用户名: 密码: 验证码:
同轴电缆接入网信道建模与故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高清多媒体、网络互动游戏、云接入技术等多种高带宽业务的普及应用,用户对于数据通信速率的要求越来越高,高速接入网成为了当前通信技术的研究重点。而有线电视同轴电缆网络由于覆盖面广,用户数多,因而得到了广泛的关注,并且在国内外兴起了一大批同轴接入技术,如DoCSIS (Data over Cable Service Interface Specification,有线传输数据业务接口规范)、EoC (Ethernet over COAX,以太数据通过同轴电缆传输)、EPoC (EPON Protocal over Coaxial Distribution Network,在同轴分配网络中传输EPON协议)等,同轴接入方式在三网融合的背景下已经成为了接入技术的研究重点。
     本论文旨在研究同轴电缆分配网的信道特性及故障诊断。在基于常见的同轴分配网现场测量结果的基础上,结合实验室的有关实验,在5MHz-1.2GHz的频率范围内,对同轴分配网信道的主要特性包括传输特性、噪声特性以及故障诊断和定位等进行了初步研究,建立了相应的信道建模,构造了新的故障诊断方法,对进一步了解同轴接入技术提供了一定的参考价值。主要内容包括:
     (1)对分支分配器进行了电磁建模。建模方法包括三种:基于ABCD矩阵的器件建模、基于ADS软件的器件建模、基于S参数矩阵的器件建模。对二分配器和一分支器这两个基本元件进行了三种方法的器件建模。借助于级联关系和这两个基本元件的模型,可计算出其它种类的分支分配器的器件特性。对每种模型都给出了实例,并比较了这三种模型的优缺点。基于遗传算法,对分支分配器中最核心的器件——磁芯进行了德拜级数建模,磁芯特性用于分支分配器模型中,使得器件特性的仿真结果与实测结果十分逼近。
     (2)对同轴电缆信道进行了多种方法的建模(曲线拟合、ABCD矩阵、S参数、ADS软件建模),提出了更加适用的基于S参数的多径信道建模方法。其模型的S参数是通过网络分析仪实测获得的,使仿真的结果跟实测的结果十分逼近,幅频曲线和相频相对误差控制在5%以内。完成了基于S参数的多径信道建模的仿真软件,在已知网络当中各器件特性的情况下,利用该仿真软件能估算出任意给定拓扑端口的传输特性,包括幅频、相频曲线、群时延和时域反射等。
     (3)对同轴电缆信道的噪声特性进行了分类和建模。根据噪声特性的不同,可以把影响同轴网络的噪声归纳为三种:有色背景噪声、窄带噪声和脉冲噪声。分析了各种噪声的概率密度函数,并对实测的噪声进行噪声分解;对每种噪声依据其概率密度函数进行了参数拟合,建立的模型可仿真出各种噪声的幅度谱曲线以及合噪声的分布情况。
     (4)提出了二种用于同轴电缆分配网的故障诊断和定位的方法。第一种方法为采用BP神经网络并结合主成分分析法(PCA),从测量的TDR曲线中分析出故障的类型(短路、断路、软故障)和故障的位置;另一种方法为借助支持向量机(SVM)进行故障诊断和定位。
With the popularity of high-definition multimedia, interactive network games, cloud access technology and other high-bandwidth services applications, users increasingly high demand for data communication rate, so that high-speed access networks have become the focus of the current communication technology. Coaxial cable network with wide coverage, numbers of users, has got a lot of attention. A number of coaxial access technologies, such as DoCSIS (Data over Cable Service Interface Specification), EoC (Ethernet over COAX), EPoC (EPON Protocal over Coaxial Distribution Network), has arisen both at home and abroad. The coaxial cable access has become the focus of the access technology at the context of triple play
     The thesis aims to study the channel characteristics of the coaxial cable distribution network and fault diagnosis. Based on the site test of coaxial cable networks and the experiment, the channel characteristics of the distribution network, such as the transmission characteristics, noise and the fault diagnosis and location are researched in the thesis, the frequency range is from5MHz~1.2GHz. The work is helpful for the understanding of the coaxial cable access technology. The main contents including:
     (1) The electromagnetic modeling of the splitter and tap is studied. There are three methods:ABCD matrix modeling, ADS software-based modeling and the S-parameter matrix modeling. These three methods are used to do model for the two-way splitter and one-way tap which the basic elements of the other splitter and tap. With the aid of the cascade relationship and the characteristics of the two basic elements, the other splitter and tap can be calculated. The example of each method is shown and the comparison is making among the three methods. Based on genetic algorithms, the Debye series modeling of the core which is the important part of the splitter and tap is studied, with the accurate modeling of the core, the simulated results are very agreement with the measured results of the transmission characteristics of splitter and tap.
     (2) Several methods are used to do modeling for the coaxial cable network, including curve fitting, ABCD matrix, S-parameter matrix and ADS software-based method, a novel and more comfortable method named "S-parameter based multipath channel modeling" is introduced. The S-parameter of the proposed modeling is obtained by the actual measurement with VNA, so that the simulated results are very close to the testing results, the relative error of amplitude-frequency curve and phase-frequency curve is almost less than5%. The simulated software based on the novel channel modeling is completed, which can estimate the transmission characteristic of channel between any two ports in the analytical network, including the amplitude-frequency curve, phase-frequency curve, group delay and the TDR.
     (3) The noise of the coaxial cable network channel is classified and modeled. According to the characteristic of the noise, the main noise in the cable network can be classified into three types, including background noise, narrow-band noise and the impulse noise. The probability density function of each noise is analyzed, and the measured noise is decomposed. Each noise is modeled according to the PDF, which can simulate the amplitude-frequency curve of each noise and aggregate noise.
     (4) Tow novel method for the fault diagnosis and location of coaxial cable network is proposed. The first one is based on the use of Principal Component Analysis (PCA) and BP Neural Network, which can calculate the type of fault (such as short circuit, open circuit, soft fault) and the location of fault. Another method is based on the Support Vector Machine (SVM) to diagnose and locate the fault.
引文
[1]S. Ovadia. MoCA:Ubiquitous multimedia networking in the home. SPIE 6776, Broadband Access Communication Technologies Ⅱ,2007. C7760-C7760
    [2]K. H. Afkhamie, S. Katar, L. Yonge, et al. An overview of the upcoming HomePlug AV standard.2005 International Symposium on Power Line Communications and Its Applications, Canada,2005.400~404
    [3]Y. G. Chang, D. M. Liu, S. Zhang, et al. SPIE 6784, Network Architectures, Management, and Applications V,2007.67843N-67843N
    [4]郭玉华,常青美,赵昭灵等.浅析两种家庭网络技术:HomePNA和Powerline光盘技术,2006,(2):102-110
    [5]David Fellows, Doug Jones. DOCSIS Cable Modem Technology. IEEE Communications Magazine,2001.202~209
    [6]余自强.基于DOCSIS3.0的双向HFC网络规划方案.电视技术,2011,35(14):35-38
    [7]万倩,欧阳峰,李博等.有线电视接入网EPON+HiNOC技术探析.电视技术,2012,36(18):70~74
    [8]E. Boyd, H. Bakoury, M. Hajduczenia, et al. EPON over Coax (EPoC). IEEE Communications Magazine,2012,50(9):88~95
    [9]李远东,姚永.EoC的发展——EPONoC电视技术,2011,35(14):1-5
    [10]Broadcom Corparation. Ethernet passive optical network over coaxial(EPOC). USA: WO2011/031831Al,2011.1-6
    [11]赵光磊.EPOC:下一代同轴接入首选技术.通信世界,2011,12(43):20-20
    [12]刘林,潘家佳,周成鹏.浅谈EPOC——下一代广电接入网技术.无线互联技术,2012,25(12):39-40
    [13]田长国.有线电视双向HFC网络上行信道噪声分析.电视技术,2002,52(3):47-50
    [14]王淦平,于凤芹,王灿忠.HFC反向通道噪声监测和抑制系统.电视技术,2007,31(5):69-71
    [15]吕淑琴,曹林,王亚飞.CATV/HFC反向通道噪声监测和抑制系统的研究.北京 信息科技大学学报(自然科学版),2009,32(3):56-70
    [16]杨瑞红.HFC宽带接入网上行通道噪声分析及抑制.广播与电视技术,2007,21(3):12-14
    [17]张平.EPON技术在有线电视HFC双向网络建设中的应用研究:[硕士学位论文].西安:西安电子科技大学,2007
    [18]刘晓曦.有线电视同轴电缆的传输特性.中国有线电视,2004,(2):51-54
    [19]张亚彬.变压器原理在分配器分支器中的应用.中国新技术新产品,2009,(4):87-88
    [20]Mark D. Carangi, Walter Y. Chen, Kenneth J. Kerpez. Coaxial cable distribution plant performance simulation. Proc. SPIE 2609, Hybrid Fiber-Coax Systems,1995.215-226
    [21]C. Cortes, M. A. Del Casar. Accurate modeling of SMATV networks through "S" Parameters. Telecommunication in Modern Satellite, Cable, Broadcasting Services, 2009.572~575
    [22]段晓雪,景新幸.HFC上行通路的噪声类型与抑制方法.桂林电子工业学院学报,2000,9:28-32
    [23]姜萍,花汉兵,王建新.上行信道中QPSK调制技术的研究,中国有线电视,2007,12:1146-1149
    [24]易维善CATV系统常见故障现象及处理办法.西部广播电视,1996,4:30-34
    [25]易维善.电缆和器件故障对传输信号的影响.有线电视,2000,11:33-35
    [26]陈聪.同轴电缆的特性与故障检测.中国有线电视,2006,22:223-233
    [27]朱敏科.有源EOC故障案例分析.中国有线电视,2009,5:532-533
    [28]马德国.浅析有线电视网络故障的检修维护.伊犁日报,2010,6(25):1-2
    [29]S. Schuet, D. Timucin, K. Wheeler, A Model-based probabilistic inversion framework for characterizing wire fault detection using TDR. IEEE Transactions on Instrumentation and Measurement,2011,60(5):1654~1663
    [30]D. M. Horan, R. Guinee. A novel pulse echo correlation tool of transmission path testing and fault finding using pseudorandom binary sequnences. IEEE International Symposium on defect and fault Tolerance in VLSI Systems,2006,1(1):229~237
    [31]G. Cerri. Fault location on shielded cables:electromagnetic modelling and improved measurement data processing. IEE Proceedings-Science Measurement and Technology, 2005,152(5):217~226
    [32]Y. J. Shin, J. Powers, T. S. Choe. Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable. IEEE T. Instrumentation and Measurement.2005,54(6):2493~2500
    [33]Shi Qiang. Detection and localization of cable faults by time and frequency domain measurements.2010 7th International Multi-Conference on Systems, Signals and Devices,2010.1~6
    [34]Zhu Ye, M. Olivas, F. Auzanneau. A new method of evaluating wired networks topology for fault diagnosis applications.2009 9th International Conference on Intelligent Transport Systems Telecommunications,2009.549~550
    [35]樊碚.分配器分支器异同浅析.中国有线电视,2003,19(20):23-27
    [36]张威虎,杨延宁,徐建强.有线电视系统的分配器与分支器.中国有线电视,2005,6:531-533
    [37]杨建新CATV中的分支器及分配系统.电视技术,1993,12(3):4-8
    [38]Dong Ⅱ Kim. Optimum design of the power splitters with ferrite toroids for CATV and/or MATV systems. IEEE trans. On consumer electronics,1983, CE-29(1):27-38
    [39]Dong Ⅱ Kim. A study on broadband design and fabrication of power dividing circuits for CATV system. The journal of the Korean institute of communication sciences, 1995,20(12):181~187
    [40]Y. Natio. Formulation of frequency dispersion of permeability. Trans. IEICE,1976, 59c(5):297~304
    [41]Dong Ⅱ Kim. Even odd mode analysis and experimental studies on tap-offs for CATV networks. IEEE trans. On consumer electronics,2002,19(9):1033~1036
    [42]E. Martini, G. Carli, S. Maci. A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion. Progress In Electromagnetics Research B,2010,19:445~473
    [43]张霞.对CATV系统分支器中高频铁氧体磁芯的几点探讨.电视技术,1996,10:37-39
    [44]Z. W. Li, R. F. Huang, L. B. Kong. Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core. J. Appl. Phys.,2009, 106(103929):1-7
    [45]M. Y. Koledintseva, K. N. Rozanov, G. DiFazio. Restoration of the Lorentzian and Debye curves of dielectrics and magnetics for FDTD modeling. EMC EUROPE 2002-5th Int. Symp. Electromagn. Compat.,2002.687-692
    [46]S. N. Starostenko, A. P. Vinogradov. The reflectivity discrepancy method for the determinantion of the permittivity and permeability of complex materials. Trans. IEEE Instrum. Measur.,2002,51(1):125-132
    [47]P. Bohleber, N. Wagner, O. Eisen. Permittivity of ice at radio frequencies:Part I. Coaxial transmission line cell. Cold Regions Science and Technology,2012,82: 56~67
    [48]Dong I1 Kim, Sang Wook Jung, Young Yun. A high performance transformer-type wilkinson power splitter with compensating circuit for CATV transmission system and its optimal design method. IEEE Transactions on Consumer Electronics,2004,50(3): 934-940
    [49]R. Lee, L. Wilson, C. E. Carter, Electronic transformers and circuits. (3rd ed.). USA:Wiley,1988.205-300
    [50]Z. Jianmin, M. Y. Koledintseva, D. P. Pommerenke, et al. Extraction of dispersive material parameters using vector network analyzers and genetic algorithms. IMTC 2006-Instrumentation and Measurement Technology Conference,2006.462~466
    [51]阮永芬,黄兴周,李仕胜等.遗传算法拟合变异函数的参数.云南大学学报:自然科学版,2009,31(2):140-145
    [52]Z. Jianmin, M. Koledintseva, J. Drewniak, et al. Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm. IEEE Trans. Electromag. Compat.,2008,50(3):704~714
    [53]王小平,曹立明.遗传算法理论、应用与软件实现.西安:西安交通大学出版社,2002.36-39
    [54]J. Xu, M. Y. Koledintseva, Y. Zhang. Complex permittivity and permeability measurements and finite-difference time-domain simulation of ferrite materials. IEEE Transactions on Electromagnetic Compatibility,2010,52(4):878~887
    [55]W. Changhua, J. A. Encinar. Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures. IEEE Trans. Antennas Propagat,1995,43: 1233-1242
    [56]I. K. Ahmed. A generalized scattering matrix method using the method of moments for electromagnetic analysis of multilayered structures in waveguide. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2151~2157
    [57]P. Kreuzgruber, E. Bonek, A. L. Scholz, et al. Modeling of three-port RF transformers," IEE Proceedings, Part G.1991,138(3):325~328
    [58]C. Trask. Wideband transformers:an intuitive approach to models, characterization and design. Applied Microwave & Wireless,2001,13(11):30-41
    [59]K. I. Hwu, Y. H. Chen. Estimation of Individual Leakage Inductances of a Transformer Based on Measurements.2008 IEEE International Conference on Industrial Technology, 2008.1-3
    [60]H. Y. Lu, J. G. Zhu, V. S. Ransden, et al. Measurement and Modeling of Stray Capacitances in High Frequency Transformers.1999 IEEE Power Electronics Specialists Conference (PESC 99),1999.763~768
    [61]刘晓曦.有线电视同轴电缆的传输特性.中国有线电视,2004,3:51-54
    [62]S. Dravida, D. Gupta, S. Nanda, et al. Broadband access over cable for next-generation services:a distributed switch architecture. IEEE Communications Magazine,2002,40(8):116~124
    [63]M. T. Frederick. A simple model for the line parameters of a lossy coaxial cable filled with a nondispersive dielectric. IEEE Transactions on Electromagnetic Compatibility. 2007,49(1):12~17
    [64]王亚平,蔡勖ALICE实验中同轴电缆的信号传输特性的研究.核电子学与探测技术,2006,26(2):195-198
    [65]S. Barmada, A. Musolino, M. Raugi. Innovative model for time-varying power line communication channel response evaluation. IEEE Journal on Selected Areas In Communications,2006,24(7):137-146
    [66]陈根昔,孔惠东.农村同轴电缆分配网络的设计.中国有线电视,2002,25(15): 40-42
    [67]S. Galli, T. C. Banwell. A deterministic frequency-domain model for the indoor power line transfer function. IEEE Journal on Selected Areas in Communications,2006, 24(7):1304~1316
    [68]M. Tlich, A. Zeddam, F. Moulin. Indoor power-line communications channel characterization up to 100 mhz—part Ⅱ:time-frequency analysis. IEEE Transactions on Power Delivery,2008,23(3):1402~1409
    [69]M. Tlich, A. Zeddam, F. Moulin. Wideband indoor transmission channel simulator for power line:WITS software. IEEE Transactions on Power Delivery,2010,25(2):702-711
    [70]M. Tlich, A. Zeddam, F. Moulin. Indoor power-line communications channel characterization up to 100 MHz-part I:one-parameter deterministic model. IEEE Transactions on Power Delivery,2008,23(3):1392~1401
    [71]崔一杰,徐晋峰.通信信道的建模与仿真.山西电子技术,2012,87(3):41-44
    [72]蔡伟,乐健,靳超等.电力线载波通信信道建模技术综述.电力系统保护与控制,2012,40(10):149-154
    [73]M. Gotz, M. Zimmermann, K. Dostert. A broadband power line channel estimation method. Frequenz,2002,56(8):177~183
    [74]Tonello M., Versolatto F. Bottom-up statistical PLC channel modeling-part I:random topology model and efficient transfer function computation. IEEE Transactions on Power Delivery,2011,26(2):891~898
    [75]C. Konate, M. Machmoum, J. F. Diouris. Multipath model for power line communication channel in the frequency range of lMHz-30MHz. Eurocon 2007:The International Conference on Computer As a Tool,2007, (1-6):70~75
    [76]J. Anatory, M. M. Kissaka, N. H. Mvungi. Channel model for broadband power-line communication. IEEE Transactions on Power Delivery,2007,22(1):135~141
    [77]D. Eppstein. Finding the k shortest paths. Siam Journal On Computing,1998,28(2): 652~673
    [78]F. Gianaroli, A. Barbieri, F. Pancaldi, et al. A novel approach to power-line channel modeling. IEEE Transactions on Power Delivery,2010,25(1):132~140
    [79]肖勇,房莹,张捷等.低压电力线载波通信信道特性研究.电力系统保护与控制,2012,40(20):20-25
    [80]P. Holger. Modeling of powerline communication channels. Proceedings of the 3rd International Symposium on Power-Line Communications and its Applications (ISPLC'99). Lancaster,1999.14~21
    [81]K. P. Ho. Broadcast digital subscriber lines using discrete multitone for broadband access. Microprocessors and Microsystems,1999,22(10):605~610
    [82]张辉敏,宋健,符剑.中压电力线传输特性多径模型的建模.电子测量与仪器学报,2009,S1:25-29
    [83]郭以贺,谢志远.配电网载波通信信道的分析和建模.电力自动化设备,2010,30(3):49-52
    [84]沈悦,蔡家麟,方吉.缆桥系统有线网络信道模型.中国有线电视,2009,2:143-149
    [85]S. Galli, T. Banwell. A novel approach to the modeling of the indoor power line channel—part Ⅱ:Transfer function and its properties. IEEE Transactions on Power Delivery,2005,20(3):1869~1878
    [86]S. Galli, T. Banwell.A novel approach to the modeling of the indoor power line channel—part Ⅱ:Transfer function and its properties. IEEE Transactions on Power Delivery,2005,20(3):1869~1878
    [87]H. Meng, S. Chen, Y. L. Guan, et al. Modeling of transfer characteristics for the broadband power line communication Channel. IEEE Trans. On Power Delivery,2004, 19(3):1057-1064
    [88]F. Gianaroli, A. Barbieri, F. Pancaldi. A novel approach to power-line channel modeling. IEEE Transactions on Power Delivery,2010,25(1):132-140
    [89]S. Tsuzuki, S. Yamamota, T. Takamatsu, et al. Measurement of Japanese Indoor Power-line Channel, Proc. of 2000 Int. Symp. on Power-line Commun. and its Applications,2000.79~84
    [90]L. T. Tang, P. L.So, S. Chen. Characterization and modeling of in-building power lines for high-speed data transmission. IEEE Trans. Power Del.,2003,18(1): 1317~1325
    [91]H. Li, Y. Sun, Y. Yao. The indoor power line channel model based on two-port network theory. ICSP2008 Proceedings,2008.132~135
    [92]Galli Stefano. Exact conditions for the symmetry of a Loop. IEEE Communications Letters,2000,4(10):307~309
    [93]M. M. Kissaka, N. H. Mvungi. Chanel model for broad-band power-line communication. IEEE Trans. Power Del.,2007,22(1):135~141
    [94]李建,吴俊晨,逯贵祯.集总参数微波多工器的设计.无线电工程,2006,36(12):43-45
    [95]王海滨.浅析电视电路设计中的阻抗匹配.科技传播,2010,9(17):106-107
    [96]D. Anastasiadou, T. Antonakopoulos. Multipath charecterization of indoor power-line networks. IEEE Trans. On Power Delivery,2005,20(1):90~99
    [97]L. T. Tang, P. L. So, E. Gunawan, et al. Characterization and modeling of in-building power lines for high-speed data transmission, IEEE Trans. Power Delivery,2003,18: 69~77
    [98]M. Zimmermann, K. Dostert. Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat.,2002,44(1):249-258
    [99]P. Smith, C. Furse, J. Gunther. Analysis of spread spectrum time domain reflectometry for wire fault location. IEEE Sensors J.,2005,5(6):1469~1478
    [100]J. S. Barret, M. S. Green. Statistical method for evaluation electrical failures. IEEE Trans. Power Delivery,1994,9(3):1524~1530
    [101]C. Furse, Y. C. Chung, C. Lo. A critical comparison of reflectometry methods for location of wiring faults. Smart Structures Syst.,2006,2(1):25~46
    [102]F. Loete, S. Noel, M. Olivas. Feasibility of the detection of vibration induced faults in connectors by reflectometry. Proc.24th Int. Conf. Elec. Contacts, St Malo, France, 2008.440~443
    [103]Y. C. Chung, C. Furse, J. Pruitt. Application of phase detection frequency domain reflectometry for locating faults in an F-18 flight control harness electromagnetic Compatibility. IEEE Transactions on,2005,47(1):327~334
    [104]C. Buccella, M. Feliziani, G. Manzi. Detection and localization of defects in shielded cables by time-domain measurements with UWB pulse injection and clean algorithm postprocessing Electromagnetic Compatibility. IEEE Transactions on,2004,46(4): 597~605
    [105]Shi Qinghai, O. Kanoun. Detection and localization of cable faults by time and frequency domain measurements.7th International Multi-Conference on Systems, Signals and Devices,2010.1-6
    [106]C. Furse, Y. C. Chung, R. Dangol. Frequency domain reflectometry for on board testing of aging aircraft wiring. IEEE Trans. EMC,2003, (45)2:306~315
    [107]V. H. Hamme. High resolution frequency domain reflectometry. IEEE Trans. on Instrument and Measurement,1990,39(2):59~65
    [108]T. W. Pan, C. W. Hsue. J. F. Huang. Time-domain reflectometry using arbitrary incident waveforms. IEEE Trans. on Microwave Theory and Techniques,2002,50(11): 2558~2563
    [109]F. Auzanneau, M. Olivas, N. Ravot. A simple and accurate model for wire diagnosis using reflectometry. PIERS Proceedings,2007,8(27):232~236
    [110]C. Furse, Y. C. Chung, R. Dangol. Frequency domain reflectometry for on board testing of aging aircraft wiring. IEEE Transactions on Electromagnetic Compatibility, 2003,45(2):306~315
    [111]C. Buccella, M. Feliziani, G. Manzi, Accurate detection of low entity cable faults by wavelet transform. IEEE International Symposium on Electromagnetic Compatibility, 2003,3(1):936~941
    [112]P. Smith, C. Furse, J. Gunther. Fault location on aircraft wiring using spread spectrum time domain reflectometry. IEEE Sensors Journal,2005,5(6):1469~1478
    [113]J. B. Park, Y. J. Shin. Time-frequency domain reflectometry apparatus and method. U.SA:7337079,2008.1-5
    [114]D. Dong, T. J. McAvoy. Nonlinear principal component analysis based on principal curves and neural network. Computer ChemEng,1996,20(1):65~78
    [115]D. Meng. Problems in applying PCA. Journal of Northwest Forestry University,1995, 10(1):89~94
    [116]于婷婷.基于BP神经网络的滚动轴承故障诊断方法[硕士学位论文].大连:大连 理工大学,2008
    [117]Y. He, Y. Li. BP Neural Network Approach to Module Fault Diagnosis for Large Analog Circuit. IEEE Region 10 Conference on TENCON.,2004.395-398
    [118]C. Furse, Y. C. Chung, C. Lo. A critical comparison of reflectometry methods for location of wiring faults. J. Smart Struct. Syst.,2006,2(1):25~46
    [119]林剑锋,戚金清,喻志伟. PCA-BP神经网络在湿度测量中的应用.仪器仪表学报,2008,4(29):112-124
    [120]张新荣.基于PCA的连续过程性能监控与故障诊断研究:[硕士学位论文].无锡:江南大学,2008
    [121]M. K. Smail. Detection and location of defects in wiring networks using time-domain reflectometry and neural networks. IEEE Transactions on Magnetics,2011.47(5): 1502~1505
    [122]M. K. Smail, L. Pichon, M. Olivas, et al. Detection of the defects in wiring networks using time domain reflectometry. IEEE Trans. Magn.,2010,46(8):2998~3001.
    [123]史峰,王小川.MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社,2010.29-31
    [124]J. Ghosh, Y. Shin. Efficient higher-order neural networks for function approximation and classification. Int. J. Neural Syst.,1992,3(4):323~350
    [125]M. K. Smail. Detection of defects in wiring networks using time domain reflectometry. IEEE Transactions on Magnetics,2010,46(8):2998~3001
    [126]V. Vapnik. Statistical learning theory. New York:Wiley,1998.48~52
    [127]D. Thukaram, H. P. Khincha, B Ravikumar. A new approach for fault location identification in transmission system using stability analysis and SVMs. Proceedings of International Conference on Power Electronics, Driver and Energy Systems, New Delhi, Indi,2006.1-6
    [128]V. Vapnik. The nature of statistical learning theory. New York:springer verlag press, 1995.19~23
    [129]C. Cortes, V. Vapnik. Support vector networks. Machine Learning,1995,3(20):273-297
    [130]吴晓辉,刘炯,梁永春等.支持向量机在电力变压器故障诊断中的应用.西安交通大学学报,2007,41(6):722-726
    [131]N. Cristianini, J. S. Taylor. An introduction to support vector machines and other kernel-based learning methods. Beijing:China Machine press,2005.33~35
    [132]Zhao Xu, Wen Xiangjun. Shao Huihe. Combination method of principal component analysis and support vector machine for on-line process monitoring and fault diagnosis. Journal of Donghua University (English Edition),2006,23(1):53~58
    [133]R. G. Steve. Support vector machines for classification and regression. Southampton: University of Southampton Press,1998.17~21
    [134]N. Cristianini, J. S. Taylor著.支持向量机导论.李国正,王猛,曾华军译.北京:电子工业出版社,2004.56-62
    [135]K. Cao, J. Zhang, L. Hu. Fault diagnosis of electro-hydraulic position servo closed-loop system based on support vector regression.2007 Proceedings of the IEEE International Conference on Automation and Logistics,2007.8-12
    [136]W. Tian, J. Liu. A new optimization identification method for fault diagnosis.2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010.13-16
    [137]H. Acikgoz, Y. Le Bihan, O. Meyer. Neural networks for broadband evaluation of complex permittivity using a coaxial discontinuity. J. Appl. Phys.,2007,9(2):197-201
    [138]J. A. K. Suyken. Nonlinear modeling and support vector machines, in IEEE IMTC Conf, Hungary,2001.87~294
    [139]T. Hacib. Microwave characterization using ridge polynomial neural networks and least-square support vector machines. IEEE Transactions on Magnetics,2011,47(5): 990~993
    [140]L. Xia, R. Xu, B. Yan. Modeling of 3-D vertical interconnect using support vector machine regression, IEEE Microw. Wireless Compon. Lett.,2006,16(12):639~641
    [141]T. Hacib, Y. Le Bihan, M. R. Mekideche, et al. Microwave characterization using least-square support vector machines. IEEE Trans. Magn.,2010,46(8):2811~2814
    [142]M. B. Djuric. Digital signal processing algorithms for arcing fault detection and fault distance calculation on transmission lines. Elect. Power Energy Syst.,1997,9(3): 165~170
    [143]S. S. Lundwtedt, S. He. Time-domain signal restoration and parameter reconstruction on LCRG transmission line, in Proc. Int. Symp. Signals, Syst., Electron., San Francisco, CA,1995.323~326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700