用户名: 密码: 验证码:
GaN基电子器件的漏电流机理与频率散射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为第三代半导体代表的GaN及其合金材料具有宽的直接带隙、高的热导率、高击穿场强、高饱和电子漂移速度及稳定的化学性质等特点,同时由于AlGaN/GaN异质结构界面存在很大的能带偏移和极化不连续性,在其界面处可形成浓度达1013cm-2的二维电子气。这些特点使GaN及其合金材料在高温、高频、大功率器件方面有着广阔的应用前景。但是由于GaN及其合金材料在其外延生长以及器件制备过程中可产生高密度缺陷,GaN基器件中容易出现高漏电流和包括电流崩塌在内的各种散射现象,严重地制约了GaN基器件的发展和应用。因此,缺陷态对GaN基器件电学性能影响以及表征和机制是目前研究的重点内容之一。本论文应用材料表征技术、电流-电压(I-V)和电容-电压(C-V)等电学表征技术和数值模拟方法研究了缺陷态对GaN基电子器件电学性质的影响及其机制,包括以下内容:
     1、在低密度缺陷的GaN同质外延片上制备了高质量的垂直结构肖特基二极管。提出了一个与位错相关的隧穿漏电流模型以解释所测量到的远大于热电子发射模型预言的反向漏电流。该模型认为电子从金属通过热场发射隧穿进入禁带中的导电连续态而形成漏电流。利用该模型成功拟合了所观测的I-V特征曲线,说明隧穿发射是漏电流的主要机制。
     2、制备了平面结构的AlGaN/GaN异质结肖特基二极管,研究了后栅退火对器件性能的影响。I-V表征显示后栅退火通过钝化肖特基金属/AlGaN界面态有效地减小了反向漏电流;C-V表征显示后栅退火可以有效降低AlGaN/GaN异质结的表面态和界面态密度,但长时间退火可降低AlGaN势垒层的极化电荷面密度。C-V频率散射测量显示后栅退火通过降低AlGaN/GaN界面态密度消除了界面态对费米能级的钉扎效应。
     3、用数值模拟方法研究了场板结构对AlGaN/GaN HEMT瞬态响应中栅延迟和漏延迟现象的影响。模拟结果显示栅场板通过改变表面态对电子的俘获能力及产生自身的感应电荷改变了瞬态过程初始状态时的沟道中载流子浓度和分布,进而抑制栅延迟和漏延迟的强度,但是场板本身不能影响延迟时间。
GaN and its alloys have shown attractive physical properties, such as wide direct band gap, high breakdown electrical field, high electron saturation velocity, high thermal conductivity and high thermal stability. Due to the strong spontaneous and piezoelectric polarization effects, high density two-dimensional electron gas with sheet carrier density up to1013cm-2could exist at the AlGaN/GaN interface, which has shown excellent electronic transport properties. As a result, GaN-based materials have great prospect in applications of high frequency, high temperature and high-power semiconductor devices. However, high-density defects commonly exist in heteroepitaxial GaN, have been considered as the major cause of excessive leakage current and frequency dispersion effects observed in GaN-based devices. In this work, the impact of structural defects on the performance of GaN-based electronic devices was investigated, utilizing material/device characterization techniques, such as capacitance-voltage (C-V) and current-voltage-temperature (I-V-T) measurements as well as numerical simulation method. The main conclusions are listed as follows:
     1) high-quality vertical Schottky barrier diodes (SBDs) on low-defect-density GaN homo-epilayer were fabricated. A leakage current model focusing on defect-related conduction is purposed to explain the experimental temperature-dependent reverse I-V characteristics. The model suggests that linear defects like dislocations would form a continuous conductive band within the forbidden band on which leakage electrons could move. Electrons from the contact metal could overcome the locally reduced Schottky barrier and tunnel onto the defect band through thermionic-field emission. Good agreement between the simulated I-V curves and the experimental results is obtained.
     2) Lateral AlGaN/GaN-based Schottky barrier diodes (SBDs) with Ni/Au Schottky contacts were fabricated. The impact of post-gate-annealing (PGA) process on the properties of the SBDs was investigated. I-V characterization shows that the PGA process could reduce the density of electrically active states at the Schottky metal/AlGaN interface, leading to lower reverse leakage current. C-V characterization shows that the PGA process could reduce the density of surface states and the AlGaN/GaN interface states, as well as the density of polarization charge within the AlGaN barrier layer. Analysis of capacitance frequency dispersion in depletion state indicates that Fermi level pinned by the AlGaN/GaN interface states can be unpinned by PGA.
     3) The impact of field plates (FPs) on the transient response characteristics of AlGaN/GaN HEMT devices is studied using numerical simulation method. FP can suppress the maginitude of lag phenomena in both cases of gate-lag and drain lag, but has no influence on the lapsed time. The change of ionization probability of surface states and the negative charges on FP induced by the potential difference between the FP and the semiconductor could modulate the carrier density within the device channel, which could reduce the lag effect.
引文
[1]S.-H. Park, S.-L. Chuang. Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. Journal of Applied Physics 2000 (87):353-364.
    [2]C. G. Van de Walle, J. Neugebauer. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 2003 (423):626-628.
    [3]S. J. Pearton, F. Ren, A. P. Zhang, K. P. Lee. Fabrication and performance of GaN electronic devices. Materials Science and Engineering:R:Reports 2000 (30):55-212.
    [4]G Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, B. Zhang. Dynamic Characterizations of AlGaN/GaN HEMTs With Field Plates Using a Double-Gate Structure. IEEE Electron Device Letters 2013 (34):217-219.
    [5]F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, J. Zhou. Ultra-Low Dark Current AlGaN-Based Solar-Blind Metal-Semiconductor-Metal Photodetectors for High-Temperature Applications. IEEE Sensors Journal 2012 (12):2086-2090.
    [6]C. S. Xia, Z. M. S. Li, Z. Q. Li, Y. Sheng. Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes. Applied Physics Letters 2013 (102):013507.
    [7]H. Lu, R. Zhang, X. Xiu, Z. Xie, Y. Zheng. Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Applied Physics Letters 2007 (91):172113.
    [8]闫大为.宽禁带Ⅲ族氮化物半导体器件输运与界面特性研究.南京大学博士论文2011.
    [9]F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides. Physical Review B 1997 (56):10024-10027.
    [10]O. Ambacher, J. Smart, J. R. Shealy, N. G Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics 1999 (85):3222-3233.
    [11]J. A. Garrido, A. Jimenez, J. L. Sanchez-Rojas, E. Munoz, F. Omnes, P. Gibart. Polarization field determination in AlGaN/GaN HFETs. Physica Status Solidi (a) 1999 (176):195-199.
    [12]J. A. Garrido, J. L. Sanchez-Rojas, A. Jimenez, E. Munoz, F. Omnes, P. Gibart. Polarization fields determination in AlGaN/GaN heterostructure field-effect transistors from charge control analysis. Applied Physics Letters 1999 (75): 2407-2409.
    [13]C. Shi, P. M. Asbeck, E. T. Yu. Piezoelectric polarization associated with dislocations in wurtzite GaN. Applied Physics Letters 1999 (74):573-575.
    [14]V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli. Effects of macroscopic polarization in III-V nitride multiple quantum wells. Physical Review B 1999 (60):8849-8858.
    [15]孔月婵.Ⅲ族氮化物半导体异质结构二维电子气和深能级研究.南京大学博士论文2007.
    [16]M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, M. S. Shur. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Applied Physics Letters 1994 (65):1121-1123.
    [17]R. J. I. Simms, J. W. Pomeroy, M. J. Uren, T. Martin, M. Kuball. Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy. IEEE Transactions on Electron Devices 2008 (55): 478-482.
    [18]J. Osvald, T. Lalinsky, G Vanko, S. Hascik, A. Vincze. C-V analysis of rapidly thermal annealed SF6 plasma treated AlGaN/GaN heterostructures. Applied Surface Science 2010 (257):1254-1256.
    [19]A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, S. J. Pearton, F. Ren, L. Lui, J. W. Johnson, N. I. Kargin, R. V. Ryzhuk. Deep centers and persistent photocapacitance in AlGaN/GaN high electron mobility transistor structures grown on Si substrates. Journal of Vacuum Science & Technology B 2013 (31):011211.
    [20]C. Schwarz, A. Yadav, M. Shatkhin, E. Flitsiyan, L. Chernyak, V. Kasiyan, L. Liu, Y. Y. Xi, F. Ren, S. J. Pearton, C. F. Lo, J. W. Johnson, E. Danilova. Gamma irradiation impact on electronic carrier transport in AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2013 (102):062102.
    [21]M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, J. Carter. Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-Alx Ga1-xN heterojunctions. Applied Physics Letters 1992 (60):3027-3029.
    [22]W. Zhang, Y. Zhang, W. Mao, X. Ma, J. Zhang, Y. Hao. Influence of the Interface Acceptor-Like Traps on the Transient Response of AlGaN/GaN HEMTs. IEEE Electron Device Letters 2013 (34):45-47.
    [23]A. M. H. Kwan, K. J. Chen. A Gate Overdrive Protection Technique for Improved Reliability in AlGaN/GaN Enhancement-Mode HEMTs. IEEE Electron Device Letters 2013 (34):30-32.
    [24]I. B. Rowena, S. L. Selvaraj, T. Egawa. Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si. IEEE Electron Device Letters 2011 (32):1534-1536.
    [25]F. Medjdoub, M. Zegaoui, N. Rolland, P. A. Rolland. Demonstration of low leakage current and high polarization in ultrathin AIN/GaN high electron mobility transistors grown on silicon substrate. Applied Physics Letters 2011 (98):223502.
    [26]N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida. GaN Power Transistors on Si Substrates for Switching Applications. Proceedings of the IEEE 2010 (98):1151-1161.
    [27]S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, S. Yoshida. C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. Journal of Crystal Growth 2007 (298):831-834.
    [2.8]N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi. Growth and properties of semi-polar GaN on a patterned silicon substrate. Journal of Crystal Growth 2009 (311):2867-2874.
    [29]Z. Yang, R. Wang, S. Jia, D. Wang, B. Zhang, K. Lau, K. Chen. Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique. Applied Physics Letters 2006 (88):041913.
    [30]M. A. Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson. High electron mobility transistor based on a GaN-AixGa1-xN heterojunction. Applied Physics Letters 1993 (63): 1214-1215.
    [31]S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, P. Frijlink. AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz FMAX-IEEE Electron Device Letters 2013 (34):36-38.
    [32]D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng. On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2010(97):153503-153503-153503.
    [33]E. Arslan, S. Butun, E. Ozbay. Leakage current by Frenkel-Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures. Applied Physics Letters 2009 (94):142106.
    [34]H. Zhang, E. J. Miller, E. T. Yu. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy. Journal of Applied Physics 2006 (99):023703.
    [35]W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, M. Yamaguchi. Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs. IEEE Electron Device Letters 2010 (31):659-661.
    [36]R. Vetury, N. Q. Q. Zhang, S. Keller, U. K. Mishra. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Transactions on Electron Devices 2001 (48):560-566.
    [37]D. Yan, H. Lu, D. Chen, R. Zhang, Y. Zheng, X. Qian, A. Li. Distribution of deep-level traps at atomic-layer-deposited Al2O3/n-GaN interface. Solid-State Electronics 2012 (72):56-59.
    [38]付立华.GaN基高电子迁移率场效应的可靠性研究.南京大学硕士论文2012.
    [39]M. Faqir, G Verzellesi, A. Chini, F. Fantini, F. Danesin, G Meneghesso, E. Zanoni, C. Dua. Mechanisms of RF current collapse in AlGaN-GaN high electron mobility transistors. IEEE Transactions on Device and Materials Reliability 2008 (8):240-247.
    [40]X. A. Cao, H. Lu, E. B. Kaminsky, S. D. Arthur, J. R. Grandusky, F. Shahedipour-Sandvik. Homoepitaxial growth and electrical characterization of GaN-based Schottky and light-emitting diodes. Journal of Crystal Growth 2007 (300): 382-386.
    [41]W. Yaqi, S. Alur, Y. Sharma, T. Fei, R. Thapa, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, P. Minseo, M. Johnson, T. Paskova, E. A. Preble, K. R. Evans. Ultra-low Leakage and high Breakdown Schottky Diodes Fabricated on Free-standing gan Substrate. Semiconductor Science and Technology 2011 (26):022002.
    [42]B. L. Tian, C. Chen, J. H. Zhang, Y. R. Li, Y. F. Chen, X. Z. Liu, J. J. Zhou, L. Li. Structure and electrical characteristics of AlGaN/GaN MISHFET with Al2O3 thin film as both surface passivation and gate dielectric. Semiconductor Science and Technology 2011 (26):085023.
    [43]J. Song, R. Yang, Z. Zhang, Y. Wang, Z. Feng, Z. Feng, K. Yang. Effects of Surface Treatment and Ion Implantation on Schottky Characteristics of GaN HEMT. Semiconductor Technology 2008 (33):59-61.
    [44]H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, J. C. Mabon. Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing. Applied Physics Letters 2006 (89):053516.
    [45]H. Kim, L. Schuette, J. Lee, W. Lu, J. C. Mabon. Passivation of surface and interface states in AIGaN/GaN HEMT structures by annealing. Journal of Electronic Materials 2007(36):1149-1155.
    [46]J. Lee, D. Liu, H. Kim, W. Lu. Postprocessing annealing effects on direct current and microwave performance of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2004 (85):2631-2633.
    [47]A. Koudymov, V. Adivarahan, J. Yang, G. Simin, M. A. Khan. Mechanism of current collapse removal in field-plated nitride HFETs. IEEE Electron Device Letters 2005 (26):704-706.
    [48]A. Brannick, N. A. Zakhleniuk, B. K. Ridley, J. R. Shealy, W. J. Schaff, L. F. Eastman. Influence of Field Plate on the Transient Operation of the AlGaN/GaN HEMT. IEEE Electron Device Letters 2009 (30):436-438.
    [49]A. Nakajima, K. Itagaki, K. Horio. Physical Mechanism of Buffer-Related Lag and Current Collapse in GaN-Based FETs and their Reduction by Introducing a Field Plate.2009 IEEE International Reliability Physics Symposium 2009 (1 and 2): 722-726.
    [50]K. Itagaki, A. Nakajima, K. Horio. Reduction of buffer-related current collapse in GaNFETs under favour of a field plate. Physica Status Solidi (c) 2008 (5):2976-2978.
    [51]J. P. Ao, Y. Yamaoka, M. Okada, C. Y. Hu, Y. Ohno. Investigation on current collapse of AlGaN/GaN HFET by gate bias stress. IEICE Transactions on Electronics 2008 (E91C):1004-1008.
    [52]魏巍,林若兵,冯倩,郝跃.场板结构AlGaN/GaN HEMT的电流崩塌机理.物理学报2008(57):467-471.
    [1]G Dang, X. A. Cao, F. Ren, S. J. Pearton, J. Han, A. G Baca, R. J. Shul. Oxygen implant isolation of n-GaN field-effect transistor structures. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1999 (17): 2015-2018.
    [2]L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche, J. Thuret. Electrical Performance of GaN Schottky Rectifiers on Si Substrates. Journal of the Electrochemical Society 2006 (153):G681-G684.
    [3]B. S. Kang, F. Ren, Y. Irokawa, K. W. Baik, S. J. Pearton, C.-C. Pan, G-T. Chen, J.-I. Chyi, H.-J. Ko, H.-Y. Lee. Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates. Journal of Vacuum Science & Technology B 2004 (22):710-714.
    [4]Y. Zhou, M. Li, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser. Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery. Applied Physics Letters 2006 (88):113509.
    [5]H. Lu, R. Zhang, X. Q. Xiu, Z. L. Xie, Y. D. Zheng, Z. H. Li. Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Applied Physics Letters 2007 (91):-.
    [6]S. Hashimoto, Y. Yoshizumi, T. Tanabe, M. Kiyama. High-purity GaN epitaxial layers for power devices on low-dislocation-density GaN substrates. Journal of Crystal Growth 2007 (298):871-874.
    [7]L. Chernyak, A. Osinsky, G Nootz, A. Schulte, J. Jasinski, M. Benamara, Z. Liliental-Weber, D. C. Look, R. J. Molnar. Electron beam and optical depth profiling of quasibulk GaN. Applied Physics Letters 2000 (77):2695-2697.
    [8]H. Lu, R. Zhang, X. Xiu, Z. Xie, Y. Zheng. Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Applied Physics Letters 2007 (91):172113.
    [9]H. Lu, X. A. Cao, S. F. LeBoeuf, H. C. Hong, E. B. Kaminsky, S. D. Arthur. Cathodoluminescence mapping and selective etching of defects in bulk GaN. Journal of Crystal Growth 2006 (291):82-85.
    [10]S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, P. Frijlink. AlGaN/GaN HEMTs on Silicon Substrate With 206GHz FMAX.IEEE Electron Device Letters 2013 (34):36-38.
    [11]F. Medjdoub, M. Zegaoui, B. Grimbert, D. Ducatteau, N. Rolland, P. A. Rolland. First Demonstration of High-Power GaN-on-Silicon Transistors at 40 GHz. IEEE Electron Device Letters 2012 (33):1168-1170.
    [12]Z. T. Chen, K. Fujita, J. Ichikawa, T. Egawa. Schottky Barrier Height Inhomogeneity-Induced Deviation From Near-Ideal Pd/InAIN Schottky Contact. IEEE Electron Device Letters 2011 (32):620-622.
    [13]J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck. Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Applied Physics Letters 2002 (81): 79-81.
    [14]G. Koley, M. G. Spencer. Scanning Kelvin probe microscopy characterization of dislocations in Ⅲ-nitrides grown by metalorganic chemical vapor deposition. Applied Physics Letters 2001 (78):2873-2875.
    [15]B. S. Simpkins, D. M. Schaadt, E. T. Yu, R. J. Molnar. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy. Journal of Applied Physics 2002 (91):9924-9929.
    [16]H. Zhang, E. J. Miller, E. T. Yu. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy. Journal of Applied Physics 2006 (99):023703.
    [17]D. Yan. On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2010 (97):153503.
    [18]E. Arslan, S. Butun, E. Ozbay. Leakage current by Frenkel-Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures. Applied Physics Letters 2009 (94):142106.
    [19]M. J. Hanna, H. Zhao, J. C. Lee. Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors. Applied Physics Letters 2012 (101):153504.
    [20]W. Lu, L. Q. Wang, S. Y. Gu, D. P. R. Aplin, D. M. Estrada, P. K. L. Yu, P. M. Asbeck. Analysis of Reverse Leakage Current and Breakdown Voltage in GaN and InGaN/GaN Schottky Barriers. IEEE Transactions on Electron Devices 2011 (58): 1986-1994.
    [21]W. J. Ha, S. Chhajed, A. Chavan, J.-H. Lee, K.-S. Kim, J. K. Kim (2012). Carrier transport mechanism of AlGaN/GaN Schottky barrier diodes with various Al mole fractions. Physica Status Solidi (c) 2012 (9):851-854.
    [22]J. Kotani, T. Hashizume, H. Hasegawa. Analysis and control of excess leakage currents in nitride-based Schottky diodes based on thin surface barrier model. Journal of Vacuum Science & Technology B 2004 (22):2179-2189.
    [23]T. Hashizume, J. Kotani, H. Hasegawa. Leakage mechanism in GaN and AlGaN schottky interfaces. Applied Physics Letters 2004 (84):4884-4886.
    [24]P. Pipinys, V. Lapeika. Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling. Journal of Applied Physics 2006 (99):093709.
    [25]F. A. Padovani, R. Stratton. Field and thermionic-field emission in Schottky barriers. Solid-State Electronics 1966 (9):695-707.
    [26]H. Hasegawa, S. Oyama. Mechanism of anomalous current transport in n-type GaN Schottky contacts. Journal of Vacuum Science & Technology B 2002 (20): 1647-1655.
    [27]K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang, C. H. Kuo. High quality GaN-based Schottky barrier diodes. Applied Physics Letters 2008 (93):132110.
    [28]S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen, S. L. Wu, B. R. Huang. GaN Schottky Barrier Photodetectors. IEEE Sensors Journal 2010 (10): 1609-1614.
    [29]S. K. Cheung, N. W. Cheung. Extraction of schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters 1986 (49):85-87.
    [30]J. D. van Otterloo, L. J. Gerritsen. The accuracy of Schottky-barrier-height measurements on clean-cleaved silicon. Journal of Applied Physics 1978 (49): 723-729.
    [31]Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble. Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier. Journal of Applied Physics 2007 (101):024506.
    [32]P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki. Schottky-barrier on n-type GaN grown by hydride vapor-phase epitaxy. Applied Physics Letters 1993 (63): 2676-2678.
    [33]J. D. Guo, M. S. Feng, R. J. Guo, F. M. Pan, C. Y. Chang. Study of schottky barriers on n-type GaN grown by low-pressure metalorganic chemical-vapor-deposition. Applied Physics Letters 1995 (67):2657-2659.
    [34]L. Wang, M. I. Nathan, T. H. Lim, M. A. Khan, Q. Chen. High barrier height GaN Schottky diodes:Pt/GaN and Pd/GaN. Applied Physics Letters 1996 (68):1267-1269.
    [35]施敏,伍国钰.半导体器件物理.2008.
    [36]C. Y. Chang, S. M. Sze. Carrier transport across metal-semiconductor barriers. Solid-State Electronics 1970 (13):727-740.
    [37]J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck. Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Applied Physics Letters 2002 (81):79-81.
    [38]J. J. M. Law, E. T. Yu, G Koblmueller, F. Wu, J. S. Speck. Low defect-mediated reverse-bias leakage in (0001) GaN via high-temperature molecular beam epitaxy. Applied Physics Letters 2010 (96):102111.
    [39]A. S. Zubrilov, V. I. Nikolaev, D. V. Tsvetkov, V. A. Dmitriev, K. G. Irvine, J. A. Edmond, J. C. H. Carter. Spontaneous and stimulated emission from photopumped GaN grown on SiC. Applied Physics Letters 1995 (67):533-535.
    [40]E. J. Miller, E. T. Yu, P. Waltereit, J. S. Speck. Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Applied Physics Letters 2004 (84):535-537.
    [41]D.-G. Zhao, S. Zhang, W.-B. Liu, X.-P. Hao, D.-S. Jiang, J.-J. Zhu, Z.-S. Liu, H. Wang, S.-M. Zhang, H. Yang, L. Wei. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors. Chinese Physics B 2010 (19):057802.
    [42]何菊生,张萌,许彪,唐建成.纤锌矿n-GaN室温补偿度解析模型.半导体学报2007(28):1041-1047.
    [43]刘恩科,朱秉升,罗晋生.半导体物理学(第七版).电子工业出版社.2008.
    [44]姚冬敏,王立,熊传兵,彭学新,江风益.GaN的补偿度与离子束沟道最小产额比的关系的研究.发光学报2000:109-114.
    [45]辛勇,熊传兵,彭学新,王立,姚冬敏,李述体,江风益.MOCVD生长的未掺杂GaN的结晶特性与补偿度关系的研究.发光学报2000:33-37.
    [46]S. Li, F. Jiang, G Fan, L. Wang, C. Xiong, X. Peng, H. Mo. Study of the blue luminescence in unintentional doped GaN films grown by MOCVD. Journal of Luminescence 2004 (106):219-223.
    [47]A. P. Dmitriev, M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur. Tunneling mechanism of the 1/f noise in GaN/AlGaN heterojunction field-effect transistors. Journal of Applied Physics 2005 (97):123706.
    [1]H. Kim, J. Lee, D. M. Liu, W. Lu. Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing. Applied Physics Letters 2005 (86):143505.
    [2]H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, J. C. Mabon. Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing. Applied Physics Letters 2006 (89): 053516.
    [3]H. Kim, J. Lee, W. Lu. Post-annealing effects on trapping behaviors in AlGaN/GaN HEMTs. Physica Status Solidi (a) 2005 (202):841-845.
    [4]H. Kim, L. Schuette, J. Lee, W. Lu, J. C. Mabon. Passivation of surface and interface states in AIGaN/GaN HEMT structures by annealing. Journal of Electronic Materials 2007(36):1149-1155.
    [5]D. Liu, J. Lee, W. Lu. The impact of post gate annealing on noise performance of AlGaN/GaN microwave HEMTs. Solid-State Electronics 2007 (51):90-93.
    [6]M. Z. Peng, Y. K. Zheng, K. Wei, X. Y. Liu. Post-process thermal treatment for microwave power improvement of AlGaN/GaN HEMTs. Microelectronic Engineering 2010 (87):2638-2641.
    [7]D. K. Schroder.半导体材料与器件表征技术.大连理工大学出版社.2008.
    [8]D. Yan, H. Lu, D. Chen, R. Zhang, Y. Zheng, X. Qian, A. Li. Distribution of deep-level traps at atomic-layer-deposited Al2O3/n-GaN interface. Solid-State Electronics 2012 (72):56-59.
    [9]M. J. Legodi, W. E. Meyer, F. D. Auret. Interface properties of an O2 annealed Au/Ni/n-Al0.18Ga0.82N Schottky contact. Physica B 2012 (407):1599-1602.
    [10]S. Xie, J. Yin, S. Zhang, B. Liu, W. Zhou, Z. Feng. Trap behaviors in AlGaN-GaN heterostructures by C-V characterization. Solid-State Electronics 2009 (53): 1183-1185.
    [11]C. Zhou, Q. Jiang, S. Huang, K. J. Chen. Vertical Leakage/Breakdown Mechanisms in AlGaN/GaN-on-Si Devices. IEEE Electron Device Letters 2012 (33):1132-1134.
    [12]Y.-W. Lian, Y.-S. Lin, H.-C. Lu, Y.-C. Huang, S. S. H. Hsu. AlGaN/GaN HEMTs on Silicon With Hybrid Schottky-Ohmic Drain for High Breakdown Voltage and Low Leakage Current. IEEE Electron Device Letters 2012 (33):973-975.
    [13]J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck. Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Applied Physics Letters 2002 (81):79-81.
    [14]G. Koley, M. G. Spencer. Scanning Kelvin probe microscopy characterization of dislocations in Ⅲ-nitrides grown by metalorganic chemical vapor deposition. Applied Physics Letters 2001 (78):2873-2875.
    [15]B. S. Simpkins, D. M. Schaadt, E. T. Yu, R. J. Molnar. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy. Journal of Applied Physics 2002 (91):9924-9929.
    [16]S. W. Kaun, M. H. Wong, S. Dasgupta, S. Choi, R. Chung, U. K. Mishra, J. S. Speck. Effects of Threading Dislocation Density on the Gate Leakage of AlGaN/GaN Heterostructures for High Electron Mobility Transistors. Applied Physics Express 2011 (4):024101.
    [17]王福学.GaN材料的缺陷分布及工艺设计对器件性能的影响研究.南京大学博士论文2011.
    [18]D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng. On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2010 (97):153503.
    [19]N. Miura, T. Oishi, T. Nanjo, M. Suita, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa. Effects of interfacial thin metal layer for high-performance Pt-Au-based Schottky contacts to AlGaN-GaN. IEEE Transactions on Electron Devices 2004 (51):297-303.
    [20]N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, T. Jimbo. Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal. Solid-State Electronics 2004 (48):689-695.
    [21]闫大伟.宽禁带Ⅲ族氮化物半导体器件的输运与界面特性研究.南京大学博士 论文2011.
    [22]S. K. Cheung, N. W. Cheung. Extraction of schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters 1986 (49):85-87.
    [23]A. R. Arehart, A. A. Allerman, S. A. Ringel. Electrical characterization of n-type Al0.30Ga0.70N Schottky diodes. Journal of Applied Physics 2011 (109):114506.
    [24]S. Saadaoui, M. M. Ben Salem, M. Gassoumi, H. Maaref, C. Gaquiere. Electrical characterization of (Ni/Au)/Al0.25Ga0.75N/GaN/SiC Schottky barrier diode. Journal of Applied Physics 2011 (110):013701.
    [25]施敏,伍国钰.半导体器件物理.西安交通大学出版社.2008.
    [26]E. J. Miller, X. Z. Dang, H. H. Wieder, P. M. Asbeck, E. T. Yu, G. J. Sullivan, J. M. Redwing. Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field-effect transistor. Journal of Applied Physics 2000 (87):8070-8073.
    [27]孟庆巨、刘海波、孟庆辉.半导体器件物理.科学出版社.2005.
    [28]J. Lee, D. Liu, H. Kim, W. Lu. Postprocessing annealing effects on direct current and microwave performance of AlGaN/GaN high electron mobility transistors. Applied Physics Letters 2004 (85):2631-2633.
    [29]K. J. Yang, H. Chenming. MOS capacitance measurements for high-leakage thin dielectrics. IEEE Transactions on Electron Devices 1999 (46):1500-1501.
    [30]L. Zhijiong, T. P. Ma. A new method to extract EOT of ultrathin gate dielectric with high leakage current. IEEE Electron Device Letters 2004 (25):655-657.
    [31]Y. Cai, Y. Zhou, K. M. Lau, K. J. Chen. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment:From depletion mode to enhancement mode. IEEE Transactions on Electron Devices 2006 (53):2207-2215.
    [32]K. Ooyama, K. Sugawara, S. Okuzaki, H. Taketomi, H. Miyake, K. Hiramatsu, T. Hashizume. Deep Electronic Levels of AlxGa1-xN with a Wide Range of Al Composition Grown by Metal-Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics 2010 (49):101001.
    [33]Z. J. Lin, W. Lu, J. Lee, D. M. Liu, J. S. Flynn, G R. Brandes. Influence of annealed ohmic contact metals on polarisation of AlGaN barrier layer. Electronics Letters 2003 (39):1412-1414.
    [34]E. H. Nicollian, J. R. Brews. MOS/metal oxide semiconductor/physics and technology.1982.
    [35]Nicollia.Eh, Goetzber. A. The Si-SiO2 interface-Electrical properties as determined by the metal-insulator-silicon conductance technique. Bell System Technical Journal 1967 (46):1055-1133.
    [36]L. Semra, A. Telia, A. Soltani. Trap characterization in AlGaN/GaN HEMT by analyzing frequency dispersion in capacitance and conductance. Surface and Interface Analysis 2010 (42):799-802.
    [37]Y. Yu, W. Lingquan, Y. Bo, S. Byungha, A. Jaesoo, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, T. Yuan. A Distributed Model for Border Traps in Al2 O3-InGaAs MOS Devices. IEEE Electron Device Letters 2011 (32):485-487.
    [38]J. Shewchun, A. Waxman, G Warfield. Tunneling in MIS structures-Ⅰ:Theory. Solid-State Electronics 1967 (10):1165-1186.
    [39]L. B. Freeman, W. E. Dahlke. Theory of tunneling into interface states. Solid-State Electronics 1970(13):1483-1503.
    [40]S. Stemmer, V. Chobpattana, S. Rajan. Frequency dispersion in Ⅲ-Ⅴ metal-oxide-semiconductor capacitors. Applied Physics Letters 2012 (100):233510.
    [1]Y. Hasumi, H. Kodera. Simulation of the surface trap effect on the gate lag in GaAs MESFETs. Electronics and Communications in Japan 2002 (85):18-26.
    [2]S. C. Binari, W. Kruppa, H. B. Dietrich, G. Kelner, A. E. Wickenden, J. J. A. Freitas. Fabrication and characterization of GaN FETs. Solid-State Electronics 1997 (41): 1549-1554.
    [3]S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, R. L. Henry. Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices 2001 (48):465-471.
    [4]R. Vetury, N. Q. Q. Zhang, S. Keller, U. K. Mishra. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Transactions on Electron Devices 2001 (48):560-566.
    [5]S. C. Binari, P. B. Klein, T. E. Kazior. Trapping effects in GaN and SiC microwave FETs. Proceedings of the IEEE 2002 (90):1048-1058.
    [6]W. Kruppa, S. Binari, K. Doverspike. Low-frequency dispersion characteristics of GaN HFETs. Electronics Letters 1995 (31):1951-1952.
    [7]U. K. Mishra, L. Shen, T. E. Kazior, Y. F. Wu. GaN-Based RF power devices and amplifiers. Proceedings of the IEEE 2008 (96):287-305.
    [8]J. M. Tirado, J. L. Sanchez-Rojas, J. I. Izpura. Trapping effects in the transient response of AlGaN/GaN HEMT devices. IEEE Transactions on Electron Devices 2007 (54):410-417.
    [9]V. Desmaris, M. Rudzinski, N. Rorsman, P. R. Hageman, P. K. Larsen, H. Zirath, T. C. Roedle, H. F. F. Jos. Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers. IEEE Transactions on Electron Devices 2006 (53): 2413-2417.
    [10]A. Koudymov, V. Adivarahan, J. Yang, G. Simin, M. A. Khan. Mechanism of current collapse removal in field-plated nitride HFETs. IEEE Electron Device Letters 2005 (26):704-706.
    [11]G Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, E. Zanoni. Surface-related drain current dispersion effects in AlGaN-GaN HEMTs. IEEE Transactions on Electron Devices 2004 (51):1554-1561.
    [12]O. Mitrofanov, M. Manfra. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices and Microstructures 2003 (34):33-53.
    [13]E. Kohn, I. Daumiller, P. Schmid, N. X. Nguyen, C. N. Nguyen. Large signal frequency dispersion of AlGaN GaN heterostructure field effect transistors. Electronics Letters 1999 (35):1022-1024.
    [14]M. Lachab, M. Sultana, H. Fatima, V. Adivarahan, Q. Fareed, M. A. Khan. Direct current performance and current collapse in AlGaN/GaN insulated gate high-electron mobility transistors on Si(111) substrate with very thin SiO2 gate dielectric. Semiconductor Science and Technology 2013 (28).
    [15]J. P. Ao, Y. Yamaoka, M. Okada, C. Y. Hu, Y. Ohno. Investigation on current collapse of AlGaN/GaN HFET by gate bias stress. Ieice Transactions on Electronics 2008 (E91C):1004-1008.
    [16]J. Tirado, J. Sanchez-Rojas, J. Izpura. Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices. Semiconductor Science and Technology 2006 (21):1150.
    [17]B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, L. F. Eastman. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT's. IEEE Electron Device Letters 2000 (21):268-270.
    [18]A. V. Vertiatchikh, L. F. Eastman. Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance. IEEE Electron Device Letters 2003 (24):535-537.
    [19]U. K. Mishra, P. Parikh, Y. F. Wu. AlGaN/GaN HEMTs-An overview of device operation and applications. Proceedings of the IEEE 2002 (90):1022-1031.
    [20]魏巍,林若兵,冯倩,郝跃.场板结构AlGaN/GaN HEMT的电流崩塌机理.物 理学报2008(57):467-471.
    [21]R. Coffie, D. Buttari, S. Heikman, S. Keller, A. Chini, L. Shen, U. K. Mishra. p-capped GaN-AlGaN-GaN high-electron mobility transistors (HEMTs). IEEE Electron Device Letters 2002 (23):588-590.
    [22]A. Brannick, N. A. Zakhleniuk, B. K. Ridley, J. R. Shealy, W. J. Schaff, L. F. Eastman. Influence of Field Plate on the Transient Operation of the AlGaN/GaN HEMT. IEEE Electron Device Letters 2009 (30):436-438.
    [23]A. Nakajima, K. Itagaki, K. Horio. Physical Mechanism of Buffer-Related Lag and Current Collapse in GaN-Based FETs and their Reduction by Introducing a Field Plate.2009 IEEE International Reliability Physics Symposium 2009 (1 and 2): 722-726.
    [24]K. Itagaki, A. Nakajima, K. Horio. Reduction of buffer-related current collapse in GaNFETs under favour of a field plate. Physica Status Solidi (c) 2008 (5): 2976-2978.
    [25]G. Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, B. Zhang. Dynamic Characterizations of AlGaN/GaN HEMTs With Field Plates Using a Double-Gate Structure. IEEE Electron Device Letters 2013 (34):217-219.
    [26]J.-G. Lee, H.-J. Lee, H.-Y. Cha, M. Lee, Y. Ryoo, K.-S. Seo, J.-K. Mun. Field Plated AlGaN/GaN-on-Si HEMTs for High Voltage Switching Applications. Journal of the Korean Physical Society 2011 (59):2297-2300.
    [27]Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, U. K. Mishra. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Letters 2006 (27):713-715.
    [28]S. Karmalkar, M. S. Shur, G. Simin, M. A. Khan. Field-plate engineering for HFETs. IEEE Transactions on Electron Devices 2005 (52):2534-2540.
    [29]S. Karmalkar, U. K. Mishra. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Transactions on Electron Devices 2001 (48):1515-1521.
    [30]J. Li, S. J. Cai, G. Z. Pan, Y. L. Chen, C. P. Wen, K. L. Wang. High breakdown voltage GaN HFET with field plate. Electronics Letters 2001 (37):196-197.
    [31]S. Karmalkar, U. K. Mishra. Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator. Solid-State Electronics 2001 (45):1645-1652.
    [32]X. Huili, Y. Dora, A. Chini, S. Heikman, S. Keller, U. K. Mishra. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Device Letters 2004 (25):161-163.
    [33]Y. F. Wu, M. Moore, T. Wisleder, P. M. Chavarkar, U. K. Mishra, P. Parikh, High-gain microwave GaN HEMTs with source-terminated field-plates. Electron Devices Meeting,2004. IEDM Technical Digest. IEEE International:1078-1079.
    [34]S. Xie, J. Yin, S. Zhang, B. Liu, W. Zhou, Z. Feng. Trap behaviors in AlGaN-GaN heterostructures by C-V characterization. Solid-State Electronics 2009 (53): 1183-1185.
    [35]J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, U. K. Mishra. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Applied Physics Letters 2000 (77):250-252.
    [36]H. Hasegawa, T. Inagaki, S. Ootomo, T. Hashizume. Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors. Journal of Vacuum Science & Technology B:2003 (21):1844-1855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700