用户名: 密码: 验证码:
近红外无创生化分析中快速高信噪比光谱信号检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血液中生化成分的含量直接反映了人体的健康状况。目前,临床上常规的检验方法多属于有创或微创,不仅存在交叉感染的隐患,而且需要试剂进行离体分析,很难实现在线实时监测。因此,无创生化检验一直是国内外学者研究的热点之一。近红外光谱分析技术具有无创伤、无试剂、无污染、可实时监测等优点,在无创生化分析领域具有很高的研究价值和广阔的前景。但是由于血液中生化成分的含量较低,且组织背景干扰严重,使得近红外无创生化分析技术至今尚未达到临床应用的水平。
     为了消除人体复杂的组织背景干扰,本课题组提出血流容积光谱相减法。利用短时间内不同血流容积下测得的光谱相减,从而得到血液光谱。但是光谱相减法的实现对容积脉搏波信号的采集速度和信噪比要求很高,而现今市面上近红外光谱仪器的性能指标尚未达到要求,因此需要研究快速高信噪比的容积脉搏波采集方法,进而提高仪器的性能。
     本文围绕近红外无创生化分析中快速高信噪比光谱信号的采集方法展开研究。主要包括快速高信噪比容积脉搏波信号采集系统的设计和容积脉搏波信号降噪处理的研究。具体研究内容和主要结论如下:
     1)针对近红外无创生化采集系统中快速、高信噪比的要求,不同工作方式的InGaAs探测器各有特点。分别针对单元式、多元阵列式和多元分立式铟镓砷探测器设计近红外容积脉搏波采集系统。每套系统包括前置放大电路和数据采集电路两部分。
     2)通过对三套近红外容积脉搏波采集系统性能的测试,分析各自的优缺点,研制出符合人体无创生化检测要求的系统。实验测得,单元式容积脉搏波采集系统的信噪比约为28000:1,暗噪声为20左右。虽然单元式采集系统具有较高的信噪比,但只能通过扫描的方式获得光谱,不仅限制了采集速度,而且由于血液的流动性,也很难保证所采集光谱的准确性。多元阵列式容积脉搏波采集系统采用256元铟镓砷探测器G9211,可同时采集256个波长的信号,采集速度快,但实测信噪比平均为7000:1,不能满足无创生化分析的要求。多元分立式容积脉搏波采集系统采用16元铟镓砷探测器G7150,可同时采集16个波长的信号,每秒钟最多采集50幅光谱,信噪比达到13000:1,暗噪声为40左右。综合考虑,16元分立式容积脉搏波采集系统最接近人体无创生化检测的要求。
     3)利用16元分立式容积脉搏波采集电路搭建的近红外无创生化检测系统完成临床实验。通过采集不同年龄、不同性别的81名志愿者食指指端容积脉搏波信号,建立定标模型,预测血液中红细胞比容和血红蛋白浓度,预测相关系数分别为0.81和0.73,预测标准差分别为1.82%和14.53g·L-1。
     4)深入研究容积脉搏波信号降噪处理的现状,提出一种基于自适应滤波的脉搏波信号降噪处理方法。利用该方法处理临床采集的容积脉搏波信号,结果表明,采用处理后的信号重新建立定标模型,红细胞比容和血红蛋白的预测相关系数分别提升至0.87和0.83,预测标准差分别提升至1.89%和9.16g·L-1。
     本文深入研究了近红外无创生化分析中快速高信噪比信号的检测技术,并成功研制出一套快速高信噪比的近红外容积脉搏波采集系统,为实现近红外无创生化检测技术的临床应用奠定了理论和实验基础。
The blood biochemical composition directly reflects the health condition of body.Currently, routine clinical testing methods are almost invasive or minimally invasive.Not only existing the hidden dangers of cross-infection, but also needing reagents forin vitro analysis that is difficult to realize online monitoring. So non-invasivebiochemical monitoring has been one of the hotspots by domestic and foreign scholars.Near-infrared absorption spectroscopy (NIRS) technique is invasive, reagent-free, nopollution and has online monitoring, which has a high research value and broadprospects in the field of non-invasive biochemical analysis. However, near-infrarednon-invasive biochemical analysis technology has not reached level of clinicalbecause of the less biochemical components in blood and serious tissue backgroundinterference.
     In order to eliminate human tissue background interferences,“Blood VolumeSpectral Subtraction Method” was proposed. By subtracting two blood spectrameasured in a row within an extremely short time period, effective blood spectra canbe acquired. However, a more quickly speed and higher signal-to-noise ratio (SNR) ofpulse wave signals collecting were needed for “Blood Volume Spectral Subtraction Method”, the performance of near-infrared spectroscopy instruments in the marketcan’t meet those requirements. So it is necessary to research a rapid and high SNRmethod for volume pulse wave acquisition, in order to improve the performance ofinstrument.
     This paper focuses on the acquisition method for fast and high SNR spectra in thearea of near-infrared noninvasive biochemical analysis. The hardware circuit designof fast and high SNR acquisition system for volume pulse wave signal and the noisereduction processing of volume pulse wave were mainly included in this research. Thedetails and main conclusions of this research were as follows:
     1) Based on the requirement of fast and high SNR acquisition system fornear-infrared non-invasive biochemical analysis, detectors with different workingstyles have different characteristics. The near-infrared acquisition systems for volumepulse waves were designed according to each styles of InGaAs detectors of unit type,multi-array type and multiple discrete type. A preamplifier circuit and data acquisitioncircuit were contained of each system.
     2) The performances of three near-infrared volume pulse wave acquisitionsystems were tested, and the advantages and disadvantages of three systems wereanalyzed. Then the system which most satisfied the requirements of near-infrarednon-invasive biochemical monitoring was selected. It was proved by relatedexperiments that the SNR of unit style volume pulse wave acquisition system wasabout28000:1, and the dark noise was about20μV. Although the unit style systemhad a higher SNR, the spectrum was obtained only by scanning. Not only theacquisition speed was limited, but also it was very difficult to ensure the accuracy ofspectrum that was due to the blood fluidity.256pixels InGaAs detector G9211wasused in multi-array volume pulse wave acquisition system, which can collect256signals at different wavelength simultaneously with a fast speed. But the average SNRof this system was7000:1, which can’t meet the requirements of non-invasivebiochemical analysis.16pixels InGaAs detector G7150was used in multiple discretevolume pulse wave acquisition system, which can collect16signals at different wavelength simultaneously. About50spectra can be captured per second at most. TheSNR of this system can reach13000:1, and dark noise was about43μV. In summerconsidered, the volume pulse wave acquisition system of16pixels discrete style wasthe best system for near-infrared non-invasive biochemical analysis.
     3) Clinical experiment was completed by using the volume pulse waveacquisition system of16pixels discrete style. Eighty-one fingertip absorption curvesof different ages and gentles were collected, and concentrations of hematocrit andhemoglobin were predicted by establishing calibration model. The correlationcoefficients of hematocrit and hemoglobin can reach0.81and0.73relatively, with theRMSEP being1.82%and14.53g·L-1.
     4) A noise reduction processing method for pulse wave signal based on adaptivefilter was proposed by researching reduction processing of pulse wave signal noisedeeply. It was shown that the correlation coefficients of hematocrit and hemoglobinwere up to0.87and0.83relatively, with the RMSEP being1.89%and9.16g·L-1byusing the pulse wave signal after processing.
     This paper focused on the key problems of monitoring fast and high SNR signalfor near-infrared non-invasive biochemical analysis. And a fast and high SNRacquisition system of near-infrared volume pulse wave was explored. The researchesof this paper provide both theoretical and experimental basis of the clinicalapplication of NIRS non-invasive biochemical monitoring method.
引文
[1]李晓霞.人体血液成分无创检测的动态光谱理论分析及实验研究[D]:[博士学位论文].天津:天津大学,2005
    [2]郭小兵,苟建军,张贵星.临床常用检验项目解析[M].郑州:郑州大学出版社,2008.65-153
    [3]高洪智.近红外无创生化检测中不同光程的光谱等效性及校正模型研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [4]丁海泉.无创血糖检测中的近红外血流容积光谱基本问题研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010
    [5]刘蓉.近红外无创血糖测量一信号构成和拾取的理论及实验研究[D]:天津:[博士学位论文].天津大学,2006
    [6] Arnold M A,Small G W.Noninvasive glucose sensing [J].Analytical Chemistry,2005,77(17):5429-5439
    [7] Bednov A A,Karabutov A A,Savateeva E V,et al.Monitoring glucose in vivoby measuring laser-induced acoustic profilees [J].Proceedings of SPIE,2000,3916:9-18
    [8]罗云瀚.近红外无创伤血糖浓度测量方法的组织光学基础及应用研究[D]:[博士学位论文].天津:天津大学,2006
    [9]包磊.2型糖尿病现状及其危险因素的探讨[D]:[硕士学位论文].南京:南京医科大学,2012
    [10]杨文英等.中国人的糖尿病患病率[J].新英格兰医学杂志,2010,362:1090-1102
    [11]胡盛寿,孔灵芝主编.中国心血管报告2010[M].北京:中国大百科全书出版社,2011.46-48
    [12]梁旭燕,张凤秋.高血脂症的危害和治疗[J].中国疗养医学,2007,16(1):19-20
    [13]苏蓉,于德水.高脂血症的危害及防治[J].中国当代医药,2009,16(8):128-129
    [14]赵显峰,荫士安.测定血红蛋白含量的两种方法[J].卫生研究,2003,32(5):495-497
    [15]Kapoor SK,Kapil U,Dwivedi SN,et al.Comparison of hemocue method withcyanmethemoglobin method for estimation of hemoglobin [J].Indian Pediatrics,2002,39:743-746
    [16]Jeffrey W Hall,Alan Pollard.Near-infrared spectroscopic determination of serumtotal proteins albumin,globulins,and urea [J].Clin Biochem,1993,26(6):483-490
    [17]陈星旦,高静,丁海泉.论无创血糖监测的红外光谱方法[J].中国光学,2012,5(4):317-326
    [18]W. Herschel.Investigation of the powers of the prismatic colours to heat andilluminate objects,with remarks that prove the different refrangibility of radiantheat.To which is added an inquiry into the method of viewing the sun advantageouslywith telescopes of large apertures and high magnifying powers [J].PhilosophicalTransactions,1800,90:255-326
    [19]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2007.306-333
    [20]褚小立.化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社,2011.41-76,290-302
    [21]卢启鹏,丁海泉.人参成分的近红外光谱定量分析[J].光谱仪器与分析,2009,Z1:181-184
    [22]赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,26(1):136~140
    [23]K. Norris.Possible medical applications of NIR [M].Making light work:Advances in near infrared spectroscopy.UK:Ian Michael Publication,1992.596-602
    [24]陈斌,李军会,臧鹏,等.六味地黄丸指纹图谱的近红外光谱分析方法的建立[J].光谱学与光谱分析,2010,30(8):2124-2128
    [25]青柳卓雄.血氧浓度的光学测定现状[J].国外医学生物医学工程分册,1991,14(2):88-93
    [26]W. Kaye.Theory and principles of near infrared spectroscopy [J].SpectrochinAcat,1955,7:181
    [27]M Kathlen.Near Infrared Spectroscopy:The Future Waves [M].NIR Publications,1996.328-333
    [28]G Abraham,P Gabor,A.C. Sidney.Near Infrared Spectroscopy:The FutureWaves [M].NIR Publications,1996,323-327
    [29]肖武,李小昱,李培武,雷廷武,王为.基于近红外光谱土壤水分检测模型的适应性[J].农业工程学报,2009,25(03):21-22
    [30]丁海泉,卢启鹏,朴仁官,等.土壤有机质近红外光谱分析组合波长的优选[J].光学精密工程,2007,15(12):1946-1951
    [31]曹璞,潘涛,陈星旦.小型近红外玉米蛋白质成分分析仪器设计的波段选择[J].光学精密工程,2007,15(12):1952-1959
    [32]刘洪欣,张军,黄富荣,等.近红外光谱快速测定啤酒的主要品质参数[J].光谱学与光谱分析,2008,28(2):313-316
    [33]刘福莉,王志岚,郑驰原,等.食用调和油中花生油含量的近红外光谱分析[J].激光生物学报,2007,16(6):759-762
    [34]陈华才,吕进,陈星旦,等.基于径向基函数网络的茶多酚总儿茶素近红外光谱检测模型的研究[J].光学精密工程,2006,14(1):58-62
    [35]谢慧君,甘勇,陈庆华.近红外光谱分析技术在制剂领域中的应用[J].中国药学杂志,2009,44(02):87-91
    [36]鲍峰伟,刘景艳。近红外光谱分析技术在石油化工中的应用[J].贵州化工,2006,31(6):34-36
    [37]侯少瑞,冯艳春,胡昌勤.近红外光谱法快速分析注射用头孢曲松钠及其水分的含量[J].药物分析杂志,2008,28(6):936-941
    [38]胡愉华,潘涛,陈星旦,等.甘蔗初压汁锤度近红外光谱分析的波段优选[J].光谱实验室,2009,26(1):90-95
    [39]黄富荣,张军,罗云瀚,等.近红外光谱快速检测丙氨酸氨基转移酶[J].光谱学与光谱分析,2010,30(10):2620-2623
    [40]赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,26(1):136-140
    [41]黄富荣,潘涛,张甘霖,等.应用近红外漫反射光谱快速测定土壤锌含量[J].光学精密工程,2010,18(3):586-592
    [42]高建树,韩仁义,于之靖,等.复合材料结构机翼表面残冰的近红外多光谱检测[J].光学精密工程,2011,19(6):1250-1255
    [43]孙光明,刘飞,张帆,等.基于近红外光谱技术检测除草剂胁迫下油菜叶中脯氨酸含量的方法[J].光学学报,2010,30(4):1192-1193
    [44]李刚,赵静,李家星,等.可见-近红外反射光谱用于疾病快速筛查[J].光学学报,2011,31(3):0317001-1-0317001-6
    [45]李宽正,杨天明,钱志余,戴丽娟,李荣.近红外光谱活体在位测量C6荷瘤鼠脑局部血氧饱和度[J].临床神经外科杂志,2007,4(04):145-147
    [46]Pemberton J E,Chamberlain J R.Raman spectroscopy of model membranemonolayers of dipalmitoylphosphatidic acid at the air-water interface using surfaceenhancement from buoyant thin silver films [J].BIOPOLYMERS,2000,57(2):103-116
    [47]Erome J W J.Reviews of Process and Non-invasive Near-Infrared and InfraredSpectroscopy (1993-1999)[J].Applied Spectroscopy Reviews,1999,56(34):1-89
    [48]J R Hart,K H Norris,C Golumbic.Determination of the moisture content ofseeds by near-infrared spectrophotometry of their methanol extracts [J].Cereal Chem,1962,39:94-99
    [49]D R Massie,K H Norris.The spectral reflectance and properties of grain in thevisible and near infrared [J].Trans Am Soc Eng,1965,8:598-599
    [50]梁家杰,潘涛,陈星旦,等.白砂糖色值近红外光谱分析的波段选择[J].红外技术,2009,31(2):90-94
    [51]于海燕.黄酒品质与酒龄的近红外光谱分析方法研究[D]:[博士学位论文].浙江:浙江大学,2007
    [52]成忠,张立庆,刘赫扬,等.连续投影算法及其在小麦近红外光谱波长选择中的应用[J].光谱学与光谱分析,2010,30,(4):949-952
    [53]Y J Kim,S Hahn,G Yoon.Determination of glucose in whole blood samples bymid-infrared spectroscopy [J].Applied Optics,2003,42(4):745-749
    [54]J S Kanger.Non-invasive detection of glucose using Raman spectroscopy
    [C].Proc.SPIE,1999,3570:123-129
    [55]A J Berger,T W Koo,I Itzkan,et al.Multicomponent blood analysis bynear-infrared Raman spectroscopy [J].Applied Otics,1999,38(13):2916-2926
    [56]B D Cameron,H Gorde,G L Cote.Development of an optical polarimeter for invivo glucose monitoring [J].Proc.SPIE,1999,3599:43-49
    [57]G L Cote,B D Cameron.Noninvasive polarimertic measurement of glucose incell culture media [J].J.Biomed.Opt.,1997,2(3):275-281
    [58]J T Bruulsema,J E Hayward,T J Farrell,et al.Correlation between blood glucoseconcentration in diabetics and noninvasively measured tissue optical scatteringcoefficient [J].Potics Letters,1997,22(3):190-192
    [59]A A Bednov,A A Karabutov,E V Savateeva,et al.Monitoring glucose in vivoby measuring laser-induced acoustic profiles [J].Proc.SPIE,2000,3916:9-18
    [60]F F Jobsis.Noninvasive infrared monitoring of cerebral and myocardial oxygensufficiency and circulatory parameters [J].Science,1977:1264-1267
    [61]C C Piantadosi,T M Hemstreet,F F Jobsis.Near infrared spectrophotometricmonitoring of oxygen distribution to intact brain and skeletal muscle tissue[J].Critical Care Med,1986,14(8):698-706
    [62]J E Brazy,D V Lewis,M H Mitnick,et al.Noninvasive monitoring of cerebraloxygenation in preterm infants [M].:Preliminary observations Paediatrics1985,75(2):217-225
    [63]E Fox,F F Jobsis,M H Mitnick.Monitoring cerebral oxygen sufficiency inanaesthesia and surgery [J].Adu Exp Med Biol,1984:9-54
    [64]O Hazeki,M Tamura.Quantitative analysis of hemoglobin state of rat brain bynear-infrared spectroscopy [J].J.Biochem,1988,103:796-802
    [65]M Cope,M Essenpreis,S R Arridge,et al.Methods of uantitating near-infraredspectroscopy data [J].Pro.SPIE,1991,1431:107-126
    [66]K Yamamoto,M Niwayama,L Lin,et al.Influence of ubcutaneous fat layer onmuscle oxygenation measurement using NIRS [J]. Selected Proceedings fromInternational Symposium on Non-invasive Optics Diagnosis,1996:7-45
    [67]C. Dahne, D. Gross. Spectrophotometric method and apparatus for thenon-invasive determination of glucose in body tissues [P].USP4655225,1987.
    [68]K. Norris.Possible medical applications of NIR [M].Making light work:Advances in near infrared spectroscopy.UK:Ian Michael Publication,1992.596-602
    [69]A K Amerov,J Chen,M A Arnold.Molar absorptivities of glucose and otherbiological molecules in aqueous solutions over the first overtone and combinationregions of the near-infrared spectrum [J].Applied spectroscopy,2004,58(10):1195-1204
    [70]K H Hazen,M A Arnold,G W Small.Measurement of glucose in water withfirst-overtone near-infrared spectra [J].Applied spectroscopy,1998,52(12):1597-1605
    [71]K H Hazen,M A Arnold,G W Small.Measurement of glucose and other analytesin undiluted human serum with near-infrared transmission spectroscopy [J].AnalyticaChimica Acta,1998,371(2-3):255-267
    [72]J T Olesberg,L Z Liu,V Zee Van,et al.In vivo near-infrared spectroscopy ofrat skin tissue with varying blood glucose levels [C].Conference on Optical andDiagnostics and Sensing IV,2004,Optical Diagnostics and Sensing IV:11-20
    [73]M R Robinsin,R P Eaton,D M Haaland,et al.Noninvasive glucose monitoringin diabetic patients:a preliminary evaluation [J].Clin Chem,1992,38:1618-1622
    [74]R D Rosenthal.A portable non-invasive blood glucose meter [C].Oak-RidgeConference,1993,312A:1244
    [75]M S Borchert,M C Storrie-Lombardi,J L Lambert.A non-invasive glucosemonitor:preliminary results in rabbits [J].Diabetes Technology&Therapeutics,1999,1(2):145-151
    [76]S F Malin,T L Ruchti,T B Blank,et al.Non-invasive prediction of glucose bynear-infrared diffuse reflectance spectroscopy [J].Clinical Chemistry,1999,45:1651-1658
    [77]Peters,K Richard,Elmerick.Non-invasive glucose measuring device and methodfor measuring blood glucose,USP5,1999,910:109
    [78]V Saptari. A spectroscopic system for near infrared glucose measurement[D].Doctor ate dissertation,Mechanical Engineering,Massachusetts Institute ofTechnology.2004:58-65
    [79]V Saptari,K Youcef-Toumi.Design of a mechanical-tunable filter spectrometerfor noninvasive glucose measurement [J].Applied Optics,2004,43(13):2680-2688
    [80]Schrader.Wolfgang,Meuer.Petra,et al.Non-invasive glucose determinationin the human eye [J].Journal of Molecular Structure,2005,735-736:299-306
    [81]J H Jiang,R J Berry,H W Siesler,et al.Wavelength interval selection inmulticomponent spectral analysis by moving widow partial least-squares regressionwith applications to mid-infrared and near-infrared spectroscopic data [J].AnalyticalChemistry,2002,74:3555-3565
    [82]H.M. Heise,A. Bittner,Th. Koschinsky,et al.Ex-vivo determination of bloodglucose by microdialysis in combination with infrared attenuated total reflectionspectroscopy [J].Fresenius,Journal of Analytical Chemistry,1997,359:83-87
    [83]K Murayama,K Yamada,R Tsenkova,et al.Near-infrared spectra of serumalbumin and g-globulin and determination of their concentrations in phosphate buffersolutions by partial least squares regression [J].Vibrational Spectroscopy,1998,18:33-40
    [84]J.T. Kuenstner,K.H. Norris.Near infrared hemoglobinometry [J].Near InfraredSpectroscopy,1995,3:11-18
    [85]Martin P. Debreczeny,Paul Stetson,Clark Baker.Feasibility assessment ofoptical non-invasive total hemoglobin measurement.Proceedings of SPIE,4965,2003:122-133
    [86]黄岚,丁海曙,王广志.用近红外漫反射光谱无损检测血糖的初步研究[J].光谱学与光谱分析,2002,22(3):387-391
    [87]陈华才,杨仲国,李慧英,等.人血清中胆固醇近红外光谱快速检测初步研究[J].激光生物学报,2004,13(6):629-432
    [88]陈星旦.近红外光谱无创生化检验的可能性[J].光学精密工程,2008,16(5):759-763
    [89]丁海泉,卢启鹏,王动民等.近红外光谱无创血糖检测中有效信号提取方法的研究[J].光谱学与光谱分析,2010,30(1):50-53
    [90]W Abney,E R Festing.Near-infrared spectral of organic [J].Philoa Trans R Soc,1881(172):887
    [91]W Kaye.Near infrared spectroscopy:Spectra identification and analyticalapplications [J].Spectrochim Acta,1954(6):257
    [92]W Kaye.Near infrared spectroscopy:Spectra in di-and tri-atomic molecules[J].Spectrochim Acta,1955(7):181
    [93]J R Hart,K H Norris,C Golumbic.Determination of the moisture content ofseeds by near-infrared spectrophotometry of their methanol extracts [J].Cereal Chem,1962(39):94-99
    [94]L G Weger.Near-infrared spectroscopy of organic substance [J].AppliedSpectroscopy Review,1985(21):1
    [95]D R Massie,K H Norris.The spectral reflectance and properties of grain in thevisible and near infrared [J].Trans Am Soc Agric Eng,1965(8):598
    [96]范世福.现代分析仪器发展的前沿技术和新思想[J].现代科学仪器,2000,3
    [97]楮小立,王艳斌,陆婉珍.近红外光谱仪国内外现状与展望[J].2007,4:1-4
    [98]楮小立,袁洪福,陆婉珍.光谱多元校正中的模型传递[J].光谱学与光谱分析,2001,21(6):881-885
    [99]李庆波.近红外光谱分析中若干关键技术的研究[D].[博士学位论文].天津:天津大学,2002
    [100]刘俊,张斌珍.微弱信号检测技术[M].北京:电子工业出版社,2005
    [101] Hamamatsu Corporation.G9211-256S datasheet.[EB/OL].http://jp.hamamatsu.com/resources/products/ssd/pdf/g9211-256s_etc_kmir1011e06.pdp,2008
    [102] Hamamatsu Corporation.C8061-01datasheet.[EB/OL].http://jp.hamamatsu.com/resources/products/ssd/pdf/c8061_8062-01_kacc1089e07.pdf,2008
    [103]黄常钊.阵列式近红外光谱信号获取技术研究[D].[硕士学位论文].广州:暨南大学,2011
    [104]杨皓旻.仪器条件对近红外光谱无创生化检测影响的研究[D].[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [105] M. Bacci,R. Chiari,S. Porcinai,et al.Principal component analysis ofnear-infrared spectra of alteration products in calcareous samples: an application toworks of art [J].Chemometrics and Intelligent Laboratory Systems,1997,39(1):115-121
    [106]齐小明,张录达,杜晓林,等.PLS-BP法近红外光谱定量分析研究[J].光谱学与光谱分析,2003,23(5):870-872
    [107]吴晓栋.基于BP神经网络的脉搏波信号的辨识研究[D]:[硕士学位论文].太原:太原理工大学,2010.
    [108]张彬,张业宏,李明彩.小波变换与形态学运算相结合的脉搏波检测算法[J].电子测量技术,2011,34(6):23-25
    [109]王智,殷奎喜,赵华,等.基于小波变换实现脉搏信号降噪处理[J].通信技术,2011,44(5):151-153
    [110] LEE T W.Independent component analysis—Theory and applications [M].Kluwer Academic Publishers,1998.
    [111] GIROLAMI M.Self—Organising neural networks—Independent componentanalysis and blind source separation [M]. Atheneum Press Ltd,1999.
    [112]姜印平,李艳文.基于提升方法的脉搏波信号处理[J].计算机仿真,2006,23(7):98-100
    [113]刘艳丽.基于形态滤波的人体脉搏信号去噪处理[J].安徽建筑工业学院学报,2010,18(5):78-81
    [114] CHARLES F P.An analysis of Kalman filtering model errors [J]. IEEE TransAutomatic Control,1968:699-702
    [115] KALMAN.A new approach to linear filtering and prediction problems [J].Transactions of the ASME—Journal of Basic Engineering,1960,82:35-45
    [116]王宏志,赵心文,史东承.离散系统的自适应滤波[J].吉林工学院学报,1995,16(4):52-56
    [117]王兆源,周龙旗.一种基于自适应的脑电滤波技术[J].中国医学物理学杂志,1999,16(4):237-238
    [118] B. Widrow,J. R. Glover,J. M. McCool.Adaptive noise canceling: principlesand application [J].Proc. IEEE.,1975,63:1692-1716
    [119] R. Kalman.A new approach to linear filtering and prediction problems[J].Trans. ASME, J. Basic Eng.,1960,82:35-45
    [120] S. Haykin.Adaptive filter theory [M].Prentice Hall,Upper Saddle River,2001
    [121] L. Meltem,C. Prabhakar,B. Scott,O. Banu. Motion artifact cancellationin NIR spectroscopy using discrete kalman filtering [J].Biomed Eng. Online,2010,9:16-26
    [122]陈丛,卢启鹏,彭忠琦.基于NLMS自适应滤波的近红外光谱去噪处理方法研究[J].光学学报,2012,32(5):0530001-1-0530001-6
    [123]卢启鹏,陈丛,彭忠琦.自适应滤波再近红外无创生化分析中的应用[J].光学精密工程,2012,20(4):873-879
    [124] Kalman.A new approach to linear filtering and prediction problems[J].Transactions of the ASME-Journal of Basic Engineering,1960,82:35-45
    [125]黎旭,孙静.基于LMS自适应滤波的噪声抵消[J].云南民族学院学报,2000,9(3):134-136
    [126]唐建锋.基于多尺度小波变换的LMS自适应滤波算法研究与实现[D]:
    [硕士学位论文].长沙:国防科技大学,2008.
    [127]孙静,陶智,顾济华,赵鹤鸣.基于LMS自适应滤波的耳语音增强的研究[J].通信技术,2007,40(12):394-396
    [128]王瑾,黄德修,元秀华.基于最小均方自适应滤波器的无线光通信接收性能分析[J].中国激光,2006,33(10):1379-1383
    [129] Q. Zhang,E. N. Brown,G. E. Strangman.Adaptive filtering to reduce globalinterference in evoked brain activity detection: A human subject case study [J].J.Biomed. Opt.,2007,12(6):064009-1-064009-12
    [130] Q. Zhang,E. N. Brown,G. E. Strangman.Adaptive filtering for globalinterference cancellation and real-time recovery of evoked brain activity: A MonteCarlo simulation study [J].J. Biomed. Opt.,2007,12(4):044014-1-044014-12
    [131] Q. Zhang,G. E. Strangman,G. Ganis.Adaptive filtering to reduce globalinterference in non-invasive NIRS measures of brain activation: How well and whendoes it wirk?[J].NeuroImage,2009,45(3):788-794
    [132]邓江波,侯新国.一种新的变步长LMS自适应算法及其性能分析[J].电声技术,2004,12(4):4-6
    [133]王蕴红,刘国岁.LMS算法中稳态均方误差的研究[J].南京理工大学学报,1996,20(5):469-472
    [134] Y. G. Zhang,N. Li,Jonathon A. C.Steady-state performance analysis of avariable tap-length LMS algorithm [J].IEEE Trans. Signal Process.,2008,56:839-845
    [135] R. H. Kwong,E. W. Johnson.A variable step size LMS algorithm [J].IEEETrans. Signal Processing.,1992,40:1633-1642,
    [136] T. Aboulnasr,K. Mayyas.A robust variable step-size LMS-type algorithm:analysis and simulations [J].IEEE Trans. Signal Process.,1997,45:631-639
    [137] A. Mader,H. Puder,G. U. Schmidt.Step-size control for acoustic echocancellation filters: an overview [J].Signal Process.,2000,80:1697-1719
    [138] S. C. Douglas,T. H.-Y. Meng.Normalized data nonlinearities for LMSadaption [J].IEEE Trans. Acoust. Speech Signal Processing,1994,42(6):1352-1363
    [139] S. C. Douglas.A family of normalized LMS algorithms [J].IEEE SignalProcess. Lett.,1994,1:1352-1365
    [140] S. C. Dougles,T. H.–Y. Meng.An optimum NLMS algorithm: Performanceimprovement over LMS [C].Proc. Int. Conf. Acoust.Speech,Signal Processing,Toronto,Canada,1991:2125-2125
    [141] E. Eweda.Analysis and design of a signed regressor LMS algorithm forstationary and nonstationary adaptive filtering with correlated Gaussian data [J].IEEETrans. Circuits Syst.,1990,37(11):1367-1374
    [142] S. Koike.Analysis of adaptive filters using normalized signed regressor LMSalgorithm [J].IEEE Trans. Signal Process.,1999,47(10):2710-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700