamic responses of delaminatedhoneycomb panels, Composite Structures39, p111-121,1997.
    192. W. S. Burton and A. K. Noor, Assessment of continuum models for sandwich panelhoneycomb cores, Computer Methods in Applied Mechanics and Engineering145,p341-360,1997.
    193. F. Scarpa and G. Tomlinson, Theoretical characteristics of the vibration of sandwichplates with in-plane negative Poisson’s ratio values, Journal of Sound and Vibration230, p45-67,2000.
    194. T. S. Lok and Q. H. Cheng, Free vibration of damped orthotropic sandwich panel,Journal of Sound and Vibration229, p311-327,2000.
    195. X. F. Xu and P. Z. Qiao, Homogenized elastic properties of honeycomb sandwichwith skin effect, International Journal of Solids and Structures39, p2153-2188,2002.
    196. E. Nilsson and A. C. Nilsson, Prediction and measurement of some dynamicproperties of sandwich structures with honeycomb and foam cores, Journal of Soundand Vibration251, p409-430,2002.
    197. S. V. Sorokin and O. A. Ershova, Forced and free vibrations of rectangular sandwichplates with parametric stiffness modulation, Journal of Sound and Vibration259,p119-143,2003.
    198. S. D. Yu and W. L. Cleghorn, Free flexural vibration analysis of symmetrichoneycomb panels, Journal of Sound and Vibration284, p189-204,2004.
    199. R. K. Khare, T. Kant and A. K. Garg, Free vibration of composite and sandwichlaminates with a higher-order facet shell element, Composite Structures65, p405-418,2004.
    200. A. Chen and J. F. Davalos, A solution including skin effect for stiffness and stressfield of sandwich honeycomb core, International Journal of Solids and Structures42,p2711-2739,2005.
    201. I. Cielecka and J. Jedrysiak, A non-asymptotic model of dynamics of honeycomblattice-type plates, Journal of Sound and Vibration296, p130-149,2006.
    202. A. K. Nayak, R. A. Shenoi and S. S. J. Moy, Dynamic response of compositesandwich plates subjected to initial stresses, Composites Part A: Applied Science andManufacturing37, p1189-1205,2006.
    203.黄须强,吕朝阳,蔡明晖,李永强,四边简支条件下对称蜂窝夹层板的弯曲振动分析,东北大学学报(自然科学版)28, p1616-1619,2007.
    204. A. Vaziri and J. W. Hutchinson, Metal sandwich plates subject to intense air shocks,International Journal of Solids and Structures44, p2021-2035,2007.
    205.孙佳,张伟,蜂窝夹层板的非线性动力学研究,动力学与控制学报6, p150-155,2008.
    206. Y. Q. Li and D. W. Zhu, Free flexural vibration analysis of symmetric rectangularhoneycomb panels using the improved Reddy’s third-order plate theory, CompositeStructures88, p33-39,2009.
    207. C. L. Liu, L. H. Chen and W. Zhang, Bifurcations and chaotic motions of ahoneycomb sandwich plate, Proceedings of the Third International Conference onDynamics, Vibration and Control, Hangzhou,2010.
    208.刘长亮,横向和面内载荷联合作用下的蜂窝夹层板的非线性振动和混沌动力学,北京工业大学工学硕士学位论文,2010.
    209.张君华,高维非自治非线性系统的全局摄动分析和多脉冲混沌动力学研究,北京工业大学工学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700