用户名: 密码: 验证码:
电子封装中金属间化合物力学性能的研究及焊点可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子封装的无铅化和微型化,焊料与衬底金属间生成的界面金属间化合物(intermetallic compound简称IMC)对焊点的可靠性产生了不可忽视的影响。本文工作对IMC层的力学性能进行了理论与实验研究,分析了IMC层在热循环和跌落冲击载荷下对焊点可靠性的影响。
     1、采用纳米压痕技术对焊点连接各层材料的力学性能进行研究,并对不同工况制备的IMC层进行性能测试。通过对Sn3.OAgO.5Cu焊料、IMC层和Cu焊盘的力学性能进行分析对比,发现IMC层的性能与无铅焊料和Cu的性能存在较大差异,焊点连接层在承受外荷载作用时,IMC周围将产生较大的应力集中,此处为焊点失效的关键位置;不同工艺制备条件(无铅焊料成分、回流焊接次数和焊接曲线的加热因子值)对IMC层的力学性能均存在一定的影响,研究结果为电子封装制备工艺的进一步优化提供了研究基础。
     2、根据实验结果确定电子封装中IMC层的弹塑性本构关系。采用ANSYS有限元分析软件,结合量纲分析方法和反演分析技术,建立载荷位移曲线与材料弹塑性本构参数之间的联系。根据特征应力和特征应变的概念,建立了无铅焊料Sn3.0Ag0.5Cu内生成Cu3Sn和Cu6Sn5、Sn3.5Ag内生成的Cu6Sn5以及Sn0.7Cu内生成的Cu6Sn5的弹塑性本构关系。
     3、针对不同时效时间下的IMC厚度测量值,分析时效对焊点抵抗热疲劳能力的影响,对无铅焊点Sn3.OAg0.5Cu、Sn3.5Ag和Sn0.7Cu的热疲劳可靠性进行评估。采用ANSYS有限元分析软件,对焊点在热循环载荷下的力学行为进行分析,并采用修正的Coffin-Manson经验方程对关键焊点进行热疲劳寿命预测。可见PBGA中的关键焊点位于芯片右下方;关键焊点的等效应力最大值随着IMC层厚度值的增大而减小,等效塑性应变最大值随着IMC层厚度值增大而增大;模型中IMC层的厚度对关键焊点的疲劳寿命具有重要的影响,其寿命周期随着IMC层厚度的增大而减小。IMC层厚度为19μm的关键焊点寿命周期比厚度为2μm时下降了21.46%;无铅焊料Sn3.5Ag的热疲劳寿命最大,分别为Sn0.7Cu和Sn3.OAgO.5Cu的2.97倍和1.33倍。
     4、分析跌落冲击载荷下IMC层厚度对焊点可靠性的影响,讨论了Sn3.5Ag、Sn3.OAgO.5Cu和Sn0.7Cu三种无铅焊点在跌落冲击载荷下的可靠性。按照电子产品板级跌落测试标准(JEDEC Standard JESD22-B111)采用ANSYS/LS_DYNA有限元分析软件和Input-G方法对PBGA在板级跌落条件下的力学行为进行计算。分析表明,IMC层为2μm-19μm与不考虑IMC层(即IMC层厚度为0)时焊点最大剥离应力的差值范围为0.0314~0.1032GPa,相应的增大比例为10.9%~36%;随着IMC层厚度的增大,关键焊点的最大剥离应力值增大,增大的速率从0.0157GPa/μm逐渐减小到0.0009GPa/μm;同时,Sn3.5Ag、Sn3.0Ag0.5Cu和Sn0.7Cu的最大剥离应力值依次增大,分别为0.326GPa,0.391GPa和0.421GPa,表明Sn3.5Ag无铅焊点抵抗跌落冲击载荷的性能更强。
With the lead-free and miniaturization of solder joints in electronic packaging, the intermetallic compound (IMC) which formed at the interface between the solder ball and under bump metallization(UBM) have considerable effects on the reliability of solder joints. In this paper, the mechanical properties of IMC were studied using nanoindentation. Based on which the effects of IMC on solder joint reliability under thermal cycling load and drop impact load conditions were researched by finite element simulation respectively.
     1. The nanoindentation was used to study the mechanical properties of every layer of lead-free solder and to test the IMC layers in the different working conditions. Compare the mechanical properties of the lead-free solder joints, the interfacial compound layer of IMC and the Cu pad, it showed that there are obvious differences between the IMC layer and the lead-free solder joint:the stress concentration occured around the IMC layers under the external loads, so the IMC layers become the key position of solder joint failure. Moreover, the different processing conditions (the composition of lead-free solder, the heating factor value and the number of reflow soldering) also have certain effects on the mechanical properties of IMC layers and it provides a research foundation for the further study of electronic products reliability.
     2. The elastoplastic constitutive equation of the IMC in electronic packaging can be obtained based on the nanoindentation test results. The nanoindentation process was simulated by the finite element analysis software ANSYS, and combining the dimensional analysis method and the inversion analysis technology, the link between the nanoindentation load-displacement curve and the material constitutive parameters was established. According to the concept of representative strain and representative stress, the elastoplastic constitutive models of IMC were obtained.
     3. Based on the thicknesses of IMC under different aging time, the effects of IMC thickness on the thermal fatigue reliability of solder joints were analyzed. The mechanical behavior of solder joints under thermal cycle loading were analyzed using finite element analysis software ANSYS. The finite element analysis software ANSYS was used to analyze the mechanical behavior of solder joints under the thermal cycle loading, and the Coffin-Manson's empirical modified formula was used to predict the thermal fatigue life of solder joints. The main conclusions were as follows:the key solder joints were at the lower right of the chip where gets the maximum equivalent plastic strain values, and it is more likely to become invalid. Both the equivalent stress and the thermal fatigue life of critical solder joints decrease with the increasing of the IMC layers thickness. The thermal fatigue life of PBGA critical solder joint with19μm IMC thickness declines by21.46%than that with2μm IMC thickness. Lead-free solder Sn3.5Ag has the longest thermal fatigue life which is2.97times and1.33times of Sn0.7Cu and Sn3.0Ag0.5Cu respectively.
     4. The paper studied the influences of IMC layer thickness on the solder joint reliability under the drop impact loading and discussed the reliability of three different types of lead-free solder joints (Sn3.5Ag, Sn3.OAgO.5Cu and Sn0.7Cu) under drop impact loading. According to the JEDEC Standard JESD22-B111, ANSYS/LS_DYNA finite element analysis software and Input-G method were used to calculate the mechanical behavior of PBGA packaging under the conditions of board-level drop. The main conclusions were as follows: compared with the maximum peeling stress when the IMC layers thickness is0, the difference range of that is0.0314-0.1032GPa when the IMC layers thickness in the range of2-19μm, the corresponding increasing proportion is10.9%-36%. The maximum peel stress value of critical solder joint increases with the increasing of IMC layer thickness, and the increasing velocity declines gradually from0.0157GPa/μm to0.0009GPa/μm; meantime, the maximum peeling stress of Sn3.5Ag、Sn3.0Ag0.5Cu and Sn0.7Cu orderly increases from0.391GPa,0.326GPa to0.421GPa, which drawn a conclusion that Sn3.0Ag0.5Cu shows a better ability to resist deformation in the drop test.
引文
[1]Rao R. Tummala编.微电子封装手册-电子封装丛书编辑委员会译[M].北京:电子工业出版社,2001:6-8.
    [2]Tummala著,黄庆安,唐洁影译.微系统封装基础[M].南京:东南大学出版社,2005,16-18.
    [3]高尚通,杨克武.新微型电子封装技术[M].电子与封装,2004,4(1):10-16.
    [4]T.P.Vinaeo. Development of alternatives to lead-bearing solders[C], in: Poreeedings of the Technical Program on Surface Mount International, Aug 19th-Sep 2nd 1993, San Jose, CA:243-248.
    [5]R. E. Reed-Hill. Physical Metallurgy Principles, PWS Publishing Company, Massaehusetts,1994:306-307.
    [6]E. R. Monsalve. Lead ingestion hazard in hand soldering environments[C], in: Proceedings of the 8th Annual Soldering Technology and Porduct Assurance Seminar, Feb 1984, Naval WeaPons Center, China Lake, CA.
    [7]Y. Fukuda, M. G. Pecht, K. Fukuda. Lead-free soldering in the Japanese electronics industry[J]. IEEE Trans on Component and Packaging Technology,2003,26(3): 616-625.
    [8]B. P. Richards, C. L. Levoguer, C. P. Hunt, editors. National Physical Laboratory Report:An analysis of the status of lead-Free Soldering[R]. London:DTI,2000.
    [9]E. P. Wood, K. L. Nimmo. In search of new lead-free electronic solders[J]. J Electron Mater 1994,23(8):709-713.
    [10]NCMS. Lead-free solder Porject final report, NCMS Report 040IRE96[P], Michigan:National Center for Manufacturing Sciences,1997
    [11]M. Abtew, G. Selvaduray. Lead-free solders in microelectronies[J]. Mater Sci Eng R,2000,27:95-141.
    [12]田民波,马鹏飞.电子封装无铅化技术进展[J].电子工艺技术,2003,24(6):231-234.
    [13]D. Suraski, K. Seeling. The current status of lead-free solder alloys[J]. IEEE Trans on Electronics Packaging Manufacturing,2001,24(4):244-248.
    [14]K. Suganuma. Advances in lead-free electronics soldering[J]. Curr Opini in Solid State Mater Sci,2001,5:55-64.
    [15]S. Wiese, E. Meusel, K. J. Wolter. Mirostructural Dependence of Constitutive Properties of Eutectic SnAg and SnAgCu solders[C].53rd Electronic Components and Technology Conference,2003, New Orleans LA, United States:197-206.
    [16]I PC Solder Products Value Council White Paper, Round Robin Testing and Analysis of Lead Free Alloys:Tin, Silver, Copper[OL].2005, http://leadfree.ipc.org/LeadFreeWP006.asp.
    [17]E. Gebhardt, G. Petzow. Over structure of silve-Copper-tin systems[J]. Z Metallkde,1959.50:597-605.
    [18]C.M. Miller. I.E. Anderson, J. Smith. A viable tin-lead solder substitute[J]. J Electron Mater,1994.23:595-601.
    [19]K. W. Moon, W. J. Boettinger, U. R. Kattner et al. Experimental and thermodynamic assessment of SnAgCu solder alloys[J]. J Electron Mater,2000, 29:1122-1129.
    [20]M.E. Loomans, M.E. Fine. Silver coper eutectic temperature and composition[J]. Metal Mater Trans A,2000,31 A:1155-1162.
    [21]Y. Kariya. M. Otsuka. Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys[J]. J Electron Mater,1998,27(11):1229-1235.
    [22]A. Achari, M.R. Paruchuri, D. Shangguan. Lead-Free Solder Compositions, U.S. patent 5863493 and European patent 0847829[P].1999.
    [23]D. Shangguan, G. Gao. Lead-Free & No-Clean Soldering for Automotive Electronics[J]. Solder. Surf. Mt. Technol.,1997,26:5-8.
    [24]H. Rhee, J. P. Lucas, K. N. Subramanian. Micromechanical Characterization of Thermomechanically Fatigued Lead-Free Solder Joints[J]. Journal Materials Science:Materials in Electronics,2004,13:477-484.
    [25]X. Deng, N. Chawla, K. K. Chawla, M. Koopman. Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation[J]. Act Materialia,2004,52: 4291-4303.
    [26]Ping-Feng Yang, Yi-Shao Lai, Sheng-Rui Jian, Jiunn Chen, Rong-Sheng Chen. Nanoindentation identifications of mechanical properties of Cu6Sns, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples[J]. Materal Science Enging:A,2008,485,305-310.
    [27]Zhong Chen, Min He, Bavani Balakrisnan Chan Choy Chum. Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films[J], Materals Science Enging:A,2006,423,107-110.
    [28]B.S. S, Chandra Rao, J. Weng, L. Shen, T.K. Lee, K.Y. Zeng. Morphology and mechanical properties of intermetallic compounds in SnAgCu solder joints[J]. Microelectron Enging,2010,87:2416-2422.
    [29]Jeong-Won Yoon, Seung-Boo Jung. Reliability studies of Sn-9Zn/Cu solder joints with aging treatment[J]. J. Alloys Compd.,2006,407:141-149.
    [30]C.K. Wong, H.L. Pang, J.W. Tew, B.K. Lok, et al. The influence of solder volume and pad area on Sn-3.8Ag-0.7Cu and Ni UBM reaction in reflow soldering and isothermal aging[J]. Microelectron Reliability,2008,48:611-621.
    [31]Jong-Min Kim, Seung-Wan Woo, Yoon-Suk Chang, Young-Jin Kim, Jae-Boong Choi, Kum-Young Ji. Impact reliability estimation of lead free solder joint with IMC layer[J]. Thin Solid Films,2009,517:4255-4259.
    [32]Jeong-Won Yoon, Sang-Won Kim, Seung-Boo Jung, Interfacial reaction and mechanical properties of eutectic Sn-0.7Cu/Ni BGA solder joints during isothermal long-term aging[J]. J. Alloys Compd.,2005,391,82-89.
    [33]Jeong-Won Yoon, Seung-Boo Jung. Solder joint reliability evaluation of Sn-Zn/Au/Ni/Cu ball-grid-array package during aging [J]. Mater. Sci. Eng. A, 2002,333,24-34.
    [34]Jie Chen, Jun Shen, Shiqiang Lai, Dong Min, Xiaochuan Wang, Microstructural evolution of intermetallic compounds in Sn-3.5Ag-X (X=0, 0.75Ni, 1.0Zn and 1.5In)/Cu solder joints during liquid aging[J]. J. Alloys Compd.,2010,489, 631-637.
    [35]姜志忠,无铅焊点寿命预测及IMC对可靠性影响的研究[D].哈尔滨理工大学硕士学位论文,2007.
    [36]李凤辉,李晓延,严永长,SnAgCu/Cu界面热循环及时效条件下化合物的生 长行为[J].失效分析与预防,2008,3(1):23-27.
    [37]Ma D., Wang W. D., Lahiri S. K. Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow[J]. Journal of Applied Physics,2002, 91(5):3312-3317.
    [38]H. K. Kim, H. K. Liou, K. N. Tu, Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu[J]. Applied Physics Letters,2001,1231-1239.
    [39]王要利,张柯柯,韩丽娟,温洪洪Sn-2.5 Ag-0.7Cu(0.1 RE)/Cu焊点界面区微观组织与Cu6Sn5的生长动力学[J].中国有色金属学报,2009,19(4):708-713.
    [40]王佳,王丽凤,刘学.La对SnAgCu/Cu及Ni界面金属间化合物的影响[J].电子元件与材料,2011,30(5):68-71.
    [41]王俭辛.稀土Ce对Sn-Ag-Cu和Sn-Cu-Ni钎料性能及焊点可靠性影响的研究[D].南京:南京航天航空大学,2009:31-73.
    [42]Xin Ma, Fengjiang Wang, Yiyu Qian, Fusahito Yoshida. Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface [J]. Materials Letters, 2003,57,3361-3365.
    [43]Peng Sun, Cristina Andersson, Xicheng Wei, Zhaonian Cheng, Dongkai Shangguan, Johan Liu. High temperature aging study of intermetallic compound formation of Sn-3.5Ag and Sn-4.0Ag-0.5Cu solders onelectroless Ni(P) metallization[J]. Journal of Alloys and Compounds,2006,425,191-199.
    [44]李凤辉,李晓延,严永长SnAgCu无铅钎料对接接头时效过程中IMC的生长[J].上海交通大学学报,2007,41(增刊):66-70.
    [45]李晓延,严永长,史耀武.金属间化合物对SnAgCu/Cu界面破坏行为的影响[J].机械强度,2005,27(5):666-671.
    [46]李凤辉SnAgCu/Cu界面金属间化合物长大规律[D].北京工业大学硕士学位论文,2007.
    [47]Tu P. L. Study of micro-BGA solders joint reliability [J]. Microelectronics and Reliability,2001.41, (2):287-293.
    [48]Tu P. L. Effect of intermetallic compounds on vibration fatigue of μBGA solder joint [J]. IEEE Transactions on Advanced Packaging,2001,24 (2):197-205.
    [49]Tu P. L. Comparative study of micro-BGA reliability under bending stress [J]. IEEE Transactions on Advanced Packaging,2000,23 (4):750-756.
    [50]姜岩峰,张晓波,无铅钎焊界面反应及其对可靠性的影响[J].上海交通大学学报,2007,41(增刊):71-74.
    [51]赵国际,张柯柯,罗键.快速凝固Sn2.5Ag0.7Cu钎料中金属间化合物的形态及对焊点性能的影响[J].中国有色金属学报,2010,20(10)2025-2030.
    [52]徐波.无铅回流焊冷却速率对焊点质量的影响[J].哈尔滨工业大学,2006.
    [53]Ping Liu, Pei Yao, Jim Liu, Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes[J]. Journal of Alloys and Compounds 2009,470,188-194.
    [54]吴丰顺,张伟刚,吴懿平,安兵.回流次数对Sn3.5Ag0.5Cu焊点特性的影响[J].华中科技大学学报(自然科学版),2006,34(10):97-99.
    [55]夏阳华.无铅电子封装中的界面反应及焊点可靠性[D].中国科学研究院,2006.
    [56]李晓严,杨晓华,吴本生,严永长.SnAg及SnAgCu无铅焊料接头中金属间化合物在时效中的演化[J].中南大学学报(自然科学版),2007,38(1):30-35.
    [57]吕铭,杜彬,吴丰顺,王波,吴懿平,房跃波.焊点高度对焊点微观组织和抗拉强度的影响[J].武汉理工大学学报,2009,31(15):33-36.
    [58]何明敏.互连高度对微型焊点可靠性的影响[D].华中科技大学,2007.
    [59]C.K. Wong, J.H.L. Pang, J.W. Tew, B.K. Lok, H.J. Lu, F.L. Ng, Y.F. Sun. The influence of solder volume and pad area on Sn-3.8Ag-0.7Cu and Ni UBM reaction in reflow soldering and isothermal aging, Microelectronics Reliability, 2008,48:611-621.
    [60]武晓静.电子封装互连无铅钎料及其界面问题研究[D].哈尔滨工业大学,2009.
    [61]于大全.BGA无铅焊点的失效分析[D].大连理工大学,2004.
    [62]韩宗杰,鞠金龙,薛松柏,方典松,王俭辛,姚立华.半导体激光软钎焊SnAgCu焊点微观组织[J].中南大学学报(自然科学版),2006,36(2):229-234.
    [63]尹立孟,张新平.电迁移致无铅钎料微互连焊点的脆性蠕变断裂行为[J].电 子学报,2009,37(2):253-257.
    [64]齐丽华,黄继华,张建纲,王烨,张华,赵兴科SnAgCu/Cu和SnPb/Cu界面热一剪切循环条件下化合物的生长行为[J].中国有色金属学报,2006,16(10):1705-1709.
    [65]赵杰,朱凤,尹德国,王来.强磁场下Sn-3 Ag-0.5Cu/Cu界面金属间化合物生长行为[J].大连理工大学学报,2006,46(2):202-206.
    [66]Hwa-Teng Lee, Ming-Hung Chen. Influence of intermetallic compounds on the adhesive strength of solder joints [J]. Materials Science and Engineering:A,2002, 333,24-34.
    [67]王凤江.基于纳米压痕法的无铅BGA焊点力学性能及其尺寸效应研究[D].哈尔滨工业大学博十学位论文,2006.
    [68]陈永生,孟工戈,孙静.纳米压痕法分析Sn-9Zn/Cu焊点力学性能[J].电子元件与材料,2011,30(11):65-67.
    [69]R.R. Chromik, R.P.Vinci, S.L.Allen. Nanoindentation Measurements on Cu-Sn and Ag-Sn Intermetallics Formed in Pb-Free Solder Joints [J]. Journal of Materials Research,2003,18(9):2251-2261.
    [70]G. Y. Jang, J. W. Lee, J. G. Duh. The Nanoindentation Characteristics of Cu6Sn5, Cu3Sn and Ni3Sn4 Intermetallic Compounds in the Solder Bump [J]. Journal of Electronic Materials,2004,33(10):1103-1110.
    [71]J. P. Lucas, H. Rhee, F. Guo, K.N.Subramanian. Mechanical Properties of Intermetallic Compounds Associated with Pb-Free Solder Joints Using Nanoindentation [J]. Journal of Electronic Materials,2003,32(12):1375-1383.
    [72]B. Subrahmanyan. Elastic-Moduli of Some Complicated Binary Alloy Systems[J]. Trans. Jpn. Inst. Met.,1972,130:93.
    [73]G. Ghosh. Elastic Properties Hardness and Indentation Fracture Toughness of Intermetallics Relevant to Electronic Packaging[J]. Journal of Materials Research, 2004,19(5):1439-1454.
    [74]L. M. Ostrovskaya, V. N. Rodin, A. I. Kuznetsov, Elastic Properties of Intermetallic Compounds Obtained by Vacuum Deposition[J]. Tsvetnye Metally, 1985,26(3):84-86.
    [75]R. Cabarat, L. Guillet et al. The Elastic Properties of Metallic Alloys[J]. J. Inst. Metals,1975,75:391.
    [76]张国尚,荆洪阳,徐连勇等.纳米压痕法研究80Au/20Sn焊料蠕变应力指数[J].焊接学报,2009,30(8):72-76.
    [77]Gao F, Nishikawa H, Takemoto T, Qu J. Temperature dependence of mechanical properties of individual phases in Sn3.0Ag 0.5Cu lead-free solder alloy[C].2008 58th Electronic Components and Technology Conference, Lake Buena Vista: Instituteof Electrical and Electronics Engineers Inc.,2008,466.
    [78]Lucas B N, Oliver W C. Indentation power-law creep of high-purity indium[J]. Metallurgical andMaterialsTransactionsA,1999,30A (3):601.
    [79]Masami Fujiwara, Masahisa Otsuka. Indentation creep of β-Sn and Sn-Pb eutectic alloy[J]. Materials Science and Engineering A,319-321:929-933,2001.
    [80]Ma X, YoshidaF. Rate-dependent indentation hardness of apower-law creep solder alloy [J]. Applied Physics Letters,2003,82 (2):188.
    [81]X. MA, F. YOSHIDA, K. SHINBATA, Microindentation study on the rate sensitivity of non-homogeneous solder alloy[J]. Journal of Materials Science Letters,2002,21:1397-1399.
    [82]李敏,梁乃刚,张泰华.纳米压痕过程的三维有限元数值试验研究[J].力学学报,2003(5):257-264.
    [83]Bhattachary A.K, Nix W.D. Finite element simulation of indentation experiments[J]. Int J of Solids and Structure,1988,24(9):881-891.
    [84]T.A.Laursen, J.C.Simo. A study of the mechanics of microindent-ation using finite elements[J].J. Mater. Res,1992,17(3):618-626.
    [85]K-D.Bouzakis, N.Michailidis, G. Erkens. Thin hard coatings stress-strain curve determination through a FER supported evaluation of nanoindentation test results[J]. Surface and Coatings Technology,2001,142-144:102-109.
    [86]Yang-Tse Cheng, Che-Min Cheng, Scaling. Dimensional analysis, and indentation measurements[J]. Materials Science and Engineering R,2004,44,91-149.
    [87]Swaddiwudhipong, S., Tho, K.K., Liu, Z.S., et al. Material characterization based on dual indenters[J]. International Journal of Solids and Structures,2005,42: 69-83.
    [88]Luo, J., Lin J. A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters[J]. International Journal of Solids and Structures,2007,44(18-19):5803-5817.
    [89]Bucaille JL, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters[J]. Acta Mater,2003, 51,1663-1678.
    [90]Jungmin Lee, Chanjoo Lee, Byungmin Kim. Reverse analysis of nano-indentation using different representative strains and residual indentation profiles[J]. Mater Design,2009,30,3395-3404.
    [91]Dao M, Chollacoop N, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Mater,2001,49:3899-3918.
    [92]H. Pelletier, Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation[J]. Tribology International,2006,39,593-606.
    [93]J.M. Antunes, J.V. Fernandes, L.F. Menezes, et al. A new approach for reverse analyses in depth-sensing indentation using numerical simulation[J]. Acta Materialia,2007,55,69-81.
    [94]马德军.利用纳米村入加载曲线确定金属薄膜的屈服强度和应力指数-数值模拟[J].金属学报,1999,35(10):1043-1048.
    [95]牛晓燕.微电子封装中无铅焊点的实验研究与可靠性分析[D].太原理工大学博士学位论文,2009.
    [96]马永,姚晓红,田林海,张翔宇,树学峰,唐宾.利用纳米压痕压入的反演分析法确定金属材料的塑性性能[J].金属学报,2011,47(3)321-326.
    [97]刘春忠,纳米压痕法表征微电子焊点界面的力学性能[J].沈阳航空工业学报,2008,25(4):33-38.
    [98]韩潇,丁汉,盛鑫军等.CSP封装Sn-3.5Ag焊点的热疲劳寿命预测[J].半导体学报,2006,27(9):1695-1700.
    [99]李晓延,王志升.倒装芯片封装结构中SnAgCu焊点热疲劳寿命预测方法研究[J].机械强度,2006,28(6):893-898.
    [100]Noh Bo-In, Lee Bo-Young, Jung Seung-Boo, Thermal fatigue performance of Sn-Ag-Cu chip-scale package with underfill[J]. Materials Science and Engineering A,2008,483-484.
    [101]Hegde Pradeep, Ochana Andrew R, Whalley David C, et al. Finite element analysis of lead-free surface mount devices[J]. Computational Materials Science, 2008,43(1):212-220.
    [102]沈萌,华彤,邵丙铣等.IMC生长对无铅焊球可靠性的影响[J].半导体学报,2007,32(11):929-932.
    [103]Hossain M M, Agonafer D, Viswanadham P et al. Strain based approach for predicting the solder joint fatigue life with the addition of intermetallic compound using finite element modeling[C]. IEEE Proceedings of Thermal and Thermome Chanical Phenomena in Electronic Systems, USA,2004,2:358-367.
    [104]魏鹤琳,王奎生.考虑IMC影响的PBGA无铅焊点温度循环有限元数值模拟[J].焊接学报,2012,33(1):109-112.
    [105]Chiou Y C, Jen Y M, Huang S H. Finite element based fatigue life estimation of the solder joints with effect of intermetallic compound growth[J]. Microelectronics Reliability,2011,51:2319-2329.
    [106]Liping Zhu, Walt Marcinkiewicz. Drop impact reliability analysis of CSP packages at board and product level through modeling approaches [J]. IEEE Transactions on Components and Packaging Technologies,2005,28(3): 449-456.
    [107]Wu J S, Song G S, Yeh C P, et al. Drop/impact simulation and test validation of telecommunication products[C]. Proceedings of the 6th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway, NJ:IEEE,1988.
    [108]Tee T Y, Ng H S, Zhong Z W, et al. Design for enhanced solder joint reliability of integrated passive device under board level drop test and thermal cycling[J]. EPTC 2003:210-216.
    [109]Tee T T, Luan J E, et al. Advaned experimental and simulation techniques for analysis of dynamic responses during drop impact[C]. Proceediings 54th Electronic Components and Technology Conference, Las Vegas:NV USA,2004.
    [110]Jing-en Luan, Tong Yan Tee. Novel board level drop test simulation using implicit transient analysis with Input-G method [A]. Electronics Packaging Technology Conference,2004:67'1-677.
    [111]秦飞,白洁,安彤.板级电子封装跌落/冲击焊点应力分析[J].北京工业大学学报,2007,33(10):1038-1043.
    [112]T. Y. Tee, H. S. Ng, C. T. Lim. E. Pek, Z. W. Zhong. Impact life prediction modeling of TFBGA packages under board level drop test, Microelectron Reliability,2004,44,1131-1142.
    [113]A. Syed, W. Lin, E.S. Sohn, S.W. Cha. Plastic deformation and life prediction of solder joints for mechanical shock and drop/impact loading conditions[C]. in: Proc. of 57th Electron. Comp. Technol. Conf.,2007,507-514.
    [114]T. T. Mattila, R.J. James, L. Nguyen, J.K. Kivilahti. Effect of temperature on the drop reliability of wafer-level chip scale packaged electronics assemblies[C]. In: Proc. of 57th Electron. Comp. Technol. Conf.,2007, pp.940-945.
    [115]J. Li, T. T. Mattila, H. Xu, M. Paulasto. FEA simulations for reliability assessment of component board drop tested at various temperatures[J]. Simulation Modelling Practice and Theory.2010,18,1355-1364.
    [116]J. Li, T. T. Mattila, J. K. Kivilahti. Computational assessment of the effects of temperature on wafer-level component boards in drop tests[J]. IEEE Trans. Compon. Pack. Technol,2009,32 (1):38-41.
    [117]Jong-Min Kim, Seung-Wan Woo, Yoon-Suk Chang, Young-Jin Kim, Jae-Boong Choi, Kum-Young Ji. Impact reliability estimation of lead free solder joint with IMC layer[J]. Thin Solid Films,2009,517,4255-4259.
    [118]刘芳.跌落碰撞下SMT无铅焊点可靠性理论与实验研究[D].上海交通大学博士学位论文,2008.
    [119]娄浩焕,朱笑(?),瞿欣,王家楫.无铅BGA封装可靠性的力学试验与分析[J].半导体技术,2005,30(3):36-40.
    [120]周斌.无铅便携式电子产品板级组件的TFBGA跌落可靠性研究[D].桂林电子科技大学硕士学位论文,2007.
    [121]李鹏忠,张为民.手机的环境试验自由跌落CAE仿真[J].制造业自动化,2003,25(8):36-41.
    [122]Junfeng Zhao, Luke J Garner. Mechanical Modeling and Analysis of Board Level Drop Test of Electronic Package[A].2006 Electronic Components and Technology Conference,2006:436-442.
    [123]郭强,赵玫.冲击载荷下航天用PBGA焊点的优化设计[J].电子元件与材料,2004,23(6):45-47.
    [124]陈逊,赵玫,孟光.冲击环境下PBGA焊点动态特性分析[J].振动与冲击,2004,23(4):131-134.
    [125]郭强,赵玫,张校昌.考虑扭率的焊点振动疲劳寿命及芯片位置优化[J].电子机械工程,2004,20(2):6-11.
    [126]Fang Liu, Guang Meng, Mei Zhao, Junfeng Zhao. Experimental and numerical analysis of BGA lead-free solder joint reliability under board-level drop impact[J]. Microelectronics Reliability,2009,49,79-85.
    [127]安彤.跌落冲击载荷作用下焊锡接点的力学行为研究[D].北京工业大学,2009.
    [128]Bahr, D.F., et al. Yield point phenomena during indentation[J]. Mat. Res. Soc. Symp. Proc.,1998,522:p.83-88.
    [129]Corcoran S. G., et al. Anomalous Plastic Defo rmation at Surfaces: Nanoindentation of Gold Single Crystals[J]. Phys. Rev. B,1997.55(24):p. R16 057-060.
    [130]Kiely, J.D., Houston, J.E. Nanomechanical properties of Au (111), (001), and (110) surfaces[J]. Phys. Rev. B,1998.57(19):p.12588.
    [131]Hay, J.C., G.M. Pharr. Experimental investigations of the sneddon solution and an improved solution for the analysis of nanoindentation Data[J]. Mat. Res. Soc. Symp. Proc.,1998,522:p.39-44.
    [132]Johnson K L, K Kendall, A D Roberts. Surface energy and the contact of elastic solids[J]. Proc. R. Soc. Lond.,1971.324:301-313.
    [133]Grosskreutz J C. Mechanical properties of metal oxide films[J]. J. Electrochem. Soc.,1969,116(9):1232-1237.
    [134]Westwood A. C., Preece C M, Goldheim D L. Molecular processes on solid surfaces[J].1968, New York, McGraw-Hill:591-610.
    [135]Tambwe M. F., Stone D. S., Hirvonen J. P. Scripta Materialia,1997,37(9):1421.
    [136]Corcoran S G. Nanoindentation of Atomically Modified Surfaces[J]. Materials research society syposium proceedings,1998.505:77.
    [137]张泰华,杨业敏.压痕硬度技术的发展和应用[J].力学进展,2002,32(3):545-562.
    [138]张泰华.微/纳米力学测试技术及其应用[M].机械工业出版社,2005.
    [139]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J]. J Mater Res,1992,7(6):64-83.
    [140]Pharr G M, Oliver W C. Brotzen F R, On the generality of the relationship among contact stiffness, Contact area, and elastic modulus during indentation[J]. Mater. Res.,1992,7:613-617.
    [141]Pethica J B, Oliver W C. Tip Surface Interaction in STM and AFM[J]. Phys. Scr., 1987,19:61-68.
    [142]Pethica J B, Oliver W C. Mechanical Properties of Nanometer Volumes of Material:Use of the Elastic Response of Small Area Indentations, Thin Films-Stresses and Mechanical Properties[J]. MRS Symposium Proceeding, 1989,130,13-23.
    [143]MAYO M J, SIEGEL R W, LIAO Y X, et al. Nanotionindentation of nanocrystalline ZnO [J]. Journal of Maerials Research,1992,7(4):973-979.
    [144]鲜飞.再流焊工艺技术研究[J].电子与封装,2005,5(3):16-18.
    [145]蔡海涛,李威,工浩.回流焊接温度曲线控制研究[J].微处理机,2008,(5):24-26.
    [146]盛菊仪,徐冠捷.无铅回流焊工艺与设备[J].电子工艺与技术,2004,25(2):60-63.
    [147]吴懿平.加热因子-回流焊曲线的量化参数[J].现代表面贴装资讯,2002,6(1):63-66.
    [148]王玲玲,孙凤莲,王丽凤,刘洋,回流焊对SnAgCu焊点IMC及剪切强 度的影响[J].电子元件与材料,2009,28(9):73-76.
    [149]谢多夫,沈清等译.力学中相似方法与量纲理论[M].北京:科学出版社,1982:1-25.
    [150]J. B. J. Fourier. Analytic theory of heat [M]. New York:Cambridge University Press,1955.
    [151]E. Bukingham. On physically similar systems:illutrations of the use dimensional analysis [J]. Physical Review,1914,4:345-376.
    [152]P. W. Bridgman. Dimensional analysis [M]. New Haven:Yale University Press, 1922.
    [153]杨桂通.弹塑性力学[M].北京:高等教育出版社,1987:2-3.
    [154]陈昌麒等.材料科学中的固体力学[M].北京:北京航空航天大学出版社,1994:188-196.
    [155]A. E. Giannakopoulos, S. Suresh. Determination of elastoplastic properties by instrumented sharp indentation [J]. Scripta Materialia,1999,40(10):1191-1198.
    [156]M.Lichinchi, C.Lenardi, J.Haupt et al. Simulation of Berkovich nanoindentation experiments on thin films using finite element method [J]. Thin Solid Films, 1998,312(1-2):240-248.
    [157]Bouzakis K, Michailidis N, Hadjiyannis S et al. Effect of the Cutting Edge Radius and its Manufacturing Procedure, on the Milling Performance of PVD Coated Cemented Carbide Inserts [J]. CIRP Annals-Manufacturing Technology, 200251(1):61-64.
    [158]张宇.回流焊接得到的不同形状焊点在热循环载荷作用下的可靠性分析[D].太原:太原理工大学,2009.
    [159]Anand L. Constitutive Equations for Hot Working of Metals [J]. International Journal of Plastic,1985,1:213-231.
    [160]Brown S B, Kim K H, Anand L. An Internal Variable Constitutive Model for Hot Working of Metals [J]. International Journal of Plastic,1989,5:95-130.
    [161]Anand L. Constitutive Equation for the Rate-Dependent Deformation of Metals at Elevated Temperatures [J]. Engineering Material and Technology,1982,104: 12-17.
    [162]Zahn B A. Finite element based solder joint fatigue life predictions fora same die stacked chip scale ball grid array package[C]. In:SEMI/IEEE IEMT Symposium. 2002:274-84.
    [163]Chang B J, Wang L, Dirk J, et al. Finite element modeling predicts the effects of voids on thermal shock reliability and thermal resistance of power device [J]. Welding Journal,2006,85(S):63-70.
    [164]Dongkai Shangguan著,刘建影,孙鹏译.无铅焊料互联及可靠性[M].北京:电子工业出版社,2008,225-241.
    [165]C. Xu, C. Gang, S. Masao. Modified Anand Constitutive Model for Lead-Free Solder Sn3.5Ag[J]. Proc ITHERM,2004,447-452.
    [166]白宁.无铅钎料的统一型本构模型[D].天津大学,2008.
    [167]张亮,薛松柏,韩宗杰FCBGA器件SnAgCu焊点疲劳寿命预测[J].焊接学报,2008,29(7):85-88.
    [168]Tee T Y, Zhong Z W. Board level solder joint reliability analysis and optimization of pyramidal stacked die BGA packages [J]. Microelectronics Reliability,2004,44(12):1957-1965.
    [169]Engelmaier W. Fatigue life of lead less chip carrier solders joints during power cycling [J]. IEEE Trans. CHMT,1993,6(3):232-237.
    [170]魏鹤琳,王奎生.考虑IMC影响的PBGA无铅焊点温度循环有限元数值模拟[J].焊接学报,2012,33(1):109-112.
    [171]佟川,曾声奎,陈云霞.塑封球栅阵列焊点热疲劳寿命预测有限元方法[J].焊接学报,2007,28(10):89-92.
    [172]刘勇,梁利华,曲建民著.微电子器件及封装的建模与仿真[M].北京:科学出版社,2010,112-131.
    [173]周新.板级无铅焊点跌落冲击载荷下可靠性分析[D].上海交通大学,2007.
    [174]American Society for Testing and Materials, ANSI/ASTM D3332-93. Standard Test Methods for Mechanical-Shock Fragility of Products, Using Machines: Annual Book of ASTM Standards[S], Vol.15.09, September,1993.
    [175]MIL-STD-883F.Military Standard[S]:Test methods and procedures for microelectronics, US Office of Naval Publications, Washington DC,2004.
    [176]MIL-STD-810F.Military Standard[S]:Test Method Standard for Environmental Engineering Consideration and Laboratory Tests.US Department of Defense, 2000.
    [177]IEC 68-2-27. International standard:Basic environmental testing procedures. InternatAssociation, Arlington,2001.
    [178]JESD22-A104C. Thermal Cycling [S]. Joint Electron Device Engineering Council 2005.
    [179]JESD22-B104-B. Mechanical Shock Test Method[S]. JEDEC Solid State Technology Association, Arlington,2001.
    [180]JEDEL Solid state technology association. Board Level Drop Test Method of Component for Handheld Electronic Products JESD22-B111[S], Arlington: JEDEL Solid State Technology Association,2003.
    [181]Luan J E, Tee T Y, Pek E. Modal analysis and dynamic responses of board level drop test[C]. In:Proceedings of the 5th Electronics Packaging Technology Conference (EPTC2003), IEEE,2003.233-243.
    [182]Tong Yan Tee, Jing-en Luana, Eric Pekb, et al. Novel numerical and experimental analysis of dynamic responses under board level drop test[A].5th. Int. Conf on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems,2004:134-140.
    [183]Tan L.B., Ang C.W., Lim C.T., V.B.C.Tan, Xiaowu Zhang. Modal and Impact Analysis of Modern Portable Electronic Products [A],2005 Electronic Components and Technology Conference,645-653.
    [184]杨雪霞,张宇,树学峰.PBGA焊点在板级跌落冲击载荷下的可靠性分析[J].稀有金属材料与工程,2012,41(增2),595~599.
    [185]张宇,杨雪霞,赵振东,树学峰.焊点形状对焊点可靠性的影响[J].《中国科技论文在线精品论文》,2009,2(5):456-462.
    [186]Cowper G R, Symonds P S. Strain hardening and strain-rate effect on the impact loading of cantilever beams[R]. Division of Applied Mathematics Report 28, Brown University, September 1957.
    [187]袁国政.无铅焊料对电子封装芯片动态可靠性影响的研究[D].太原理工大学,2007.
    [188]Yi-Shao Lai, Po-Chuan Yang, Chang-Lin Yeh. Effects of different drop test conditions on board-level reliability of chip-scale packages[J]. Microelectronics Reliability,2008,48,274-281.
    [189]Tong Yan Tee, Jing-en Luan. Advanced experimental and simulation techniques for analysis of dynamic responses during drop impact[C].54th Electronic Components and Technology Conference,2004:1088-1094.
    [190]Suh. Daewoong, D.W, Kim, P. Liu, et al. Effects of Ag Content on Fracture Resistance of Sn-Ag-Cu Lead-free Solders under High-strain Rate Conditions[J]. Materials Science and Engineering A,2007,460:595-603.
    [191]J. H. L. Pang, F. X. Che. Drop Impact Analysis of SnAgCu Solder Joints Using Dynamic High Strain Rate Plastic Strain as Impact Damage Driving Force[C]. 56th Electronic Components & Technology Conference, San Diego, California, USA,2006:49-54.
    [192]K. Zeng, K. N. Tu. Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology [J]. Materials Science and Engineering Reports, 2002,38:55-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700