用户名: 密码: 验证码:
化合物RY10-4部分作用机制及抗肿瘤活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要对新型特异性抗肿瘤化合物RY10-4的部分作用机制及其抗肿瘤活性进行了研究,主要内容分为两部分:第一部分研究了RY10-4诱导人乳腺癌MCF-7细胞自噬性死亡的作用及其影响的相关信号传导通路,同时将RY10-4与原芹菜素在自噬缺陷的乳腺癌MCF-7细胞系中诱导细胞自噬活性的差异进行了对比,探讨RY10-4抗乳腺癌作用的潜在机制及其抗乳腺癌作用优于原芹菜素的可能原因;第二部分主要研究了RY10-4体外和体内抑制人肝癌HepG2细胞增殖的作用,探讨其体内外抗肝癌的活性,并对其抗肝癌活性相关的作用机制进行了初步研究。
     第一部分:RY10-4诱导乳腺癌细胞系MCF-7自噬性细胞死亡作用的研究
     目的:鉴于原芹菜素类似物RY10-4表现出更好的体外抗肿瘤作用及较低的体内不良反应,本部分探讨其可能的作用机制。研究RY10-4诱导人乳腺癌MCF-7细胞自噬的活性,并与原芹菜素的作用进行比较;另外,进一步研究RY10-4诱导的自噬活性在抑制肿瘤细胞增殖中的作用以及相关的信号传导通路。
     方法:通过免疫荧光法检测细胞内LC3B蛋白的表达和分布、MDC染色法、Western Blot法检测LC3B和p62蛋白的表达以及电子显微镜对细胞超微结构的分析,综合判断RY10-4与原芹菜素是否诱导MCF-7细胞自噬的发生;通过应用自噬抑制剂和干扰自噬相关基因的表达对RY10-4诱导的自噬活性在细胞死亡中的作用进行研究;通过Western Blot检测相关通路蛋白的表达水平研究RY10-4诱导自噬所涉及的信号通路。
     结果:RY10-4可诱导MCF-7细胞自噬的发生,而原芹菜素没有这方面的作用;自噬抑制剂3-MA或干扰自噬相关基因ATG7的表达抑制细胞自噬活性后,RY10-4处理后细胞的存活率显著提高;另外,RY10-4处理后细胞磷酸化mTOR和p70S6K的表达呈浓度依赖性的降低,磷酸化Akt的表达呈浓度和时间依赖的降低,而AMPK的活性基本无变化。
     结论:RY10-4通过Akt/mTOR通路抑制mTOR信号而诱导MCF-7细胞的自噬,并作为一种抑制肿瘤细胞增殖作用的机制,促进了肿瘤细胞的死亡。
     第二部分:RY10-4体外和体内抗肝癌作用的研究
     目的:研究RY10-4体外和体内抑制人肝癌HepG2细胞增殖的作用,探讨RY10-4体内外抗肝癌的活性,并对其抗肝癌活性的相关作用机制进行研究。
     方法:通过SRB染色法、贴壁集落形成试验研究RY10-4抑制HepG2细胞体外增殖的作用;通过PI染色法流式细胞仪分析RY10-4细胞周期阻滞作用;Hoechst33342荧光染色法、Annexin V/PI双染法流式细胞仪检测对RY10-4诱导细胞凋亡的作用进行研究;应用活性氧检测试剂盒及线粒体膜电位检测试剂盒研究RY10-4诱导活性氧生成和线粒体膜电位的变化,并使用抗氧化剂NAC进行验证;以人肝癌HepG2细胞裸小鼠异种移植瘤模型评价RY10-4的体内抗肝癌活性。
     结果:RY10-4显著抑制HepG2细胞体外的增殖活性,减少其体外的克隆形成率;RY10-4处理后细胞的S期和G2/M期细胞比率明显增加,出现明显的凋亡细胞的形态特征,凋亡细胞比率显著增高;RY10-4可诱导细胞活性氧的生成,降低线粒体膜电位,NAC能抑制RY10-4的上述作用;RY10-4显著抑制荷瘤裸鼠HepG2移植瘤的生长,且对动物的血液和肝肾功能无明显影响。
     结论:RY10-4具有良好的体外和体内的抗肝癌活性,其可能的作用机制包括:RY10-4可以阻滞细胞周期的进程;RY10-4通过增加细胞内ROS的生成,引起细胞线粒体膜电位的降低,进而诱导细胞的凋亡。
The partial mechanism and anti-tumor activity of the novel compound RY10-4which have a specific anti-tumor effect were studied in this dissertation, and the main content was divided into two parts. In the first part, we studied the effect and related signal pathway of RY10-4-induced autophagic cell death in human breast cancer MCF-7cell line. And we also compared the difference between RY10-4and protoapigenone in the induction of autophagy in autophagy defect breast cancer MCF-7cell line, explored new insights for the potential mechanism of RY10-4induced cell death and the cause of RY10-4showing better antitumor activity than protoapigenone. In the second part, we studied the effects of RY10-4against human hepatocellular carcinoma HepG2cells in vitro and in vivo, and explored some related and potential mechanism of the antitumor activity of RY10-4against liver cancer.
     FART I:Study on the effect of RY10-4induced autophaic cell death in breast cancer MCF-7cell line
     Objective: In consideration of the protoapigenone analog RY10-4showing better antitumor activity in vitro and lower side effects in vivo, the potential mechanism was explored here. The activity of RY10-4induced autophagy in human breast cancer MCF-7cell was studied, and compared it with the effect of protoapigenone. We also discussed the role of RY10-4induced autophagy in cell death and the related signaling pathways in the further researches.
     Methods:Employing immunofluorescence assay for microtubule-associated protein light-chain3(LC3B), monodansylcadaverine staining, western blot analyses for LC3B and p62as well as ultrastructural analysis by transmission electron microscopy, to observe whether RY10-4or protoapigenone induced autophagy in MCF-7cells. For exploring the role of RY10-4induced autophagy in cell death, inhibitions of autophagy by pharmacological and genetic approaches were performed. Moreover, the signaling pathways involved in RY10-4induced autophagy were studied through detecting the expressing of some related signal proteins by Western blot.
     Results:RY10-4could induce autophagy in MCF-7cells, but protoapigenone could not. When the autophagy activity was inhibited by autophagy inhibitor3-MA or siRNA specific for autophagic-related gene ATG7, the viability of MCF-7cells exposed to RY10-4significantly increased. In addition, the expression of phosphorylated-mTOR (p-mTOR) and p-p70S6K decreased in a concentration-dependent manner, the expression of p-Akt decreased in both concentration and time-dependent manners, while the activity of AMPK did not alter. Conclusion:RY10-4inhibited mTOR signal and induced autophagy in MCF-7cells via Akt/mTOR pathway, and the induction of autophagy enhanced RY10-4induced antitumor effect, promoted the cell death of tumor cells.
     PART Ⅱ:Study on the antitumor activity of RY10-4against liver cancer in vitro and in vivo
     Objective:To study the cell proliferation inhibition of RY10-4on hepatocellular carcinoma HepG2cells in vitro and in vivo, and to determine the biological activity and the underlying mechanisms of RY10-4on hepatocellular carcinoma cancer cells by using in vitro and in vivo experimental models.
     Methods:Sulforhodamine B (SRB) assay and clonogenicity assay were performed to determine the antiproliferation of RY10-4on hepatocellular carcinoma HepG2cells in vitro. Flow cytometry assay with propidium iodide (PI) staining was used to determine the effect of RY10-4on cell cycle distribution. Fluorescent staining with Hoechst33342and flow cytometry assay with Annexin V/PI staining were performed to evaluate the effect of RY10-4on the induction of apoptosis. Reactive oxygen species (ROS) assay kit and mitochondrial membrane potential (MMP) assay kit with JC-1were used to detect the ROS generation and changes in MMP induced by RY10-4, and these effects of RY10-4were confirmed by using the antioxidant NAC. Furthermore, the human hepatocellular tumor xenograft model established with HepG2cell line was used to investigate the antitumor activity of RY10-4in vivo.
     Results:The viability of HepG2cells in vitro significantly decreased after the treatment of RY10-4, and a concentration-dependent inhibition in colony formation was also observed. The percentage of cells in the S phase and G2/M phase as well as the ratio of apoptotic cells significantly increased in groups treated with RY10-4, and the typical morphological characteristics of apoptotic cell was observed. RY10-4could induce the ROS generation and the decrease of MMP, while these effects will be inhibited by NAC. Moreover, RY10-4treatment significantly inhibited the growth of HepG2tumor in tumor-bearing nude mice without significant hematological toxicity as well as hepatotoxicity and nephrotoxicity.
     Conclusion:RY10-4exhibited high antiproliferation and antitumor activity toward HepG2cell line in vitro and in vivo. The underlying mechanism for the antitumor activity of RY10-4included: blocking the cell cycle process, inducing ROS generation, decreasing the MMP, inducing apoptosis.
引文
[1]Ren W., Qiao Z., Wang H., et al. Flavonoids:promising anticancer agents. Med Res Rev,2003,23(4):519-534
    [2]Huang X. H., Xiong P. C., Xiong C. M., et al. In vitro and in vivo antitumor activity of Macrothelypteris torresiana and its acute/subacute oral toxicity. Phytomedicine,2010,17(12):930-934
    [3]Hunyadi A., Chuang D. W., Danko B., et al. Direct semi-synthesis of the anticancer lead-drug protoapigenone from apigenin, and synthesis of further new cytotoxic protoflavone derivatives. PLoS One,2011,6(8):e23922
    [4]Liu H., Xiao Y, Xiong C., et al. Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur J Pharmacol,2011,654(3):209-216
    [5]Wei A., Zhou D., Xiong C., et al. A novel non-aromatic B-ring flavonoid: isolation, structure elucidation and its induction of apoptosis in human colon HT-29 tumor cell via the reactive oxygen species-mitochondrial dysfunction and MAPK activation. Food Chem Toxicol,2011,49(9):2445-2452
    [6]Yuan Q., Liu Z., Xiong C., et al. A novel, broad-spectrum antitumor compound containing the 1-hydroxycyclohexa-2,5-dien-4-one group:the disclosure of a new antitumor pharmacophore in protoapigenone 1. Bioorg Med Chem Lett,2011,21(11): 3427-3430
    [7]袁倩颖.铁线蕨及RY10-4药理作用研究:[博士学位论文]。湖北省武汉市:华中科技大学图书馆,2012.
    [8]Yang Z., Klionsky D. J. Eaten alive:a history of macroautophagy. Nat Cell Biol, 2010,12(9):814-822
    [9]Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell,2008, 132(1):27-42
    [10]He C., Klionsky D. J. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet,2009,43:67-93
    [11]Jung C. H., Ro S. H., Cao J., et al. mTOR regulation of autophagy. FEBS Lett, 2010,584(7):1287-1295
    [12]Fulda S. Tumor resistance to apoptosis. Int J Cancer,2009,124(3):511-515
    [13]Ricci M. S., Zong W. X. Chemotherapeutic approaches for targeting cell death pathways. Oncologist,2006,11(4):342-357
    [14]Chang H. L., Su J. H., Yeh Y. T., et al. Protoapigenone, a novel flavonoid, inhibits ovarian cancer cell growth in vitro and in vivo. Cancer Lett,2008,267(1): 85-95
    [15]Chang H. L., Wu Y. C., Su J. H., et al. Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. J Pharmacol Exp Ther,2008,325(3):841-849
    [16]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods,1983, 65(1-2):55-63
    [17]Boiadjieva S., Hallberg C., Hogstrom M., et al. Methods in laboratory investigation. Exclusion of trypan blue from microcarriers by endothelial cells:an in vitro barrier function test. Lab Invest,1984,50(2):239-246
    [18]Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst,1990,82(13):1107-1112
    [19]Munafo D. B., Colombo M. I. A novel assay to study autophagy:regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci,2001,114(Pt 20): 3619-3629
    [20]Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36(12):2491-2502
    [21]Kabeya Y., Mizushima N., Ueno T., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000,19(21):5720-5728
    [22]Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell,2010,140(3):313-326
    [23]Biederbick A., Kern H. F., Elsasser H. P. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol,1995,66(1):3-14
    [24]Komatsu M., Kageyama S., Ichimura Y. p62/SQSTM1/A170:Physiology and pathology. Pharmacol Res,2012,66(6):457-462
    [25]郭德玉,孙慧勤.自噬及其与肿瘤关系的研究进展.现代肿瘤医学,2010,18(6):1247-1250
    [26]Rosenfeldt M. T., Ryan K. M. The multiple roles of autophagy in cancer. Carcinogenesis,2011,32(7):955-963
    [27]Hoyer-Hansen M., Bastholm L., Mathiasen I. S., et al. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ,2005,12(10):1297-1309
    [28]Paglin S., Hollister T., Delohery T., et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res,2001, 61(2):439-444
    [29]Li J., Hou N., Faried A., et al. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol,2009,16(3): 761-771
    [30]Yu L., Alva A., Su H., et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science,2004,304(5676):1500-1502
    [31]Reggiori F., Klionsky D. J. Autophagy in the eukaryotic cell. Eukaryot Cell, 2002,1(1):11-21
    [32]Hay N., Sonenberg N. Upstream and downstream of mTOR. Genes Dev,2004, 18(16):1926-1945
    [33]Karantza-Wadsworth V., White E. Role of autophagy in breast cancer. Autophagy,2007,3(6):610-613
    [34]Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat Rev Cancer,2007,7(12):961-967
    [35]Liang X. H., Jackson S., Seaman M., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature,1999,402(6762):672-676
    [36]丁振斌,周俭,樊嘉,等.自噬基因Beclin 1抑制肿瘤作用的研究进展.中国临床医学,2008,15(4):515-517
    [37]Bursch W., Ellinger A., Kienzl H., et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy. Carcinogenesis,1996,17(8):1595-1607
    [38]Kanzawa T., Germano I. M., Komata T., et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ, 2004,11(4):448-457
    [39]Kanzawa T., Zhang L., Xiao L., et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene,2005,24(6):980-991
    [40]Shimizu S., Kanaseki T., Mizushima N., et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol, 2004,6(12):1221-1228
    [41]徐玉英,沈汉明,朱心强.植物化学物诱导肿瘤细胞自噬性死亡及对核受体调节作用研究进展.中国药理学与毒理学杂志,2008,22(2):151-155
    [42]Pedro M., Lourenco C. F., Cidade H., et al. Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (-) MDA-MB-231 human breast cancer cells. Toxicol Lett,2006,164(1):24-36
    [43]Cuervo A. M. Autophagy:in sickness and in health. Trends Cell Biol,2004, 14(2):70-77
    [44]Lock R., Debnath J. Extracellular matrix regulation of autophagy. Curr Opin Cell Biol,2008,20(5):583-588
    [45]Gozuacik D., Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004,23(16):2891-2906
    [46]齐亚莉,王俊,李岩,等.自噬体的检测及其对肿瘤的作用.中国实验诊断学,2010,14(5):780-782
    [47]叶青,郑民华.自噬的分子机制与病理生理意义.国际病理科学与临床杂志,2007,27(4):358-362
    [48]Yu L., Wan F., Dutta S., et al. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A,2006,103(13):4952-4957
    [49]Yuan Q., Cai S., Zhang X., et al. A new protoapigenone analog RY10-4 induces apoptosis and suppresses invasion through the PI3K/Akt pathway in human breast cancer. Cancer Lett,2012,324(2):210-220
    [1]张良清,高海鸿.原发性肝癌的治疗现状.中国实用医药,2011,6(12):235-237
    [2]Huang H. Y., Niu J. L., Lu Y. H. Multidrug resistance reversal effect of DMC derived from buds of Cleistocalyx operculatus in human hepatocellular tumor xenograft model. J Sci Food Agric,2012,92(1):135-140
    [3]袁倩颖.铁线蕨及RY10-4药理作用研究:[博士学位论文]。湖北省武汉市:华中科技大学图书馆,2012.
    [4]Liu H., Xiao Y., Xiong C., et al. Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur J Pharmacol,2011,654(3):209-216
    [5]Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst,1990,82(13):1107-1112
    [6]Roa W., Yang X., Guo L., et al. Real-time cell-impedance sensing assay as an alternative to clonogenic assay in evaluating cancer radiotherapy. Anal Bioanal Chem, 2011,400(7):2003-2011
    [7]Voigt W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med, 2005,110:39-48
    [8]Gupta V., Krishan A., Zubrod C. G. Correlation of in vitro clonogenic assay data with in vivo growth delays and cell cycle changes of a human melanoma xenograft. Cancer Res,1983,43(6):2560-2564
    [9]Kawiak A., Zawacka-Pankau J., Lojkowska E. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod,2012,75(4):747-751
    [10]Mizuno Y., Satomura K., Tanaka K., et al. [Correlation of in vitro clonogenic assay data with in vivo chemosensitivity of human rhabdomyosarcoma xenografts]. Nihon GekaHokan,1985,54(6):441-447
    [11]Fried J., Perez A. G, Clarkson B. D. Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. J Cell Biol,1976,71(1):172-181
    [12]Blagosklonny M. V., Pardee A. B. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res,2001,61(11):4301-4305
    [13]邹向阳,李连宏.细胞周期调控与肿瘤.国际遗传学杂志,2006,29(1):70-73
    [14]Jung Y. J., Lee K. H., Choi D. W., et al. Reciprocal expressions of cyclin E and cyclin D1 in hepatocellular carcinoma. Cancer Lett,2001,168(1):57-63
    [15]Ohashi R., Gao C, Miyazaki M., et al. Enhanced expression of cyclin E and cyclin A in human hepatocellular carcinomas. Anticancer Res,2001,21(1B):657-662
    [16]Alenzi F. Q. Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci,2004,61(2):99-102
    [17]Li F., He L., Song Z. Q., et al. Cytotoxic effects and pro-apoptotic mechanism of TBIDOM, a novel dehydroabietylamine derivative, on human hepatocellular carcinoma SMMC-7721 cells. J Pharm Pharmacol,2008,60(2):205-211
    [18]Vermes I., Haanen C, Steffens-Nakken H., et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods,1995,184(1):39-51
    [19]Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257
    [20]刘海峰,孙文汇,高洪,等.细胞凋亡的特征及其检测方法.动物医学进展,2008,29(3):106-108
    [21]Allen S., Sotos J., Sylte M. J., et al. Use of Hoechst 33342 staining to detect apoptotic changes in bovine mononuclear phagocytes infected with Mycobacterium avium subsp. paratuberculosis. Clin Diagn Lab Immunol,2001,8(2):460-464
    [22]Amaral J. D., Xavier J. M., Steer C. J., et al. The role of p53 in apoptosis. Discov Med,2010,9(45):145-152
    [23]周桔,罗荣保,汤长发,等.Bcl-2蛋白家族和p53基因在细胞凋亡中的调控效应.中国组织工程研究与临床康复,2007,11(10):1950-1952
    [24]张晓田,宋天保.Caspase-3与细胞凋亡的研究.医学综述,2002,8(11):621-623
    [25]Lugli E., Troiano L., Cossarizza A. Polychromatic analysis of mitochondrial membrane potential using JC-1. Curr Protoc Cytom,2007, Chapter 7:Unit 732
    [26]刘仪,王凯,王介非.氧化应激诱导细胞凋亡的机制.中华临床感染病杂志,2008,1(3):185-188
    [27]Fang J., Nakamura H., Iyer A. K. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target,2007,15(7-8):475-486
    [28]Carmody R. J., Cotter T. G. Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ,2000,7(3):282-291
    [29]Green D. R., Reed J. C. Mitochondria and apoptosis. Science,1998,281 (5381): 1309-1312
    [30]Aruoma O. I., Halliwell B., Hoey B. M., et al. The antioxidant action of N-acetylcysteine:its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med,1989,6(6):593-597
    [31]魏伟,吴希美,李元建.药理实验方法学.第4版[M].人民卫生出版社:北京,2010.1581-1610
    [32]万继英,韩庶勇.肿瘤实验动物模型的建立及应用进展.医学综述,2009,15(19):2959-2961
    [33]李晓娟,白云峰,崔智,等.常用实验动物肝癌模型研究进展.中国比较医学杂志,2012,22(4):73-77
    [34]Simon H.-U., Hai-Yehia A., Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis,2000,5(5):415-418
    [35]杨绍杰,孟金萍,曲祎,等.细胞凋亡信号传导通路的研究进展.中国比较医学杂志,2007,17(5):297-301
    [36]Lee IJ, Li ZS, Lee YN, et al. Hepatocellular carcinoma model cell lines with two distinct migration modes. Biochem Biophys Res Commun,2006,346(4): 1217-1227
    [37]白建华,李立,李晓延,等.BALB/c裸鼠与SCID小鼠皮下种植人肝癌模型的比较.中国组织工程研究与临床康复,2011,15(31):5843-5845
    [1]Ashford T. P., Porter K. R. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol,1962,12:198-202
    [2]Novikoff A. B., Essner E. Cytolysomes and mitochondrial degeneration. J Cell Biol,1962,15:140-146
    [3]Russo A., Terrasi M., Agnese V., et al. Apoptosis:a relevant tool for anticancer therapy. Ann Oncol,2006,17 Suppl 7:vii115-123
    [4]Zhang J. Y. Apoptosis-based anticancer drugs. Nat Rev Drug Discov,2002,1(2): 101-102
    [5]Fulda S. Tumor resistance to apoptosis. Int J Cancer,2009,124(3):511-515
    [6]Yang Z., Klionsky D. J. Eaten alive:a history of macroautophagy. Nat Cell Biol, 2010,12(9):814-822
    [7]Glick D., Barth S., Macleod K. F. Autophagy:cellular and molecular mechanisms. J Pathol,2010,221(1):3-12
    [8]Majeski A. E., Dice J. F. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol,2004,36(12):2435-2444
    [9]Mizushima N. Autophagy:process and function. Genes Dev,2007,21(22): 2861-2873
    [10]Tooze S. A., Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol,2010,12(9):831-835
    [11]Yla-Anttila P., Vihinen H., Jokitalo E., et al. Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol,2009,452:143-164
    [12]Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell,2010,140(3):313-326
    [13]Kabeya Y., Mizushima N., Ueno T., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000,19(21):5720-5728
    [14]Bjorkoy G, Lamark T., Brech A., et al. p62/SQSTMl forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol,2005,171(4):603-614
    [15]Klionsky D. J., Abeliovich H., Agostinis P., et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008,4(2):151-175
    [16]Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat Rev Cancer,2007,7(12):961-967
    [17]Gronostajski R. M., Pardee A. B. Protein degradation in 3T3 cells and tumorigenic transformed 3T3 cells. J Cell Physiol,1984,119(1):127-132
    [18]Knecht E., Hernandez-Yago J., Grisolia S. Regulation of lysosomal autophagy in transformed and non-transformed mouse fibroblasts under several growth conditions. Exp Cell Res,1984,154(1):224-232
    [19]Canuto R. A., Tessitore L., Muzio G., et al. Tissue protein turnover during liver carcinogenesis. Carcinogenesis,1993,14(12):2581-2587
    [20]Yucel T., Ahlberg J., Glaumann H. Overall proteolysis in perfused and subfractionated chemically induced malignant hepatoma of rat:effects of amino acids. Exp Mol Pathol,1989,50(1):38-49
    [21]Toth S., Nagy K., Palfia Z., et al. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res,2002,309(3): 409-416
    [22]Gozuacik D., Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004,23(16):2891-2906
    [23]Kihara A., Noda T., Ishihara N., et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol,2001,152(3):519-530
    [24]Liang X. H., Jackson S., Seaman M., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature,1999,402(6762):672-676
    [25]Qu X., Yu J., Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest,2003,112(12):1809-1820
    [26]Yue Z., Jin S., Yang C., et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA,2003,100(25):15077-15082
    [27]Mathew R., Kongara S., Beaudoin B., et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev,2007,21(11):1367-1381
    [28]Marino G, Salvador-Montoliu N., Fueyo A., et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem,2007,282(25):18573-18583
    [29]Marino G, Uria J. A., Puente X. S., et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem,2003,278(6):3671-3678
    [30]Karin M. Nuclear factor-kappaB in cancer development and progression. Nature,2006,441(7092):431-436
    [31]Degenhardt K., Mathew R., Beaudoin B., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell,2006, 10(1):51-64
    [32]Komatsu M., Waguri S., Koike M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell,2007,131(6): 1149-1163
    [33]Komatsu M, Waguri S., Ueno T., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol,2005,169(3):425-434
    [34]Sakai Y., Oku M., van der Klei I. J., et al. Pexophagy:autophagic degradation ofperoxisomes. Biochim Biophys Acta,2006,1763(12):1767-1775
    [35]Karantza-Wadsworth V., Patel S., Kravchuk O., et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev,2007, 21(13):1621-1635
    [36]Bursch W., Ellinger A., Kienzl H., et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy. Carcinogenesis,1996,17(8):1595-1607
    [37]Kanzawa T., Zhang L., Xiao L., et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene,2005,24(6):980-991
    [38]Lee S. B., Tong S. Y., Kim J. J., et al. Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells. DNA Cell Biol,2007, 26(10):713-720
    [39]Hoyer-Hansen M., Bastholm L., Mathiasen I. S., et al. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ,2005,12(10):1297-1309
    [40]Chau Y. P., Lin S. Y, Chen J. H., et al. Endostatin induces autophagic cell death in EAhy926 human endothelial cells. Histol Histopathol,2003,18(3):715-726
    [41]Wen S., Stolarov J., Myers M. P., et al. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A,2001,98(8):4622-4627
    [42]Xiao G. Autophagy and NF-kappaB:fight for fate. Cytokine Growth Factor Rev, 2007,18(3-4):233-243
    [43]齐亚莉,王俊,李岩,等.自噬体的检测及其对肿瘤的作用.中国实验诊断学,2010,14(5):780-782
    [44]张艳红.自噬与肿瘤关系的研究进展.医学信息,2011,24(1):243-245
    [45]Bellot G, Garcia-Medina R., Gounon P., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol,2009,29(10):2570-2581
    [46]Paglin S., Hollister T., Delohery T., et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res,2001, 61(2):439-444
    [47]Apel A., Herr L, Schwarz H., et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res,2008,68(5):1485-1494
    [48]Amaravadi R. K., Yu D., Lum J. J., et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest,2007, 117(2):326-336
    [49]Li J., Hou N., Faried A., et al. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol,2009,16(3): 761-771
    [50]Zhang X. Q., Dunner K., Jr., Benedict W. F. Autophagy is induced by adenoviral-mediated interferon alpha treatment in interferon resistant bladder cancer and normal urothelial cells as a cell death protective mechanism but not by the bystander factors produced. Cancer Gene Ther,2010,17(8):579-584
    [51]郭德玉,孙慧勤.自噬及其与肿瘤关系的研究进展.现代肿瘤医学,2010,18(6):1247-1250
    [52]付军,陈芙蓉,陈忠平.顺铂耐受胶质瘤细胞株诱导和细胞自噬的观察.中国神经肿瘤杂志,2007,5(4):246-250
    [53]Lock R., Debnath J. Extracellular matrix regulation of autophagy. Curr Opin Cell Biol,2008,20(5):583-588
    [54]Green D. R. Apoptotic pathways:ten minutes to dead. Cell,2005,121(5): 671-674
    [55]Kroemer G., El-Deiry W. S., Golstein P., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ, 2005,12 Suppl 2:1463-1467
    [56]Eisenberg-Lerner A., Bialik S., Simon H. U., et al. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ,2009,16(7): 966-975
    [57]Feng Z., Zhang H., Levine A. J., et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A,2005,102(23):8204-8209
    [58]Pattingre S., Bauvy C., Carpentier S., et al. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem,2009,284(5): 2719-2728
    [59]Qian W., Liu J., Jin J., et al. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res,2007,31(3):329-339
    [60]Basciani S., Vona R., Matarrese P., et al. Imatinib interferes with survival of multi drug resistant Kaposi's sarcoma cells. FEBS Lett,2007,581(30):5897-5903
    [61]Espert L., Denizot M., Grimaldi M., et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest,2006,116(8): 2161-2172
    [62]Yu L., Alva A., Su H., et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science,2004,304(5676):1500-1502
    [63]Boya P., Gonzalez-Polo R. A., Casares N., et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol,2005,25(3):1025-1040
    [64]Carew J. S., Nawrocki S. T., Kahue C. N., et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood,2007,110(1):313-322
    [65]Ito H., Daido S., Kanzawa T., et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells, Int J Oncol,2005,26(5): 1401-1410
    [66]Abedin M. J., Wang D., McDonnell M. A., et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ,2007,14(3): 500-510
    [67]Cui Q., Tashiro S., Onodera S., et al. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol Pharm Bull,2007,30(5): 859-864
    [68]Qu X., Zou Z., Sun Q., et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell,2007,128(5):931-946
    [69]Jia L., Dourmashkin R. R., Allen P. D., et al. Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol,1997,98(3):673-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700