用户名: 密码: 验证码:
牵张成骨中交感神经调控骨髓间充质干细胞动员与迁移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵张成骨技术(DO)已经成为治疗颌骨畸形或缺损的重要方法,但成骨机制尚不清楚。DO中骨髓间充质干细胞(MSCs)首先要脱离干细胞龛才能向成骨方向分化,因此MSCs的动员是骨再生的先决调节。已知MSCs属血管周细胞的一个亚群,受血管内皮干细胞龛的控制,而交感神经在骨的代谢中起着非常重要的作用,交感神经能反向调控骨再生,且多伴行于血管分布,因此我们推测交感神经对MSCs动员及迁移有一定的调控作用,目前尚未见相关报道。本研究在大鼠下颌骨牵张成骨复合颈交感干离断模型的基础上,进一步探讨交感神经在牵张应力下调控MSCs动员的分子机理,揭示DO的骨再生机制提供重要的实验依据,为临床上改进DO技术提供更全面的理论支持。本文分为6个部分:
     1SD大鼠下颌骨交感神经与干细胞分布关系的研究
     目的:检测SD大鼠下颌骨交感神经分布与干细胞龛的关系。方法:SD成年雄性大鼠2只处死,取双侧下颌骨,对交感神经纤维标志物TH及MSCs标志物Nestin的表达进行检测。结果:免疫组化染色显示,大鼠下颌骨TH/Nestin表达分布关系密切,且交感神经纤维与血管伴行。结论:大鼠下颌骨交感神经与MSCs关系密切,为下一步研究提供了解剖学依据。
     2大鼠下颌骨牵张成骨复合颈交感干神经离断术模型的建立
     目的:建立大鼠下颌骨牵张成骨复合颈交感干神经离断术模型。方法:SD成年雄性大鼠6只,分两组,实验组全麻下先行双侧颈交感干离断术,后行右侧下颌骨外置式牵张器植入术,对照组仅行右侧下颌骨外置式牵张器植入术。术后观察大鼠霍纳征眼部表现;固定期2周处死,行离断神经节组织学检测及下颌骨标本牵张区的大体观察和组织切片HE染色。结果:6只大鼠均耐受手术,实验组出现双侧霍纳征,对照组正常;牵张器固定良好,两组右侧下颌骨均被成骨延长,平均长度为3.4mm,达预期长度85%,HE染色示两组牵张间隙均出现新生骨小梁,但颈交感干离断组骨小梁数量更多且更加致密。结论:大鼠下颌骨牵张成骨复合颈交感干神经离断术模型具有良好的可行性与重复性,适合牵张成骨中相关分子机制的研究。
     3断颈交感神经干大鼠DO中牵张区NE/adrb3的表达及其与MSCs动员关系的研究
     目的:检测断颈交感神经干后牵张区NE/adrb3、Nestin的表达情况,并分析其中的关联性。方法:SD成年雄性大鼠20只,分四组(n=5),实验组行右侧下颌骨牵张器植入术复合颈交感神经干离断书,对照组行右侧下颌骨牵张器植入术,分别于牵张期开始和牵张期结束处死并取材,行免疫组化检测。结果:NE/adrb3主要于表达血管周,与对照组相比,断交感神经后NE/adrb3随着时间延长,表达逐渐减弱,到牵张期结束已无明显表达;实验组Nestin在牵张期开始及结束时,均广泛表达于成骨基质和血管周,且主要集中于成骨基质,而对照组Nestin主要表达于血管周。结论:DO中交感神经通过NE/adrb3反向调控MSCs动员及向成骨基质迁移。
     4断颈交感神经干大鼠DO中牵张区SDF-1表达的研究
     目的:检测断颈交感神经干后牵张区SDF-1的表达情况。方法:SD成年雄性大鼠30只,分6组(n=5),实验组行右侧下颌骨牵张器植入术复合颈交感神经干离断书,对照组行右侧下颌骨牵张器植入术,分别于牵张期结束、固定期2周及固定期4周处死并取材,行免疫荧光检测。结果:免疫荧光显示,DO+TCST组在各个时间段,牵张区成骨基质或骨小梁SDF-1表达都明显高于血管周,且血管周SDF-1表达百分比要明显低于DO组;DO组从固定期2周开始,骨小梁周与血管周SDF-1表达已无明显差异。结论TCST能使牵张区SDF-1形成从血管周到成骨基质由低到高浓度梯度。
     5大鼠下颌骨MSCs的分离培养及相关受体的表达的鉴定
     目的:组织块消化贴壁筛选法分离培养大鼠下颌骨MSCs,并鉴定表面受体Nestin、adrb3及CXCR4的表达。方法:组织块消化法培养大鼠下颌骨MSCs,进行生长曲线测定及干细胞表面标志流式细胞术鉴定;成骨、成脂诱导分化;Nestin/adrb3、CXCR4细胞免疫组化检测。结果:大鼠下颌骨MSCs流式细胞术鉴定其细胞表面标志物特征为CD29、CD44、CD90阳性,CD34和CD45阴性;在体外可大量扩增,符合典型的MSCs形态特征及生长增殖规律;细胞表面表达Nestin、adrb3及CXCR4。结论:培养的大鼠下颌骨MSCs具有自我更新和多向分化能力,为NE和SDF-1的靶细胞,能为后续实验提供可靠的MSCs和实验依据。
     6NE对大鼠下颌骨MSCs增殖、分化及迁移影响的研究
     目的:检测NE对大鼠颌骨MSCs增殖、分化及迁移的影响。方法:分别将10-7mol/L NE共培养MSCs与常规培养MSCs,进行细胞倍增指数、Brdu标记法检测及成骨诱导分化。Transwell迁移小室模型中,上室分别加入200μL含浓度为10-7mol/L NE或不含NE的GFP-MSCs(5×10~5/ml)单细胞悬液,下室加入200μL含SDF-1α(25ng/mL)的DMEM培养液,培养12小时后计数迁移细胞。结果:10-7mol/L NE共培养MSCs其细胞倍增数、BrdU阳性细胞百分比、矿化结节均少于对照组。含10-7mol/L NE组迁移细胞数量明显低于对照组,具有统计学意义(P<0.05)。结论:NE负向调控MSCs增殖及分化能力,并抑制MSCs在SDF-1诱导下的迁移能力。
Distraction osteogenesis (DO) has been widely used to regenerate bone tissues fordeformities, defects and fractures in long bones and maxillofacial bones.However, itremains largely unknown on the osteogenic mechanisms during DO and the efficiency ofDO awaits improvement. In order to differentiate into osteoblasts, mesenchymal stemcells (MSCs) are needed to migrate from their stem cell niches to bone-forming sites.Therefore, MSC mobilization is prerequisite to the bone formation in DO. It has beendemonstrated that MSCs are a subset of perivascular cells, and sympathetic nervoussystem (SNS) profusely innervate skeletal system and regulate the bone formation andresorption. Therefore, it is very likely that sympathetic nerves contribute to the perivascular stem cell niche for MSCs to reside in the bone marrow. The aim of thisstudy was to investigate the mechanism of effect of sympathetic denervation on MSCsmobilization and migration in rat mandibular DO. Six parts were included in this study:
     1Sympathic innervation and MSCs distribution in SD rat mandible
     Objective: To determine the sympathic innervation and MSCs ditribution in SD ratmandible. Methods: Normal mandibles of2adult male Sprague-dawley (SD) rats wereused in Immunofluorescence assay for staining of sympathetic fiber marker TH and MSCsmarker Nestin. Results: Nestin+cells were abundant in perivascular regions andsympathetic fiber marker TH staining was intense along blood vessels. Conclusion:Mandibular bone morrow MSCs were confined by sympathetic nerves under normalcircumstance. This provide the foundation for following study.
     2Rat unilateral mandibular DO with transection of cervical sympathetictrunk (TCST) model
     Objective: Establishment of rat unilateral mandibular DO combined with transectionof cervical sympathetic trunk model. Methods:6adult male SD rats were devided into2equal groups(n=3) as DO group and DO+TCST group. DO group only received the rightmandibular distractor implantation surgery. DO+TCST group underwent the rightmandibular distractor implantation surgery and bilateral TCST operation. Rats cervicalsympathetic ganglia of DO+TCST group were resected and underwent histologicalobservation. Sympathetic denervation was confirmed by observation of Horner’ssyndrome and HE stain of ganglia. Rats were sacrificed at consolidation time of4weeks,the new regenerated tissues were harvested for general observation and histomorphometricassay. Results: After surgery, DO+TCST group rats showed classic Horner’s syndrome,and the ganglia HE staining was consistent with typical neurohistology character. Theright mandibles of all6rats were lengthened successfully. The average length of disractionwas3.4mm, which was85%of the prospective length. HE staining indicated that theregenerated tissue was similar with normal bone at the4weeks of consolidation time in both groups, but the DO+TCST group showed more volume and quality bone trabeculae.Conclusion: This rat model is reliable for further molecular study.
     3Effect of sympathetic denervation on alternation of NE/adrb3expre-ssion and MSCs distribution in rat DO medol
     Objective: To determine the alternation of NE/adrb3, Nestin expression in rat medol.Methods: According to intervention and time point,20adult male SD rats were devidedinto4equal groups(n=5) respectively. The right mandibles and the distraction zonespecimens were harvested for immunohistochemistry assays at specific time point.Results: The expression of NE was hardly found, and very little adrb3expression wasobserved around the blood vessel in TCST group, but the expression of NE and adrb3wasabundant in the control group; the Nestin+MSCs were abundant and mainly distrubuted incallus matrix in TCST group, whereas that Nestin+MSCs were mainly located adjacentto perivascular region in the control group. Conclusion: TCST depleted sympatheticmediator NE and its receptor adrb3in distraction zone; Nestin+MSCs have highertendency of migration from perivascular region to callus matrix under distraction stressafter TCST in vivo.
     4The expression of SDF-1/CXCR4in rat mandibular DO+TCST model
     Objective: To examine the alternation of SDF-1/CXCR4expression in theregenerated tissue during DO after TCST. Methods: According to intervention and timepoint,30adult male SD rats were devided into6equal groups(n=5) respectively. The rightmandibles and the distraction zone specimens were harvested for immunohistochemistryassays at specific time point. Results: The expression of SDF-1in osteogenic zone wassignificantly higher than that in perivas-cular region in DO+TCST groups. The percentageof perivascular region SDF-1expression in DO+TCST groups were apparently lower thanthat in DO groups. Conclusion: SDF-1emerged low-to-high concentration gradient fromperivascular region to callus matrix after TCST.
     5Isolation, culture and identification of jaw bone marrow mesenchymalstem cells(MSCs) in vitro
     Objective: To isolate and characterize rat jaw bone marrow MSCs and verify theexpression of Nestin, adrb3and CXCR4. Methods: The rat jaw bone marrow MSCs werecultured by tissue enzymatic digestion-adherent explants method. The morphological andgrowth characteristics of cells were observed, cell surface markers expression wereidentified by flow cytometry, and osteogenic, adipogenic differentiations were induced.Nestin, adrb3and CXCR4expression were detected by immunohistochemistry. Results:The cultured cells can proliferate rapidly in vitro, and can differentiate into osteoblasts andadipocytes under special conditions. Flow cytometry confirmed that cell surface markersCD34(-), CD45(-), CD29(+), CD44(+) and CD90(+). The cell surface expression Nestin,adrb3and CXCR4. Conclusion: The cells obtained from jaw bone are multipotentialMSCs and target cells of NE and SDF-1.
     6Effect of NE on MSCs proliferation, differentiationand migration in vitro
     Objective: To determine effect of NE on MSCs proliferation, differentiation andmigration in vitro. Methods: The rat jaw bone marrow MSCs were cultured with10-7mol/L NE or without. Population Doubling (PD) assay, BrdU incorporation assay andOsteogenic assay were performed. Migration was assayed using a24-well transwell inpolycarbonate porous membrane insert (pore diameter of8um). GFP-MSCsat a densityof5×10~5cells/ml each with NE10-7mol/L DMEM or without, were placed in the upperchamber. The lower chamber contained a concentration of25ng/ml SDF-1in600ul ofmedium. Following12h of incubation, the migrated MSCs were counted. Results: PD,BrdU+cells%and mineralized area%of NE10-7mol/L co-cultured MSCs were lowerthan non-NE co-cultured MSCs. The number of migrated GFP-MSCs in10-7mol/L NEtreatment group were markedly decreased. Conclusion: NE can negatively modulateMSCs proliferation and differentiation, and inhibit MSC migration in vitro.
引文
[1] Ilizarov G A. The principles of the Ilizarov method.[J]. Bull Hosp Jt Dis Orthop Inst,1988,48(1):1-11.
    [2] Snyder CC, Levine GA, Swanson HM, et al. Mandibular lengthening by gradualdistraction. Preliminary report.[J]. Plast Reconstr Surg,1973,51(5):506-508.
    [3] Panikarovskii VV, GrigorIan AS, Kaganovich SI, et al. Characteristics of mandibularreparative osteogenesis under compression-distraction osteosynthesis (anexperimental study).[J]. Stomatologiia (Mosk),1982,61(3):21-25.
    [4] Karaharju-Suvanto T, Karaharju EO, Ranta R. Mandibular distraction. Anexperimental study on sheep.[J]. J Craniomaxillofac Surg,1990,18(6):280-283.
    [5] Mccarthy JG, Schreiber J, Karp N, et al. Lengthening the human mandible bygradual distraction.[J]. Plast Reconstr Surg,1992,89(1):1-8,9-10.
    [6] Ilizarov GA: The tension-stress effect on the genesis and growth of tissues: Part II.The influence of the rate and frequency of distraction.[J]. Clin Orthop,1989,239:263-285.
    [7] Ilizarov GA: The tension-stress effect on the genesis and growth of tissues. Part I.The influence of stability of fixation and soft-tissue preservation.[J]. Clin Orthop,1989,239:249-254.
    [8] Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening.[J]. Clin Orthop,1990,250:8-21.
    [9] Califano L. Mandibular lengthening by external distraction: An experi-mental studyin the rabbit.[J]. J Oral Maxillofac Surg,1994,52:1179-1183.
    [10]胡静.颌骨牵张成骨的临床及基础研究.[J].中华口腔医学杂志,2005,40(1):10-12.
    [11] Goldstein SA, Waanders N, Gu ldberg R, et al. Stress morphology relationshipsduring distraction osteogenesis.[J]. Bone formation and repair.1994,405-419.
    [12] Kojimoto H, Yasui N, Goto T, et al. Lengthening in rabbits by callus distraction: therole of periosteum and endosteum.[J]. J Bone Joint Surg,1988,70:543-549.
    [13] Yasui N, Sato M, Ochi T, et al. Three modes of ossification during distr-actionosteogenesis in the rat.[J]. Bone Joint Surg.1997,79:824-830.
    [14] Aida T, Yoshioka I, Tominaga K, et al. Effects of latency period in a rabbitmandibular distraction osteogene sis.[J]. Int J Oral Maxillofac Surg.2003,32:54-62.
    [15] Al-Sebaei M, Gagari E and Pa pageorge M. Mandibular distraction osteogenesis: arabbit model using a novel experimental design.[J]. J Oral Maxillofac Surg2005,63:664-672.
    [16] Delloye C, Delefortrie G, Coultelier L. Bone regeneratio n formation in cortical boneduring distraction lengthening.[J]. Clin Orthop.1990,250:34-42.
    [17]李继华,胡静,王大章等.不同牵张速率对下颌骨延长后新骨生成的影响.[J].口腔医学纵横杂志.2001,17(4):262-264.
    [18]唐友盛,高益鸣,沈国芳等.牵引成骨技术治疗小下颌畸形伴OSAS效果的初步报告.[J].中华口腔医学杂志,2000,35(1):9-11.
    [19] Klein C, Howaldt HP. Lengthening of the hypoplastic mandible by gradualdistraction in childhood-a preliminary report.[J]. J Craniomaxillofac Surg1995,23(2):68-74.
    [20] Cohen SR, Simms C, Burstein FD. Ma ndibular distraction osteogenesis in thetreatment of upper airway obstruction in children with craniofacial diformities.[J].Plast Reconatr Surg.1998,101(2):312-318.
    [21] Smith KS. Paediatric sleep apnoea and treatment with distraction osteogenesis.[J].Ann R Australas Coll Dent Surg.2000,15:163.
    [22] Shvyrkov MB, Shamsudinov AK, Sumarokov DD, et al. Non-free osteoplasty ofthe mandible in maxillofacial gunshot wounds: mandibular reconstruction bycompression osteodistr action.[J]. Br J Oral Maxillofac Surg,1999,37(4):261-267.
    [23]田磊.牵张成骨术修复犬下颌骨高速投射物伤性缺损的实验研究.第四军医大学博士学位论文.2005,1-93.
    [24]刘瑞峰.牵张成骨技术修复兔下颌骨创伤性骨缺损的实验研究.第四军医大学博士学位论文.2005,1-105.
    [25] Costantino PD, Shybut G, Friedman CD, et al. Segmental mandibular regenerationby distraction osteogenesis: an experimental study.[J]. Arch Otolarygol Head NeckSurg,1990,116:535-545.
    [26] Wang X, Lin Y, Yi B, et al. Ma ndibular functional reconstruction using internaldistraction osteogenesis.[J]. Chin Med J (Engl).2002,115(12):1863-1867.
    [27] Gantous A, Philips JH, Carton P, et a1. Distraction osteogenesis in the irradiatedcanine mandible.[J]. Plast Reconstr Surg.1994,93(1):164-168.
    [28] Shao Z, Liu BL, Liu YP, et al. Distra ction osteogenesis in the irradiated rabbitmandible.[J]. J Plas Reconstructive Aesthetic Surg.2006,59:181-187.
    [29]王兴,周彦恒.口内入路的颌骨牵引成骨技术.[J].中华口腔医学杂志.2000,35(3):170-173.
    [30] Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internaldevices: review of five cases.[J]. J Oral Maxillofac Surg.1996,54(1):45-53.
    [31] Siciliano S, Lengele B, Reychler H. Distraction osteogenesis of a fibula free flapused for mandibular recons truction: preliminary report.[J]. J Craniomaxillofac Surg,1998,26(6):386-390.
    [32]白丁,王大章.利用牵张成骨矫治严重后牙锁颌畸形的初步报告.[J].华西口腔医学杂志.1998,16(1):47-9.
    [33] Estrada J, Saulacic N, et al. Periosteal distraction osteogenesis: Preliminaryexperimental evaluation in rabbits and dogs.[J]. British Journal of Oral andMaxillofacial Surgery.2007,45(5):402-405.
    [34] Raschke MJ, Bail H, Windhagen HJ, et al. Recombinant growth hormoneaccelerates bone regenerate consolidation in distraction osteogenesis.[J]. Bone,1999,24(2):81-88.
    [35] Little DG, Cornell MS, Briody J, et al. Intravenous pamidronate reducesosteoporosis and improves formation of the regenerate during distractionosteogenesis.[J]. J Bone Joint Surg Br.2001,83(7):1069-1074.
    [36] Sen C, Gunes T, Erdem M, et al. Effects of calcitonin and alendronate ondistraction osteogenesis.[J]. Int Orthop.2006,30(4):272-277.
    [37]杜兆杰,雷德林,王磊等.下颌牵张成骨中应用神经生长因子对神经损伤修复的作用.[J].创伤外科杂志.2010, l2(2):150-154.
    [38] Du ZJ, Wang L, Lei DL, et al. Nerve growth factor injected systemically improvesthe recovery of the inferior alveolar nerve in a rabbit model of mandi-bulardistraction osteogenesis.[J]. British Journal of Oral and Maxillofacial Surgery.2011,49(7):557-561.
    [39] Eppley BL, Snyders RV, Winkelmann TM, et al. Efficacy of nerve growth factor inregeneration of the mandibular nerve: a preliminary report.[J]. J Oral MaxillofacSurg.1991,49:61-88.
    [40] Wang L, Cao J, Lei DL, et al. Effects of Nerve Growth Factor Delivery Via a Gel toInferior Alveolar Nerve in Mandibular Distraction Osteogenesis.[J]. Journal ofCraniofacial Surgery.2009,20(6):2188-2192.
    [41] Wang L, Zhao Y, Cheng X, Lei D. Locally applied nerve growth factor affects theinferior alveolar nerve recovery in mandibular distraction osteogenesis.[J]. OralOncology.2008,12:148-155.
    [42] Li G,Bouxsein ML, Luppen C, et a1. Bone consolidation is enhanced by rhBMP-2in a rabbit model of distra ction osteogenesis.[J]. J0rthop Res.2002,20(4):779-788.
    [43] Cheung LK, Zheng LW. Effect of recombinant human bone morphogenetic protein-2on mandibular distr action at different rates in an experimental model.[J]. JCraniofac Surg.2006,17(1):100-108.
    [44] Wang H, Warnke PH, Springer I, et a1. Acceleration of callus maturation usingrhOP-1in mandibular distraction osteogenesis in a rat model.[J]. Int J OralMaxillofac Surg.2003,32(5):528-533.
    [45] Schumacher B, Albrechtsen J, Keller J, et a1. Periosteal insulin-like growth factor Iand bone formation:changes during tibial lengthening in rabbits.[J]. Acta OrthopScand.1996,67:237-241.
    [46] Stewart KJ, Weyand B, van’f Hof RJ, et a1. A quantitative analysis of the effect ofinsulin-like growth factor-1infusion duringmandibular distraction osteogenesis inrabbits.[J]. Br J Plast Surg.1999,52(5):343-350.
    [47] Henrik E, Kristian G, Bundgaard M. Efects of locally applied vascular endothelialgrowth factor and VEGF inhibitor to the ra bbit tibia during distraction osteogenesis.[J]. J Orthop Res.2003,21:335-360.
    [48] Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derivedmesenchymal stem cells and platelet-rich plasma during distraction osteogenesis: apreliminary result of three cases.[J]. Bone.2004,35(4):892-898.
    [49]骆泉丰,王兴,王晓霞等.富含血小板血浆对牵引成骨过程中新骨生成的影响.[J].中华整形外科杂志.2004,20(5):376-379.
    [50] Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of culture expanded bonemarrow cells and platelet rich plas ma in distraction osteogenesis of the long bones.[J]. Bone.2007,40(2):522-528.
    [51] Sato K, Haruyama N, Shimizu Y, Hara J, Kawamura H. Osteogenesis by graduallyexpanding the interface between bone surface and periosteum enhanced by bonemarrow stem cell administration in rabbits.[J]. Oral Surg Oral Med Oral Pathol OralRadiol Endod.2010,110(1):32-40.
    [52] Castro-Govea Y, Cervantes-Kardasch VH, Borrego-Soto G, et al. Human bonemorphogenetic protein2-transduced mesenchymal stem cells improve boneregeneration in a model of mandible distraction surgery.[J]. J Craniofac Surg.2012,23(2):392-396.
    [53] Tavakoli K, Yu Y, Shahidi S, et al. Expression of growth factors in the Mandibulardistraction zone: a sheep study.[J]. Br J Plast Surg.1999,52(6):434-439.
    [54] Kim IS, Park JW, Kwon IC, et a1. Role of BMP, βig-h3and chitosan in early boneconsolation in distraction osteogenesis in a dog model.[J]. Plast Reconstr Surg.2002,109(6):1966-76.
    [55] Brodal, Per. The central nervous system: structure and function.[J]. OxfordUniversity Press US.2004,369-396.
    [56] Sherwood, Lauralee. Human physiology: from cell to systems.[J]. CengageLearning.2008,240.
    [57] Merck Index.11th Edition.6612.
    [58] Tanaka M, Yoshida M, Emoto H, et al. Noradrenaline systems in the hypothalamus,amygdala and locus coeruleus are involved in the provocation of anxiety: basicstudies.[J]. Eur J Pharmacol.2000,405(1-3):397-406.
    [59] Swick D, Pineda J, Schacher S. Locus coeruleus neuronal activity in awakemonkeys: relationship to auditory P300-like potentials and spontaneous EEG..[J].Experimental brain research.1994,101(1):86–92.
    [60] Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G.. The role oflocus coeruleus in the regulation of cognitive performance.[J]. Science.1999,283(5401):549-554.
    [61] Hohmann EL, Levine L, Tashjian AJ. Vasoactive intestinal peptide stimulates boneresorption via a cyclic adenosine3',5'-monophosphate-dependent mechanism.[J].Endocrinology.1983,112(4):1233-1239.
    [62] Zaidi M, Fuller K, Bevis P J, Gainesdas R E, Chambers T J, Macintyre I. Calcitoningene-related peptide inhibits osteoclastic bone resorption: a comparative study.[J].Calcif Tissue Int.1987,40(3):149-154.
    [63] Haug S R, Heyeraas K J. Modulation of dental inflammation by the sympatheticnervous system.[J]. J Dent Res.2006,85(6):488-495.
    [64] Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P-andCGRP-immunoreactive nerves in bone.[J]. Peptides.1988,9:165-171.
    [65] Wojtys EM, Beaman DN, Glover RA, Janda D. Innervation of thehuman knee jointby substance-P fibers.[J]. Arthroscopy.1990,6:254-263.
    [66] Hill EL, Elde R. Distribution of CGRP-, VIP-, DbH-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat.[J]. Cell Tissue Res.1991,264:469-480.
    [67] Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM.Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscusand bone.[J]. Int J Tissue React.1992,14:1-10.
    [68] Casta eda-Corral G, Jimenez-Andrade JM, et al. The majority of myelinated andunmyelinated sensory nerve fibers that innervate bone express the tropomyosinreceptor kinase A.[J]. Neuroscience.2011,178:196-207.
    [69] Togari A, Arai M, Mizutani S, et al. Expression of mRNAs for neuropeptidereceptors and beta-adrenergic receptors in human osteoblasts and human osteogenicsarcoma cells.[J]. Neurosci Lett.1997,233(2-3):125-128.
    [70] Ransjo M, Lie A, Mukohyama H, et al. Microisolated mouse osteoclasts expressVIP-1and PACAP receptors.[J]. Biochem Biophys Res Commun.2000,274(2):400-4.
    [71] Konttinen Y, Imai S, Suda A. Neuropeptides and the puzzle of bone remodeling.[J].State of the art. Acta Orthop Scand.1996,67(6):632-639.
    [72] Tang Y, Shankar R, Gamelli R,et al. Dynamic norepinephrine alterations in bonemarrow: evidence of functional innervation.[J]. J Neuroimmunol.1999,96(2):182-189.
    [73] Maestroni G.JM., Cosentino M, Marino F, et al. Neural and endogenouscatecholaminesin the bone marrow. Circadian association of norepinephrine withhematopoiesis?[J]. Expt. Hematol.1998,26:1172-1177.
    [74] Imai Y, Rodan SB, Rodan GA. Effects of retinoic acid on alkaline phosphatasemessenger ribonucleic acid,catecholamine receptors, and G proteins in ROS17/2.8cells.[J]. Endocrinology.1988,122:456-463.
    [75] Rodan SB, Rodan GA. Dexamethasone effects on beta-adrenergic receptors andadenylate cyclase regulatoryproteins Gs and Gi in ROS17/2.8cells.[J].Endocrinology.1986,118:2510-2518.
    [76] Moore RE, Smith CK, Bailey CS et al. Characterization of beta-adrenergicreceptors on rat and human osteoblast-like cells and demonstration thatbeta-receptor agonists can stimulate bone resorption in organ culture.[J]. BoneMiner1993,23:301-315.
    [77] Kellenberger S, Muller K, Richener H, et al. Formoterol and isoproterenol inducec-fos gene expression in osteoblast-like cells by activating beta2-adrenergicreceptors.[J]. Bone.1998,22:471-478.
    [78] Kondo A, Mogi M, Koshihara Y, et al. Signal transduction system for interleukin-6and interleukin-11synthesis stimulated by epinephrine in human osteoblasts andhuman osteogenic sarcoma cells.[J]. Biochem Pharmacol.2001,61:319-326.
    [79] Takeuchi T, Tsuboi T, Arai M, et al. Adrenergic stimulation of osteoclastogenesismediated by expressionof osteoclast differentiation factor in MC3T3-E1osteoblast-like cells.[J]. Biochem Pharmacol.2001,61:579-586.
    [80] Kondo A, Togari A. In vivo stimulation of sympathetic nervous system modulatesosteoblastic activity in mousecalvaria.[J]. Am J Physiol Endocrinol Metab.2003,285: E661-667.
    [81] Dietrich JW, Mundy GR, Raisz LG. Inhibition of bone resorption in tissue cultureby membrane-stabilizing drugs.[J]. Endocrinology.1979,104:1644-1648.
    [82] Lundberg P, Bostrom I, Mukohyama H, et al. Neuro-hormonal control of bonemetabolism: vasoactive intestinal peptide stimulates alkaline phosphatase activityand mRNA expression in mouse calvarial osteoblasts as well as calciumaccumulation mineralized bone nodules.[J]. Regul Pept.1999,85(1):47-58.
    [83] Minkowitz B, Boskey AL, Lane JM, et al. Effects of propranolol on bonemetabolism in the rat.[J]. J Orthop Res.1991,9:869-875.
    [84] Levasseur R, Sabatier JP, Potrel-Burgot C, et al. Sympathetic nervous system astransmitter of mechanical loading in bone.[J]. Joint Bone Spine: Revue durhumatisme.2003,70:515-519.
    [85] Wang T, Cao J, Du ZJ, et al. Effects of sympathetic innervation loss on mandibulardistraction osteogenesis.[J]. J Craniofac Surg.2012,23(5):1524-1528.
    [86] Ke HZ, Xu G, Brault AL. Deletion of the b2adrenergic receptor prevents boneloss induced by isopro-terenol in mice.[J]. J Bone Miner Res.2004,19: S3.
    [87] Pierroz DD, Muzzin P, Glatt V, et al. β1,β2-Adrenergic receptor KO mice havedecreased total body and cortical bone mass despite increased trabecular number.[J].J Bone Miner Res.2004,19: S32.
    [88] Dhillon H, Glatt V, Ferrari SL, et al. b-Adrenergic receptor KO mice have increasedbone mass and strength but are not protected from ovariec-tomy-induced bone loss.[J]. J Bone Miner Res.2004,19:S32
    [89] Okada Y, Hamada N, Kim Y, et al. Blockade of sympathetic beta-receptors inhibitsPorphyromonas gingivalis-induced alveolar bone loss in an experimental ratperiodontitis model.[J]. Arch Oral Biol.2010,55(7):502-508.
    [90] Cherruau M, Facchinetti P, Baroukh B, et al. Chemical sympathectomy impairsbone resorption in rats: a role for the sympathetic system on bone metabolism.[J].Bone,1999,25(5):545-551.
    [91] Ducy P, Amling M, Takeda S, et al. Leptininhibits bone formation through ahypothalamic relay: a central control of bone mass.[J]. Cell2000,100:197-207.
    [92] Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L,Parker KL, Armstrong D, DucyP, Karsenty G. Leptinregulates bone formation via the sympathetic nervous system.[J]. Cell.2002,111:305-317.
    [93] Takeda S, Karsenty G. Molecular bases of the sympathetic regulation of bone mass.[J]. Bone.2008,42(5):837-840.
    [94] Elefteriou F. Regulation of bone remodeling by the central and peripheral nervoussystem.[J]. Arch Biochem Biophys.2008,473(2):231-236.
    [95] Reid IR, Gamble GD, Grey AB, et al. Beta-blocker use, BMD,and fractures in thestudy of osteoporotic fractures.[J]. J Bone Miner Res2005,20:613-618.
    [96] Levasseur R, Dargent-Molina P, Sabatier JP, et al. Beta-blocker use, bone mineraldensity, and fracture risk in older women: results from the Epidemiologie deL'Osteoporose Prospective Study.[J]. J Am Geriatr Soc.2005,53:550-552.
    [97] Rejnmark L, Vestergaard P, Kassem M, et al. Fracture risk in perimenopausalwomen treated with beta-blockers.[J]. Calcif Tissue Int.2004,75:365-372.
    [98] Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACEinhibitors, and calcium-chan-nel blockers is associated with a reduced fracture risk:a nationwide case-control study.[J]. J Hypertens.2006,24:581-589.
    [99] Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and riskof fractures.[J]. JAMA.2004,292:1326-1332.
    [100] Vries DF, Souverein PC, Cooper C, et al. Use of beta-blockers and the risk ofhip/femur fracture in the United Kingdom and the Netherlands.[J]. Calcif Tissue Int.2007,80:69-75.
    [101] Ballica R, Valentijn K, Khachatryan A, et al. Targeted expression of calcitoningene-related peptide to osteoblasts increases bone density in mice.[J]. J Bone MinerRes.1999,14(7):1067-1074.
    [102] Valentijn K, Gutow A P, Troiano N, et al. Effects of calcitonin gene-related peptideon bone turnover in ovariectomized rats.[J]. Bone,1997,21(3):269-274.
    [103] Friedenstein AJ., Chailakhyan RK., Latsinik NV, et al. Stromal cells responsible fortransferring the microenvironment of the hemopoietic tissues. Cloning in vitro andretransplantation in vivo.[J]. Transplantation.1974,17(4):331-340.
    [104] Minguell JJ, Erices A., Conget P. Mesenchymal stem cells.[J]. Exp BiolMed(Maywood).2001,226(6):507-520.
    [105] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells.[J]. Science1999,284:143-147.
    [106] Smith JR, Pochampally R, Perry A, et al. Isolation of a highly clonogenic andmultipotential subfraction of adult stem cells from bone marrow stroma.[J]. StemCells.2004,22:823-831.
    [107] Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeuticeffects of bone marrow-derived mesenchymal cells in children with osteogenesisimperfecta.[J]. Nat Med.1999,5:262-264.
    [108] LeBlanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acutegraft-versus-host disease with third party haploidentical mesenchymal stem cells.[J].Lancet.2004,363(9419):1439-1441.
    [109] Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor1onstem-cell homing and tissue regeneration in ischaemic cardiomyopathy.[J]. Lancet.2003,362(9385):697-703.
    [110] Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeuticeffects of bone marrow-derived mesenchymal cells in children with osteogenesisimperfecta.[J]. Nat Med.1999,5(3):309-313.
    [111] Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrowtransplantation in children with severe osteogenesis imperfecta.[J]. Blood.2001,97(5):1227-1231.
    [112] Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche.[J]. Nature.2001,414(6859):98-104.
    [113] Mitsiadis TA, Barrandon O, Rochat A, et al. Stem cell niches in mammals.[J]. ExpCell Res.2007,313:3377-3385.
    [114] Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stemcells in multiple human organs.[J]. Cell Stem Cell.2008,3(3):301-313.
    [115] Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal andhaematopoietic stem cells form a unique bone marrow niche.[J]. Nature.2010,446(7308):829-834.
    [116] Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguishhematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.[J]. Cell.2005,121:1109-1121.
    [117] Spiegel A, Kalinkovich A, Shivtiel S, et al. Stem cell regulation via dynamicinteractions of the nervous and immune systems with the microenvironment.[J].Cell Stem Cell.2008,3:484-492.
    [118] Qi MC, Hu J, Zou SJ, et al. Mechanical strain induces osteogenic differentiation:Cbfa1and Ets-1expression in stretched rat mesenchymal stem cells.[J]. Int J OralMaxillofac Surg.2008,37:453-458.
    [119]李继华,胡静,王志国等.牵张成骨时整合素β1在细胞内外张应力传递中的作用.[J].口腔医学研究.2005,127-129.
    [120]魏奉才,张东,刘少华等.整合素αVβ3在下颌牵张成骨过程中表达的实验研究.[J].华西口腔医学杂志.2005,474-477.
    [121]龙洁,田卫东,樊瑜波等.张力对成骨样细胞NF-κBp65表达活性的影响.[J].生物医学工程学杂志.2008,88-91.
    [122] Haasper C, Jagodzinski M, Drescher M, et al. Cyclic strain induces FosB andinitiates osteogenic differentiation of mesenchymal cells.[J]. Exp Toxicol Pathol.2008,59:355-363.
    [123] Shi S and Gronthos S. Perivascular niche of postnatal mesenchymal stem cells inhuman bone marrow and dental pulp.[J]. J Bone Miner Res.2003,18:696-704.
    [124] Potapova IA, Brink PR, Cohen IS, et al. Culturing of human mesenchymal stemcells as three-dimensional aggregates induces functional expression of CXCR4thatregulates adhesion to endothelial cells.[J]. J Biol Chem.2008,283:13100-13107.
    [125] Jung Y, Wang J, Schneider A, et al. Regulation of SDF-1(CXCL12) production byosteoblasts; a possible mechanism for stem cell homing.[J]. Bone.2006,38:497-508.
    [126] Otsuru S, Tamai K, Yamazaki T, et al. Circulating bone marrow-derived osteoblastprogenitor cells are recruited to the bone-forming site by the CXCR4/stromalcell-derived factor-1pathway.[J]. Stem Cells.2008,26:223-234.
    [127] Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of theSDF-1(CXCL12)/CXCR4axis blocks prostate cancer metastasis and growth inosseous sites in vivo.[J]. J Bone Miner Res.2005,20:318-329.
    [128] Morrison SJ and Spradling AC. Stem cells and niches: mechanisms that promotestem cell maintenance throughout life.[J]. Cell.2008,132:598-611.
    [129] Colmone A and Sipkins DA. Beyond angiogenesis: the role of endothelium in thebone marrow vascular niche.[J]. Transl Res.2008,151:1-9.
    [130] Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervoussystem regulate hematopoietic stem cell egress from bone marrow.[J]. Cell.2006,124:407-421.
    [131] Potapova IA, Brink PR, Cohen IS, et al. Culturing of human mesenchymal stemcells as three-dimensional aggregates induces functional expression of CXCR4thatregulates adhesion to endothelial cells.[J]. J Biol Chem.2008,283:13100-7.
    [132] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor1/CXCR4signalingis critical for the recruitment of mesenchymal stem cells to the fracture site duringskeletal repair in a mouse model.[J]. Arthritis Rheum.2009,60:813-823.
    [133] Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervoussystem regulate hematopoietic stem cell egress from bone marrow.[J]. Cell2006,124:407-421.
    [134] Mills PJ, Perez CJ, Adler KA, et al. The effects of spaceflight on adrenergicreceptors and agonists and cell adhesion molecule expression.[J]. J Neuroimmunol2002,132:173-179.
    [135] Wiley LA, Rupp GR, Steinle JJ. Sympathetic innervation regulates basementmembrane thickening and pericyte number in rat retina.[J]. Invest Ophthalmol VisSci.2005,46:744-748.
    [136] Garlet TP, Coelho U, Repeke CE, et al. Differential expression of osteoblast andosteoclast chemmoatractants in compression and tension sides during orthodonticmovement.[J]. Cytokine.2008,42:330-335.
    [137] Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal andhaematopoietic stem cells form a unique bone marrow niche.[J]. Nature.2010,446(7308):829-834.
    [138] Yamaza T, Ren G, et al. Mouse Mandible Contains Distinctive Mesenchymal StemCells.[J]. Journal of Dental Research.2010,90(3):317-324.
    [139] Elefteriou F. Regulation of bone remodeling by the central and peripheral nervoussystem.[J]. Archives of Biochemistry and Biophysics.2008,473(2):231-236.
    [140] Li H, Fong C, Chen Y, et al. Beta-adrenergic signals regulate adipogenesis of mousemesenchymal stem cells via cAMP/PKA pathway.[J]. Mol Cell Endocrinol.2010,323(2):201-207.
    [141] Yaniv S, Benshachar D, Klein E. Norepinephrine-glucocorticoids interaction doesnot annul the opposite effects of the individual treatments on cellular plasticity inneuroblastoma cells.[J]. European Journal of Pharmacology.2008,596(1-3):14-24.
    [142] Torres K, Antonelli L, Souza A, et al. Norepinephrine, dopamine anddexamethasone modulate discrete leukocyte subpopulations and cytokine profilesfrom human PBMC.[J]. Journal of Neuroimmunology.2005,166(1-2):144-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700