用户名: 密码: 验证码:
难治/复发急性髓系白血病线粒体ATP合酶β亚单位(ATPsyn-β)水平的变化及与白血病耐药、预后关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     急性髓细胞白血病(acute myelogenous leukemia, AML)是成年人最常见的急性白血病,目前它的治疗仍以化疗为主,但有70%左右获得缓解的患者最终复发并演变为难治性白血病,导致治疗失败而死亡。临床上导致白血病化疗失败最重要的原因是白血病细胞耐药。有关白血病细胞耐药的机制至今仍未完全阐明,因此寻找新的耐药分子靶标,对于提高急性髓细胞白血病的疗效,改善其预后具有重要的临床意义。
     能量代谢是肿瘤细胞代谢的中心环节,而线粒体成为近年来研究的热点。分析特定类型肿瘤中线粒体相关基因和蛋白的变化并寻找其规律或许能为肿瘤患者的诊断和治疗提供有意义的线索。线粒体ATP合酶是线粒体氧化磷酸化的限速酶,其p亚单位(ATPsyn-β)是ATP合酶中唯一起催化作用的亚基。有研究者观察到在结肠癌、肺癌、乳腺癌、食道癌、胃癌、肾癌等实体肿瘤细胞中线粒体ATPsyn-β表达下降,并且可能与肿瘤细胞的化疗耐药有关。
     目前有关急性白血病线粒体ATP酶的研究尚少。我们课题组在前期研究中对慢性粒细胞白血病(chronic myelogenous leukemia, CML)原代耐药细胞及耐药细胞株ATPsyn-β的表达研究显示ATPsyn-β可作为一个独立的耐药相关蛋白参与调节CML急变患者的耐药。
     本研究旨在观察急性髓细胞白血病患者白血病细胞中线粒体ATPsyn-β的表达及ATP酶活性的变化,并分析其与临床疗效、化疗耐药的关系,为急性白血病耐药机制研究提供新的思路。
     第一章线粒体ATPsyn-β在急性髓系白血病患者骨髓单个核细胞及CD34+白血病细胞中的表达
     目的:
     检测线粒体ATPsyn-β在不同急性髓系白血病患者中的表达,并分析其与AML患者耐药的关系。
     方法:
     1.收集我院2010年10月~2012年6月期间急性髓系白血病(非M3型)住院患者骨髓标本118例(包括初诊患者38例,完全缓解患者38例,复发/难治患者42例),骨髓相对正常的非恶性血液病门诊患者骨髓标本20例作为对照。采用荧光定量PCR、western印迹和流式细胞术检测患者骨髓单个核细胞(BMMCs)中线粒体ATPsyn-p mRNA和蛋白的表达水平。
     2.用CD34正选免疫磁珠分选20例急性髓系白血病患者BMMCs,得到CD34阳性的白血病干/祖细胞,应用荧光定量PCR、 western印迹测定其ATPsyn-β水平。
     3.用MTT法检测急性髓系白血病患者(缓解患者38例,复发/难治患者42例)BMMCs体外对阿霉素的敏感性,并分析线粒体ATPsyn-β表达水平与体外阿霉素耐药性的关系。结果:
     1.非M3型急性髓系白血病患者(n=118) BMMCs中线粒体ATPsyn-β mRNA和蛋白水平较正常骨髓BMMCs呈显著性降低,P<0.01。
     2.与AML缓解组(n=38)相比,复发难治组(n=42)骨髓BMMCs及CD34+细胞线粒体ATPsyn-β mRNA及蛋白水平均下降,P=0.004;且两组患者CD34+细胞中ATPsyn-β mRNA差异较BMMCs来源标本更显著,P=0.001。
     3.阿霉素对复发/难治组和缓解组AML患者骨髓单个核细胞的IC50分别为13.690μM和1.549μM,前者为后者的8.84倍。
     4.复发/难治组AML患者线粒体ATPsyn-β mRNA和蛋白表达水平与体外阿霉素对骨髓单个核细胞的IC50值呈显著负相关,P<0.05。
     结论:
     1.线粒体ATP合酶p亚单位(ATPsyn-β) mRNA及蛋白质表达在非M3型急性髓系白血病患者中较正常人明显降低。
     2.复发/难治急性髓系白血病患者骨髓单个核细胞中线粒体ATPsyn-β mRNA及蛋白表达较缓解期患者下调。复发/难治急性髓系白血病患者CD34阳性细胞中ATPsyn-β表达低于缓解期患者。ATPsyn-β表达下调与骨髓单个核细胞体外对阿霉素的耐药性存在负相关,提示ATPsyn-β与化疗耐药有关。
     第二章难治/复发急性髓系白血病原代细胞及耐药白血病细胞株线粒体ATP酶活性变化及意义
     目的:
     测定不同急性髓系白血病患者骨髓单个核细胞中线粒体ATP酶活性,并分析其临床意义。
     方法:
     收集42例急性髓系白血病(非M3型)患者骨髓标本并分离单个核细胞,提取BMMCs以及阿霉素耐药细胞株(HL-60/ADM, K562/A02)的线粒体;利用ATP酶水解ATP生成ADP和Pi的原理,用酶标方法测定Pi浓度,以间接反映线粒体ATP酶的活性。
     结果:
     1、阿霉素耐药细胞株HL-60/ADM. K562/A02的ATP酶活性(38.22±2.00U,36.70±7.47U)较其亲本细胞株HL-60(132.06±14.65U)、 K562(65.43±1.31U)呈显著降低,P<0.05。
     2、复发/难治急性髓系白血病患者(n=26) BMMCs线粒体ATP酶平均活性为20.33U,低于缓解组患者(n=16)的31.17U,P<0.05。ATP酶活性的高低与ATPsyn-β mRNA的表达量呈正相关。
     结论:
     1.阿霉素耐药白血病细胞株HL-60/ADM、K562/A02存在ATP酶活性显著下降;复发难治急性髓系白血病患者骨髓单个核细胞线粒体ATP酶活性显著地低于缓解组病人,提示线粒体ATP酶活性下降与急性髓系白血病化疗耐药相关。
     2.线粒体ATP酶活性与ATPsyn-β mRNA的表达水平呈正相关。
     第三章线粒体ATPsyn-β在急性髓系白血病耐药细胞株中的表达及对细胞增殖、凋亡和耐药特性的影响
     目的:探讨ATPsyn-β对阿霉素诱导细胞增殖凋亡的影响,通过基因转染、RNA干扰技术分析ATPsyn-β表达水平的变化与HL-60/ADM细胞耐药习性产生及耐药逆转的关系。
     方法:
     1.采用荧光定量PCR、western印迹、流式细胞术检测HL-60/ADM耐药细胞株线粒体ATPsyn-β表达。
     2.用RNA干扰技术抑制ATPsyn-β表达后,MTT法检测干扰前后阿霉素对HL-60细胞的增殖抑制作用;通过瑞氏-吉姆萨染色和Hoechst33258染色观察细胞形态的变化;流式细胞术检测细胞对阿霉素的摄取以及细胞早期凋亡率。荧光定量PCR测定MRP的变化。
     3.ATPsyn-β重组质粒转染入HL-60/ADM细胞株,MTT法检测转染前后阿霉素对HL-60/ADM细胞的增殖抑制作用;通过瑞氏-吉姆萨染色和Hoechst33258染色观察细胞形态的变化;流式细胞术检测细胞对阿霉素的摄取以及细胞早期凋亡率。荧光定量PCR测定MRPmRNA的变化。
     结果:
     1.HL-60/ADM耐药细胞存在ATPsyn-β mRNA水平显著降低,与亲本非耐药HL-60细胞相比,其mRNA水平下降了2.6倍,P<0.01。HL-60/ADM细胞MRP mRNA表达水平较其亲本的HL-60细胞增加了37倍。
     2.HL-60/ADM耐药细胞线粒体ATPsyn-β蛋白表达水平较其亲本HL-60细胞明显下调,P<0.05。
     3.在RNA干扰实验,阿霉素对ATPsyn-β干扰组细胞的IC50为1.67±0.241μM,而未干扰组细胞的IC5o为0.37±0.25μM,P<0.05。在重组质粒转染实验,不论阿霉素处理细胞24小时还是48小时,与对照组细胞相比,ATPsyn-β转染组ICso均显著降低,有统计学差异。
     4.ATPsyn-β-siRNA可抑制HL-60细胞对阿霉素的摄取。阿霉素作用细胞1小时后,与对照相比,同一时间点RNA干扰后的细胞摄取阿霉素荧光阳性率有显著下降。而ATPsyn-β重组质粒可促进HL-60/ADM细胞对阿霉素的摄取,阿霉素作用细胞4小时后,与对照相比,同一时间点转染后的细胞内阿霉素荧光阳性率明显增加。
     5.RNA干扰下调ATPsyn-β表达可抑制阿霉素诱导的HL-60细胞早期凋亡,而基因转染上调ATPsyn-β表达可促进阿霉素诱导的HL-60/ADM细胞凋亡。
     结论:
     1.HL-60/ADM耐药细胞株中线粒体ATPsyn-β表达显著低于其亲本的HL-60细胞。
     2.下调线粒体ATPsyn-β使HL-60细胞对阿霉素的耐药性增加,并阻滞细胞凋亡;上调ATPsyn-β基因表达可以逆转HL-60/ADM细胞对阿霉素的耐药,促进耐药细胞的凋亡。
     3.ATPsyn-β可影响HL-60及其耐药细胞株MRP基因的表达。
     第四章急性髓系白血病患者ATPsyn-β表达高低与预后分析
     目的:
     总结118例急性髓系白血病患者实验室指标与预后风险。分析AML患者ATPsyn-β表达与疗效的关系。
     方法:
     利用Kaplan-Meier生存分析、t检验、Wilcoxon符号秩和检验等对年龄、ECOG评分、白细胞计数与CR期、OS的关系进行分析。分析ATPsyn-β表达与预后的关系。
     结果:
     1、118例AML患者,45岁以下组的平均缓解期和总生存期分别为16.06个月和25.17个月,45岁以上组分别为9.49个月、16.98个月,差异有统计学意义。ECOG评分0-2级的患者生存状况要好于3-4级者,P<0.01。白细胞计数与OS呈显著负相关。以30×109/L为切点,白细胞计数增高组预后较差,两组的平均OS分别12.25个月和25.65个月,P<0.05。
     2、不同性别、年龄及体能状态的患者ATPsyn-β的表达差异不显著,ATPsyn-β的表达量与FAB分型关系不明显。初诊AML患者ATPsyn-β低表达组的中位缓解期为4个月,而ATPsyn-β高表达组的中位缓解期为8个月,P<0.05;截止末次随访日期,两组在总生存期上无明显差异。复发难治患者ATPsyn-β的表达高低与总生存期长短显著相关,复发难治AML患者ATPsyn-β mRNA低表达者总生存期较短,为10.68±7.87个月,而高表达者为21.28±1.26个月,P<0.05。
     结论:
     1、年龄、体能状态、初诊时白细胞计数高低是急性髓系白血病患者预后的主要危险因素。
     2、线粒体ATPsyn-β是一个新的提示急性髓系白血病预后的指标,ATPsyn-β表达水平的高低与患者缓解期的长短呈显著相关。复发难治AML患者ATPsyn-β mRNA低表达者总生存期较短。
Background
     Leukemia is a group of heterogeneous diseases characterized by either a block in differentiation, aberrant and accelerated growth, or a combination of both with considerable diversity in terms of clinical behavior and prognosis. Acute myelogenous leukemia (AML) is the most common type of leukemia in adults. The main therapy is still chemotherapy induction and consolidation. However, nearly70%of responding patients will eventually relapse and die of the disease. One of the major causes of failure in the treatment is drug resistance. But the mechanisms underlying the development of multidrug resistance in AML are not fully understood. Therefore, it is significant to explore novel molecular targets for drug-resistant reversal in AML patients.
     Recently, a rebirth of the interest in the energetic metabolism of cancer spurred, and mitochondria has become a central player. The mitochondrial ATP synthase is the enzyme complex that carries out the synthesis of ATP. The β subunit of mitochondrial ATP synthase (ATPsyn-β) is the rate-limiting component of mitochondria oxidative phosphorylation. Down-regulated expression of mitochondrial ATPsyn-β has been reported in many types of tumors,including colon、lung、breast、 esophagea、stomach and kidney.
     Our previous study shows that down-regulated expression of mitochondria ATPsyn-β is associated with the development of drug resistance in chronic myeloid leukemia (CML). Here, we studied the expression of mitochondrial ATPsyn-β and the activity of mitochondrial ATPase in AML patients.
     Chapter Ⅰ The expression of mitochondrial ATPsyn-β on bone marrow mononuclear cells and CD34+cells form AML patients and the correlation between ATPsyn-β level and sensitivity to adriamycin in vitro.
     Objective:To investigate the expression of mitochondrial ATPsyn-β in AML patients and the association with chemotherapy response.
     Methods:
     1. Bone marrow samples were collected from118non M3AML patients (42of relapsed/refractory,38of complete remission duration,38of newly diagnosis) and20patients with benign hematological diseases(for control)from Oct,2010to Jun,2012. Expression of mitochondrial ATPsyn-β mRNA and protein in bone marrow mononuclear cells (BMMCs) of AML patients were detected by RT-PCR, western blot and flow cytometry respectively.
     2. The purified CD34positive cells were acquired from BMMCs of20AML patients using the CD34positive selection immunomagnetic beads. Then the expression of ATPsyn-β mRNA and protein were analyzed by RT-PCR and western blot.
     3. Sensitivity of BMMCs to adriamycin in relapsed/refractory and remission duration AML patients was detected by MTT assay in vitro. Correlation between expression of ATPsyn-β and adriamycin sensitivity in the two groups was used linear correlation to analysis.
     Results:
     1. Expression of ATPsyn-β mRNA and protein in AML patients (n=118) was downregulated (P<0.01).
     2. Different levels of mitochondrial ATPsyn-β mRNA and protein were detected in AML patients. Compared with remission duration patients(n=38), expression of ATPsyn-β in relapsed or refractory AML patients(n=42)was significantly downregulated both in BMMCs and CD34positive cells, P<0.05.
     3. The relative level of ATPsyn-β mRNA was higher in CD34+cells than in CD34-cells, P<0.05.
     4. IC50value of adriamycin to BMMCs from relapsed/refractory and remission duration AML patients was13.69μM and1.549μM respectively.
     5. The mRNA and protein expression of ATPsyn-β significantly inversely correlated with IC50of adriamycin to BMMCs in relapsed/refractory AML patients, P<0.05.
     Conclusion:The mRNA and protein expression of mitochondrial ATPsyn-β was significantly downregulated in non-M3AML patients. Compared with complete remission patients, the mRNA and protein level of ATPsyn-β in relapsed/refractory AML patients were lower in both bone marrow mononuclear cells and CD34positive cells. And this decrease correlated with resistance of primary leukemia cells to adriamycin in vitro, suggesting that down-regulation of ATPsyn-β in AML is associated with drug resistance.
     Chapter II The activity of mitochondrial ATP synthase in drug-resistant leukemia cell lines and primary cells of AML patients
     Objective:To investigate the activity of mitochondrial ATP synthase in AML patients and the clinic significance.
     Methods:After the isolation of mitochondia, the activity of ATPase in adriamycin resistant cell lines(K562/A02、HL-60/ADM) and BMMCs of AML patients was measured in the direction of ATP hydrolysis using a kit.
     Results:
     1. The mitochondrial ATPase activity of K562/A02(36.70±7.47U) and HL-60/ADM cells(38.22±2.00U) was lower than K562(65.43±1.31U) and HL-60cells(132.06±14.65U), P<0.05.
     2. The mitochondrial ATPase activity in relapsed or refractory samples (n=26) was obviously reduced when compared with those of complete remission samples (n=16). The mean value was20.33U vs.31.17U, P<0.05.
     3. Mitochondrial ATPsyn-β mRNA expression showed a positive correlation with ATPase activity (rs=0.294, P=0.031).
     Conclusion:The activity of mitochondrial ATP synthase was down-regulated in adriamycin resistant cell lines and relapsed/refractory AML patients. Mitochondrial ATPsyn-β mRNA expression had a positive correlation with ATPase activity.
     Chapter Ⅲ Expression of mitochondrial ATPsyn-β in adriamycin resistance AML cell lines and its effect on growth inhibition and apoptosis induction
     Objective:To explore the influence of ATPsyn-β on proliferation-inhibiting capability and apoptosis-inducing effect of adriamycin in leukemia cells. To analyse whether the change of ATPsyn-β level could lead to or reverse drug resistance.
     Methods:
     1. Expression of mitochondrial ATPsyn-β in HL-60and HL-60/ADM cell lines was detected by RT-PCR, western blot and flow cytometry.
     2. Afer inhibition of ATPsyn-β expression by RNA interference or increase it by gene transfection, HL-60and HL-60/ADM cells were treated with different concentrations of adriamycin, then (1)cell viability was analyzed with MTT colorimetric assay test;(2) cellular uptake of adriamycin was detected by flow cytometry;(3) morphologic character of apoptosis was evaluated by Wrights-Giemsa staining and Hoechst33258staining;(4)the percentage of earlier apoptosis cell was analyzed by flow cytometry;(5)expression of MRP mRNA relative level was detected by RT-PCR.
     Results:
     1.The expression of mitochondrial ATPsyn-P in HL-60/ADM cells was lower than HL-60cells, and MRP mRNA expression was higher.
     2.Overexpression of ATPsyn-β in HL-60/ADM cell line restored cells' sensitivity to adriamycin, promoted earlier cell apoptosis and decreased the expression levels of MRP. In contrast, suppression of ATPsyn-β expression weakened cell'sensitivity to adriamycin, blocked cell apoptosis and increased the expression of MRP.
     Conclusion:The expression of mitochondrial ATPsyn-p in HL-60/ADM cells was downregulated. Inhibition of mitochondrial ATP synthase β subunit led to increased chemo-resistance and apoptotic resistance in HL-60cells and up regulation of mitochondrial ATPsyn-β restored chemo-sensitivity and promoted earlier cell apoptosis in HL-60/ADM cells.
     Chapter Ⅳ Expression of ATPsyn-P in AML patients with prognostic analysis
     Objective:To analyze the impact of established prognostic factors on the clinical outcome in patients with AML. To determine the prognostic value of ATPsyn-β in AML patients.
     Methods:We analyzed3variables for their impact on complete remission (CR) duration and overall survival (OS) in118AML patients, including age, performance status and WBC counts. We also determined the role of ATPsyn-P as a poor prognostic factor in AML patients.
     Results:
     1. Multivariate analysis determined old age (older than45years), poor PS (score3-4), leukocytosis (WBC>30×109) as poor prognostic factors for OS.
     2. Much of the relation between ATPsyn-β and therapeutic resistance was observed. The median CR duration in newly diagnosis AML patients with low ATPsyn-β mRNA expression was4months, shorter than that in high ATPsyn-β expression patients (eight months). The overall survival of relapsed/refractoty AML patients with low ATPsyn-β mRNA expression was10.68±7.87months, shorter than that with high lower ATPsyn-P mRNA expression(21.28±1.26months), P<0.05。
     Conclusion:
     1. Age, performance status, WBC counts onset were independent prognostic factors for clinical outcome in AML.
     2. As a prognostic factor for survival, low level of mitochondrial ATPsyn-P was associated with an increased relapse risk, shorter CR duration and overall survival.
引文
[1]Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol.2011; 29(5):487-494.
    [2]Falini B, Nicoletti I, Martelli MF, et al. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMcAML):biologic and clinical features. Blood.2007;109(3):874-885.
    [3]Mills KI, Kohlmann A, Williams PM, et al. Microarray based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063-1072.
    [4]Pasqualucci L, Liso A, Martelli MP, et al. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia:Impact on WHO classification. Blood.2006;108(13):4146-4155.
    [5]Weltermann A, Fonatsch C, Haas OA, et al. Impact of cytogenetics on the prognosis of adults with de novo AML in first relapse. Leukemia.2004; 18(2):293-302.
    [6]Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistics,2001. CA Cancer J Clin.2001;51:15-36.
    [7]Hernandez JA,Land KJ,McKenna RW.Leukemia, myeloma,and other lymphoreticular neoplasms. Cancer.1995; 75:381.
    [8]Wingo PA, Tong T, Bolden S.Cancer statistics 1995. CA Cancer J Clin 1995;45:8.
    [9]Ries LAG, Eisner MP, Kosary CL, et al. (eds) (2004) SEER cancer statistics review,1975-2004, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975-2004 based on November 2006 SEER data submission, posted to SEER web site,2007.
    [10]Redaelli A, Lee JM, Stephens JM, et al. Acute myeloid leukemia:Epidemiology and clinical burden. Expert Rev Anticancer Ther 2003;3(5):695-710.
    [11]Sandler DP, Ross JA.Epidemiology of acute leukemia in children and adults. Semin Oncol.1997;24(1):3-16.
    [12]Lo'wenberg G. Strategies in the treatment of acute myeloid leukemia. Haematologica.2004; 89(9):1029-1032.
    [13]Burnett AK, Goldstone AH, Stevens RM, et al. Randomised comparison of addition of autologous bone marrow transplantation to intensive chemotherapy for acute myeloid leukemia in first remission:results of MRC AML10 trial. UK Medical Research Council Adult and Children's Leukemia Working Parties. Lancet.1998;351(9104):700-708.
    [14]Cassileth PA, Harrington DP, Appelbaum FR, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med.1998; 339(23): 1649-1656.
    [15]Harousseau JL, Cahn JY, Pignon B, et al. Comparison of autologous bone marrow transplantation and intensive chemotherapy as post-remission therapy in adult acute myeloid leukemia:the Groupe Ouest Est Leucemies Aigues Myeloblastiques (GOELAM). Blood.1997;90(8):2978-2986.
    [16]Suciu S, Mandelli F, de Witte T, et al. Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1):an intention-totreat analysis of the EORTC/GIMEMAAML-10 trial. Blood.2003; 102(4):1232-1240.
    [17]Marzac, C., Garrido E., Tang R, et al. ATP Binding Cassette transporters associated with chemoresistance:transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica.2011; 96(9):1293-1301.
    [18]Jose M. Cuezva, Maryla Krajewska, Miguel Lopez de Heredia, et al. The Bioenergetic Signature of Cancer A Marker of Tumor. Cancer Res 2002; 62:6674-6681.
    [19]Morrow CS, Smitherman PK, Townsend AJ.Role of multidrug-resistance protein in glutathione S-transferase P1-1-mediated resistance to 4-nitroquinoline 1-oxidetoxicities in HepG2 cells.Mol Carcinog,2000;29(3):170-178.
    [20]Solbach TF, Konig J, Fromm MF,et al.ATP-binding cassette transporters in the heart. Trends Cardiovasc Med,2006;16(1):7-15.
    [21]Vincent M. Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses,2006,66(4):715-731.
    [22]Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther,2006,109(1-2):137-161.
    [23]Norman BH, Lander PA, Gruber JM, et al.Cyclohexyl-linked tricyclic isoxazoles are potent and selective modulators of the multidrug resistance protein (MRP1).Bioorg Med Chem Lett,2005,15(24):5526-5530.
    [24]Yeh JJ, Hsu NY, Hsu WH, et al. Comparison of chemotherapy response with P-glycoprotein, multidrug resistance-related protein-1, and lung resistance-related protein expression in untreated small cell lung cancer.Lung,2005,183(3):177-183.
    [25]Kuo TH, Liu FY, Chuang CY, et al. To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression. Nucl Med Biol.2003,30(30):627-632.
    [26]Zhu Y, Kong C, Zeng Y, et al. Expression of lung resistance-related protein in transitional cell carcinoma of bladder. Urology.2004,63(4):694-698.
    [27]Sunnaram Bl, Gandemer V, Sebillot M, et al. LRP overexpressiomin monocytic lineage. Leuk Res.2003,27(8):755-759.
    [28]Joseph E, Ganem B, Eiseman JL,et al. Selective inhibition of MCF-7(piGST)treast tumors using glutathione transferase-derived 2-methylene-cycloalkenones.J Med Chem.2005,48(21):6549-6552.
    [29]Depeille P, Cuq P, Passagne I,et al. Combined effects of GSTP1 and MRP1 in melanoma drug resistance. Br J Cancer.2005,93(2):216-223.
    [30]Pors K, Patterson LH. DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents.Curr Top Med Chem.2005,5(12):1133-1149.
    [31]Lelong-Rebel IH, Cardarelli CO. Differential phosphorylation patterns of P-glycoprotein reconstituted into a proteoliposome system:insight into additional unconventional phosphorylation sites. Anticancer Res,2005.25(6B):3925-3935.
    [32]Lahn M, Kohler G, Sundell K, et al. Protein kinase C alpha expression in breast and ovarian cancer. Oncology.2004,67(1):1-10.
    [33]Hong L, Piao Y, Han Y, et al. Zinc ribbon domain-containing 1(ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and Bcl-2. Mol Cancer Ther.2005,4(12):1936-1942.
    [34]Dixon-Mclver A, East P, Mein CA,et al.Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukemia. Plos One. 2008,3(5):e2141.
    [35]曹翊雄.K562与K562/A02细胞株中白血病耐药相关microRNA的筛选研究:[D].长沙:中南大学,2009.
    [36]罗湘建,曹亚.肿瘤能量代谢机制研究进展[J].生物化学与生物物理进展,2011,38(7):585-592.
    [37]Warburg O.On the origin of cancer cells. Science.1956; 123:309-314.
    [38]Warburg O. The Metabolism of Tumors. London:Arnold Constable,1930, 254-270.
    [39]Garber,K. Energy boost:the Warburg effect returns in a new theory of cancer. J. Natl Cancer Inst.2004,96,1805-1806.
    [40]Perry,M.E., Dang,C.V., Hockenbery,D, et al. Highlights of the National Cancer Institute Workshop on mitochondrial function and cancer. Cancer Res.2004,64, 7640-7644.
    [41]Fliss MS, Usadel H, Caballero OL, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science.2000,287:2017-2019.
    [42]Liu VW, Shi HH, Cheung AN, et al. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas.Cancer Res.2001,61:5998-6001.
    [43]Parrella P, Xiao Y, Fliss M. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res.2001,61:7623-7626.
    [44]Kumimoto H, Yamane Y, Nishimoto Y et al. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer 2004,108:228-231.
    [45]Van de Vijver,M.J., He,YD., Van't Veer LJ, et al. A gene expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.2002,347,1999-2009.
    [46]Verma,M., Kagan,J., Sidransky,D. et al. Proteomic analysis of cancer-cell mitochondria. Nat. Rev. Cancer,2003,3,789-795.
    [47]Jacquemier,J., Ginestier,C, Rougemont,J. et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res.2005, 65,767-779.
    [48]Cuezva JM, Ostronoff LK, Ricart J, et al. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 1997,29:365-77.
    [49]Shin YK, Yoo BC, Chang HJ, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 2005,65(8):3162-3170.
    [50]Lin PC, Lin JK, Yang SH, et al. Expression of beta-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer:clinical data analysis and evidence from an in vitro study. Int J Colorectal Dis 2008,23(12):1223-1232.
    [51]J.M. Cuezva, A.D. Ortega, I. Willers, et al. The tumor suppressor function of mitochondria:translation into the clinics, Biochim. Biophys. Acta 1792 (2009) 1145-1158.
    [52]R.D. Unwin, R.A. Craven, P. Harnden, et al. Proteomic changes in renal cancer and co-ordinatedemonstration of both the glycolytic and mitochondrial aspects of the Warburg effect, Proteomics 3 (2003) 1620-1632.
    [53]Q.Y. He, J. Chen, H.F. Kung, et al. Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics, Proteomics 4 (2004) 271-278.
    [54]E. Hervouet, J. Demont, P. Pecina, et al.A new role for the von Hippel-Lindau tumor suppressor protein:stimulation of mitochondrial oxidative phosphorylation complex biogenesis, Carcinogenesis 26 (2005) 531-539.
    [55]D. Meierhofer, J.A. Mayr, U. Foetschl, et al. Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinomas, Carcinogenesis 25 (2004) 1005-1010.
    [56]P.H. Yin, H.C. Lee, GY. Chau, et al. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma, Br. J. Cancer 90 (2004) 2390-2396.
    [57]Huang W, Zhang YZ, Li DJ, et al. Role of Mitochondria in Drug Resistance of HL-60 Cells. Acta Med Univ Sci Technol Huazhong 2005,34:301-303.
    [58]李睿娟.慢性粒细胞白血病急变细胞株多药耐药相关蛋白的蛋白质组学分析及耐药机制研究:[D].长沙:中南大学,2007
    [59]R.J. Li, GS. Zhang, Y.H. Chen, et al.Downregulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance, Ann Oncol.2010 (7):1506-1514
    [60]杨景柯.线粒体ATP酶p亚单位在急性白血病多药耐药中的作用及调控机制研究:[D].长沙:中南大学,2010
    [61]张之南,沈悌.血液病诊断与疗效标准[M].第3版.北京:科学出版社,2003:131-132.
    [62]急性髓系白血病(复发难治性)中国诊疗指南(2011年版)[J],中华血液学杂志,2011,32(12):887-889.
    [63]Noonan KE, Beck C, Holzmayer TA, et al.Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci.1990,87:7160-7164.
    [64]T Oguri', Y Fujiwaral, T Isobel, et al.Expression of y-glutamylcysteine synthetase (y-GCS) and multidrug resistance-associated protein (MRP), but not human canalicular multispecific organic anion transporter (cMOAT), genes correlates with exposure of human lung cancers to platinum drugs British Journal of Cancer. 1998,77(7),1089-1096.
    [65]Boyer PD. The ATP synthase. A splendid molecular machine. Annu Rev Biochem.1997,66:717-749.
    [66]A.E. Senior, S. Nadanaciva, J. Weber.The molecular mechanism of ATP synthesis by F1F0-ATP synthase, Biochim. Biophys. Acta.2002, (1553)188-211.
    [67]R.K. Nakamoto, C.J. Ketchum, M.K. al-Shawi. Rotational coupling in the F0F1 ATP synthase, Annu. Rev. Biophys. Biomol. Struct.28 (1999) 205-234.
    [68]D. Stock, C. Gibbons, I. Arechaga, et al.The rotary mechanism of ATP synthase, Curr. Opin. Struct. Biol.10 (2000) 672-679.
    [69]Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2001,2(9):669-677.
    [70]Capaldi RA, Aggeler R. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Trends Biochem Sci.2002(27):154-160.
    [71]Abrahams JP, Leslie AG, Lutter R, et al. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature.1994(370):621-628.
    [72]Cuezva JM, Chen G, Alonso AM, et al. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis.2004,25(7):1157-1163.
    [73]Isidoro A, Martinez M, Fernandez PL. et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J.2004,378:17-20.
    [74]Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, et al. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res.2007,67(19):9013-9017.
    [75]Isidoro A, Casado E, Redondo A, et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis. 2005,26(12):2095-2104.
    [76]Chen G, Gharib TG, Huang CC, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics.2002;1(4):304-313.
    [77]Lal A, Lash AE, Altschul SF, et al. A public database for gene expression in human cancers. Cancer Res.1999; 59(21):5403-5407.
    [78]Willers IM, Isidoro A, Ortega AD et al. Selective inhibition of beta-F1-ATPase mRNA translation in human tumours. Biochem J.2010,426:319-326.
    [79]Imke M. Willers, Jose M. Cuezva. Post-transcriptional regulation of the mitochondrial H+-ATP synthase:A key regulator of the metabolic phenotype in cance. Biochimic Biophysica Acta.2011,1807:543-551.
    [80]A.D. Ortega, I.M. Willers, S. Sala, et al. Human G3BP1 interacts with the β-F1-ATPase mRNA and inhibits its translation, J. Cell Sci.2010. (123): 2685-2696.
    [81]H. Tourriere, I.E. Gallouzi, K. Chebli, et al. Ras GAP-associated endoribonuclease G3BP:selective RNA degradation and phosphorylation-dependent localization, Mol. Cell. Biol.2001. (21)7747-7760.
    [82]C.J. Barnes, F. Li, M. Mandal, et al. Heregulin induces expression, ATPase activity, and nuclear localization of G3BP, a Ras signaling component, in human breast tumors, Cancer Res.2002,(62):1251-1255.
    [83]E. Guitard, F. Parker, R. Millon, et al. G3BP is overexpressed in human tumors and promotes S phase entry, Cancer Lett.2001, (162):213-221.
    [84]H.Z. Zhang, J.G. Liu, Y.P. Wei, et al. Expression of G3BP and RhoC in esophageal squamous carcinoma and their effect on prognosis, World J. Gastroenterol.2007, (13):4126-4130.
    [85]Jose M. Cuezva, Maria Sanchez-Arago, Sandra Sala, et al. A message emerging from development:the repression of mitochondrial β-F1-ATPase expression in cancer.J Bioenerg Biomembr.2007,39:259-265.
    [86]Ortega AD, Cuezva JM. New frontiers in mitochondrial biogenesis and disease. In Villarroya F (ed) (2005) Research Signpost, Kerala, India, pp111-139.
    [87]X. Wang. The expanding role of mitochondria in apoptosis. Genes Dev.15 (2001) 2922-2933.
    [88]Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene.2004,23:2746-2756.
    [89]Satrustegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 2007; 87:29-67.
    [90]Brunelle JK, Bell EL, Quesada NM, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab.2005.1:409-414.
    [91]Kaelin, WG ROS:really involved in oxygen sensing. Cell Metab.2005,1, 357-358.
    [92]DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet.2001.106:18-26.
    [93]Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine.Annu Rev Genet.2005,39: 359-407.
    [94]M. Sanchez-Arago, M. Chamorro, J.M. Cuezva. Selection of cancer cells with repressed mitochondria triggers colon cancer progression, Carcinogenesis.2010, (31):567-576.
    [95]J.S. Fang, R.D. Gillies, R.A. Gatenby. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression, Semin. Cancer Biol.2008,18,330-337.
    [96]M.E. Pullman, GC. Monroy. A naturally occurring inhibitor of mitochondrial adenosine triphosphatase, J. Biol. Chem.238 (1963) 3762-3769.
    [97]E. Cabezon, P.J. Butler, M.J. Runswick, et al. Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH, J. Biol. Chem.275 (2000) 25460-25464.
    [98]J.R. Gledhill, M.G Montgomery, A.G Leslie, et al.How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria, Proc. Natl Acad. Sci. USA 104(2007)15671-15676.
    [99]L. Sanchez-Cenizo, L. Formentini, M. Aldea, et al. The up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype, J. Biol. Chem.285 (2010)25308-25313.
    [100]肖湘.水合淫羊藿素对K562白血病细胞株增殖抑制和凋亡诱导作用及机制研究:[D].长沙:中南大学,2009.
    [101]Dey R, Moraes CT. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x (L) in osteosarcoma cells. J. Biol. Chem.2000,275, 7087-7094.
    [102]Park SY, Chang I, Kim JY, et al. Resistance of mitochondrial DNA-depleted cells against cell death:role of mitochondrial superoxide dismutase. J. Biol. Chem.2004,279,7512-7520.
    [103]Kim JY, Kim YH, Chang I, et al. Resistance of mitochondrial DNA-deficient cells to TRAIL:role of Bax in TRAIL-induced apoptosis. Oncogene.2002,21, 3139-3148.
    [104]A. Tomiyama, S. Serizawa, K. Tachibana, et al., Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak, J. Natl Cancer Inst.98 (2006) 1462-1473.
    [105]M.H. Harris, M.G. Vander Heiden, S.J. Kron, et al. Role of oxidative phosphorylation in Bax toxicity, Mol. Cell. Biol.20 (2000) 3590-3596.
    [106]A. Gross, K. Pilcher, E. Blachly-Dyson, et al. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol. Cell. Biol. 20(2000)3125-3136.
    [107]S. Matsuyama, J. Llopis, Q.L. Deveraux, et al. Changes in intramitochondrial and cytosolic pH:early events that modulate caspase activation during apoptosis. Nat. Cell Biol.2 (2000) 318-325.
    [108]S. Matsuyama, Q. Xu, J. Velours, et al.The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1 (1998) 327-336.
    [109]J.F. Sah, C. Kumar, P. Mohanty, pH dependent conformational changes modulate functional activity of the mitochondrial ATPase inhibitor protein. Biochem. Biophys. Res. Commun.194 (1993) 1521-1528.
    [110]Santamaria G, Martinez-Diez M, Fabregat I, et al. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial Ht-ATP synthase. Carcinogenesis.2006,27,925-935.
    [111]Asa Rangert Derolf, Sigurdur Yngvi Kristinsson, Therese M.-L. Andersson, et al. Improved patient survival for acute myeloid leukemia:a population-based study of 9729 patients diagnosed in Sweden between 1973 and 2005. Blood.2009 113(16):3666-3672.
    [112]Delaunay J, Vey N, Leblanc T, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML):a survey of 110 cases from the French AML Intergroup. Blood.2003;102(2):462-469.
    [113]Flach J, Dicker F, Schnittger S, et al. An accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to secondary AML:an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis and SNP microarray profiling. Leukemia. 2011;25(4):713-718.
    [114]Foran JM. New prognostic markers in acute myeloid leukemia:perspective from the clinic. Hematology Am Soc Hematol Educ Program.2010:47-55.
    [115]Gonzalez Garcia JR, Meza-Espinoza JP. Use of the International System for Human Cytogenetic Nomenclature (ISCN) [Letter to the Editor]. Blood. 2006;108(12):3952-3953; author reply 3953.
    [116]Miyazaki Y, Kuriyama K, Miyawaki S, et al. Cytogenetic heterogeneity of acute myeloid leukaemia (AML) with trilineage dysplasia:Japan Adult Leukaemia Study Group-AML 92 study. Br J Haematol.2003;120(1):56-62.
    [117]Singh H, Werner L, Deangelo D, et al. Clinical outcome of patients with acute promyelocytic leukemia and FLT3 mutations. Am J Hematol.2010; 85(12): 956-957.
    [118]Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:results from Cancer and Leukemia Group B (CALGB 8461). Blood.2002;100:4325-4336.
    [119]Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia:a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood.2000;96:4075-4083.
    [120]Damm F, Heuser M, Morgan M, et al. Integrative prognostic risk score in acute myeloid leukemia with normal karyotype. Blood.2011;117(17):4561-4568.
    [121]Hirsch P, Tang R, Marzac C, etal. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC. Haematologica.2011, 97(2):241-245.
    [122]Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia.1996; 10:1911-1918.
    [123]Hong-Ling Peng, Guang-Sen Zhang, Fan-Jie Gong,et al. Fms-like tyrosine kinase (FLT) 3 and FLT3 internal tandem duplication in different types of adult leukemia:analysis of 147 patients. Croat Med J.2008;49:650-659
    [124]Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254-266.
    [125]Medeiros BC, Othus M, Fang M, et al. Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia:the Southwest Oncology Group (SWOG) experience. Blood.2010.116(13):2224-2228.
    [126]Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML:analysis of 1612 patients entered into the MRC AML 10 trial. Blood.1998;92(7):2322-2333.
    [127]Forman D, Stockton D, Moller H, et al.Cancer prevalence in the UK:Results from the EUROPREVAL study. Ann Oncol (2003) 14:648-654.
    [128]Sekeres MA, Stone RM. The challenge of acute myeloid leukemia in older patients. Curr Opin Oncol (2002)14(1):24-30.
    [129]Kantarjian H, O'Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome:predictive prognostic models for outcome. Cancer. 2006;106:1090-1098.
    [130]Lowenberg B, Suciu S, Archimbaud E, et al. Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy-the value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukemia in the elderly:final report. European Organization for the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group. J Clin Oncol.1998; 16:872-881.
    [131]StoneRM,Berg DT, George SL,et al.Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. N Engl J Med.1995; 332:1671-1677.
    [132]Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood.2006;107:3481-3485.
    [133]Hiddemann W, Kern W, Schoch C, et al. Management of acute myeloid leukemia in elderly patients. J Clin Oncol.1999; 17:3569-3576.
    [134]Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341:1051-1062.
    [135]Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer.2007;109:1114-1124.
    [136]Juliusson G, Billstrom R, Gruber A, et al. Attitude towards remission induction for elderly patients with acute myeloid leukemia influences survival. Leukemia. 2006;20:42-47.
    [137]Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood.2001;98:1312-1320.
    [138]Wahlin A, Markevarn B, Golovleva I, et al. Prognostic significance of risk group stratification in elderly patients with acute myeloid leukaemia. Br J Haematol. 2001;115:25-33.
    [139]Mauritzson N, Johansson B, Albin M, et al. A single-center population-based consecutive series of 1500 cytogenetically investigated adult hematological malignancies:karyotypic features in relation to morphology, age and gender. Eur J Haematol.1999;62:95-102.
    [140]Rees JK, Gray RG, Wheatley K. Dose intensification in acute myeloid leukaemia:greater effectiveness at lower cost. Principal report of the Medical Research Council's AML9 study. MRC Leukaemia in Adults Working Party. British Journal of Haematology.1996;94:89-98.
    [141]Oliveira, L. C., L. G. Romano, et al. Outcome of acute myeloid leukemia patients with hyperleukocytosis in Brazil. Med Oncol.2010,27(4):1254-1259.
    [142]Dutcher JP, Schiffer CA, Wiernik PH. Hyperleukocytosis in adult acute nonlymphocytic leukemia:impact on remission rate and duration, and survival. J Clin Oncol.1987;5(9):1364-1372.
    [143]Greenwood MJ, Seftel MD, Richardson C, et al. Leukocyte count as a predictor of death during remission induction in acute myeloid leukemia. Leuk Lymphoma.2006;47(7):1245-1252.
    [144]Zhang W, Zhang X, Fan X, et al.. Effect of ICAM-1 and LFA-1 in hyperleukocytic acute myeloid leukaemia. Clin Lab Haematol. 2006;28(3):177-182.
    [145]Stucki A, Rivier AS, Gikic M, et al. Endothelial cell activation by myeloblasts: molecular mechanisms of leukostasis and leukemic cell dissemination. Blood. 2001;97(7):2121-2129.
    [146]Cavenagh JD, Gordon-Smith EC, Gordon MY. The binding of acute myeloid leukemia blast cells to human endothelium. Leuk Lymphoma.1994; 16(1-2): 19-29.
    [147]Lichtman MA, Rowe JM. Hyperleukocytic leukemias:rheological, clinical, and therapeutic considerations. Blood.1982;60(2):279-283.
    [148]Creutzig U, Zimmermann M, Reinhardt D, et al. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia:analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J Clin Oncol.2004;22(21):4384-4393.
    [149]Porcu P, Cripe LD, Ng EW, et al. Hyperleukocytic leukemias and leukostasis:a review of pathophysiology, clinical presentation and management. Leuk Lymphoma.2000;39(1-2):1-18.
    [150]Ravandi, F. New Treatments and Strategies in Acute Myeloid Leukemia. Clinical Lymphoma Myeloma and Leukemia.2011,11:S60-S64.
    [1]Fontenay M, Cathelin S, Amiot M, et al. Mitochondria in hematopoiesis and hematological diseases. Oncogene.2006,25(34):4757-4767.
    [2]Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells:what is so special about them? Trends in Cell Biology.2008,18(4):165-173
    [3]罗湘建,曹亚.肿瘤能量代谢机制研究进展[J].生物化学与生物物理进展,2011,38(7):585-592.
    [4]Warburg O. The Metabolism of Tumors. London:Arnold Constable,1930. pp254-270.
    [5]Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose, Eur J Nucl Med. 1996,23 (12) 1641-1674.
    [6]Plathow C, Weber WA. Tumor cell metabolism imaging, J Nucl Med.2008,49 Suppl 2:43S-63S
    [7]Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, et al. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas, Cancer Res.2007,67(19) 9013-9017.
    [8]DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab. 2008,7(1):11-20.
    [9]Formentini L, Martinez-Reyes I, Cuezva JM. The mitochondrial bioenergetic capacity of carcinomas, IUBMB Life.2010,62(7):554-560.
    [10]Fliss MS, Usadel H, Caballero OL, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science.2000,287(5460):2017-2019.
    [11]Liu VW, Shi HH, Cheung AN, et al. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res.2001,61(16):5998-6001.
    [12]Parrella P, Xiao Y, Fliss M. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 2001,61(20):7623-7626.
    [13]Kumimoto H, Yamane Y, Nishimoto Y, et al. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer.2004,108(2):228-231.
    [14]Pelicano H, Martin DS, Xu RH, et al. Glycolysis inhibition for anticancer treatment. Oncogene.2006;25(34):4633-4646.
    [15]Chen Z, Lu W, Garcia-Prieto C, et al. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 2007,39(3):267-274.
    [16]Xu RH, Pelicano H, Zhang H, et al. Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia 2005,19(12):2153-2158.
    [17]Boag JM, Beesley AH, Firth MJ, et al. Altered glucose metabolism in childhood pre-B acute lymphoblastic leukemia. Leukemia.2006,20(10):1731-1737.
    [18]Hulleman E, Kazemier KM, Holleman A,et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood. 2009,113(9):2014-2021.
    [19]Suganuma K, Miwa H, Imai N, et al. Energy metabolism of leukemia cells: glycolysisversusoxidative phosphorylation. Leuk Lymphoma.2010,51(11): 2112-2119.
    [20]Herst PM, Howman RA, Neeson PJ, et al. The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome. J Leukoc Biol.2011,89(1):51-55.
    [21]Carew JS, Zhou Y, Albitar M, et al. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy:clinical significance and therapeutic implications. Leukemia.2003,17(8):1437-1447.
    [22]Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Research.2009,19(7):802-815.
    [23]Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997,94(2):514-519.
    [24]Marcelino LA, Thilly WG. Mitochondrial mutagenesis in human cells and tissues. Mutat Res 1999,434(3):177-203.
    [25]Mambo E, Gao X, Cohen Y, et al. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA 2003;100:1838-1843.
    [26]He L, Luo L, Proctor SJ, et al. Somatic mitochondrial DNA mutations in adult-onset leukaemia. Leukemia.2003,17(12):2487-2491.
    [27]Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta.2011,1807(6):534-542.
    [28]Clayton DA, Vinograd J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. J Pers 1967,35:652-657.
    [29]Clayton DA, Vinograd J. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc Natl Acad Sci USA 1969; 62:1077-1084.
    [30]Piccoli C, Ripoli M, Scrima R, et al. MtDNA mutation associated with mitochondrial dysfunction in megakaryoblastic leukaemic cells. Leukemia.2008, 22(10):1938-1941.
    [31]Chinnery PF, Samuels DC, Elson J, et al. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease:is there a common mechanism? Lancet.2002,360(9342):1323-1325.
    [32]Grist SA, Lu XJ, Morley AA. Mitochondrial mutations in acute leukemia. Leukemia,2004,18(7):1313-1316.
    [33]Sharawat SK, Bakhshi R, Vishnubhatla S, et al. Mitochondrial D-loop variations in paediatric acute myeloid leukaemia:a potential prognostic marker. Br J Haematol.2010,149(3):391-398.
    [34]姜玉杰.急性白血病线粒体DNA D-LOOP区突变的研究:[D].济南:山东大学,2005.
    [35]陈明.急性白血病和淋巴瘤线粒体基因组D-loop区不稳定性研究:[D].大同:山西医科大学,2011.
    [36]Meng R, Zhou J, Sui M, et al. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APLcellsand NB4 cell line. Sci China Life Sci 2010,53(1):87-93.
    [37]陆小军,贾永前,范红.急性粒细胞白血病线粒体基因组D-Loop区突变的研究[J].中国实验诊断学,2007,6:747-750.
    [38]Ogasawara Y, Nakayama K, Tarnowka M, et al. Mitochondrial DNA spectra in single CD34 cells,T-cells, B-cells and granulocytes. Blood.2005,106(9): 3271-3284.
    [39]Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol.2009,19(1):25-31.
    [40]Bentley J, Walker I, McIntosh E, et al. Glucose transport regulation by p210 Bcr-Abl in a chronic myeloid leukaemia model. Br J Haematol.2001,112(1): 212-215.
    [41]Kominsky DJ, Klawitter J, Brown JL, et al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res.2009,15(10):3442-3450.
    [42]Klawitter J, Kominsky DJ, Brown JL, et al. Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells. Br J Pharmacol.2009,158(2): 588-600.
    [43]Zhao F, Mancuso A, Bui TV, et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-lalphainduced metabolic reprograming. Oncogene.2010,29(20):2962-2972.
    [44]Dengler MA, Staiger AM, Gutekunst M, et al. Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis. PLoS ONE.2011,6(9):e25139.
    [45]Barnes K, McIntosh E, Whetton AD, et al. Chronic myeloid leukaemia:an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene.2005,24(20):3257-3267.
    [46]Boren J, Cascante M, Marin S, et al. Gleevec (STI571) influences metabolic enzyme activities and glucose carbonflow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem.2001,276(41):37747-37753.
    [47]Bentley J, Itchayanan D, Barnes K, et al. Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem.2003,278(41): 39337-39348.
    [48]Gottschalk S, Anderson N, Hainz C, et al. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCRABL-positive cells. Clin Cancer Res. 2004,10(19):6661-6668.
    [49]Klawitter J, Anderson N, Klawitter J, et al. Time-dependent effects of imatinib in human leukaemia cells:a kinetic NMRprofiling study. Br J Cancer.2009,100(6): 923-931.
    [50]Warburg O. On respiratory impairment in cancer cells. Science.1956,124:269-270.
    [51]Kluza J, Jendoubi M, Ballot C, et al. Exploiting Mitochondrial Dysfunction for Effective Elimination of Imatinib-Resistant Leukemic Cells. PLoS ONE.2011, 6(7):e21924.
    [52]Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr.2007,39(3):231-234.
    [53]Mason EF, Zhao Y, Goraksha-Hicks P, et al. Aerobic Glycolysis Suppresses p53 Activity to Provide Selective Protection from Apoptosis upon Loss of Growth Signals or Inhibition of BCR-Abl. Cancer Res.2010,70(20):8066-8076.
    [54]Samudio I, Fiegl M, Andreeff M. Mitochondrial Uncoupling and the Warburg Effect:Molecular Basis for the Reprogramming of Cancer Cell Metabolism. Cancer Research.2009,69(6):2163-2166.
    [55]Samudio I, Fiegl M, McQueen T, et al. The Warburg Effect in Leukemia-Stroma Cocultures Is Mediated by Mitochondrial Uncoupling Associated with Uncoupling Protein 2 Activation. Cancer Research.2008,68(13):5198-5205.
    [56]Konopleva M, Andreeff M. Targeting the leukemia microenvironment. Curr Drug Targets.2007,8(6):685-701.
    [57]Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol.2007,20(1):19-27.
    [58]Wang L, O'Leary H, Fortney J, et al. Ph+/VE-cadherin+identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood.2007,110(9):3334-3344.
    [59]Derdak Z, Mark NM, Beldi G, et al. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res.2008,68(8):2813-2819.
    [60]Zeng Z, Samudio IJ, Munsell M, et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther.2006,5(12):3113-3121.
    [61]Konopleva M, Konoplev S, Hu W, et al. Stromal cells prevent apoptosis of AML cells by up-regulation of antiapoptotic proteins. Leukemia. 2002,16(9):1713-1724.
    [62]Shin YK, Yoo BC, Chang HJ, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res.2005,65(8):3162-3170.
    [63]Lin PC, Lin JK, Yang SH, et al. Expression of beta-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer:clinical data analysis and evidence from an in vitro study. Int J Colorectal Dis.2008,23(12):1223-1232.
    [64]Cuezva JM, Ortega AD, Willers I, et al. The tumor suppressor function of mitochondria:translation into the clinics. Biochim Biophys Acta.2009,1792 (12): 1145-1158.
    [651]Cuezva JM, Krajewska M, de Heredia ML, et al.The bioenergetic signature of cancer:a marker of tumor progression.Cancer Res.2002,62 (22):6674-6681.
    [66]He QY, Chen J, Kung HF, et al. Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics.2004,4(1):271-278.
    [67]Hervouet E, Demont J, Pecina P, et al. A new role for the von Hippel-Lindau tumor suppressor protein:stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis.2005,26(3):531-539.
    [68]Meierhofer D, Mayr JA, Foetschl U,et al.Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinomas. Carcinogenesis.2004,25 (6):1005-1010.
    [69]Yin PH, Lee HC, Chau GY, et al. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer.2004, 90(12):2390-2396.
    [70]Unwin RD, Craven RA, Harnden P, et al. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics.2003,3(8)1620-1632.
    [71]Li RJ, Zhang GS, Chen YH, et al. Downregulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance, Ann Oncol.2010,21 (7)1506-1514.
    [1]American Cancer Society. Cancer facts & figures 2008.2008 ACS, Atlanta, Georgia. http://www.cancer.org.Accessed 1 October 2009.
    [2]Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia:a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96:4075-4083.
    [3]Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML:analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92:2322-2333.
    [4]Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 2006; 107:3481-3485.
    [5]Farag SS, Archer KJ, Mrozek K, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia:results from Cancer and Leukemia Group B 8461. Blood 2006; 108:63-73.
    [6]Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98:1312-1320.
    [7]Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21):a cancer and leukemia group B study. J Clin Oncol 2006; 24:3904-3911.
    [8]Beghini A, Ripamonti CB, Cairoli R, et al. KIT activating mutations:incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 2004; 89:920-925.
    [9]Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100:4325-4336.
    [10]Schlenk RF, Dohner K, Krauter J, et. al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909-1918.
    [11]Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254-266.
    [12]Marcucci G, Maharry K, Whitman SP, et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B Study. J Clin Oncol 2007; 25:3337-3343.
    [13]Tang R, Hirsch P, Fava F, et al. High Idl expression is associated with poor prognosis in 237 patients with acute myeloid leukemia. Blood 2009; 114: 2993-3000.
    [14]Paschka P, Marcucci G, Ruppert AS, et al. Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. J Clin Oncol 2008; 26: 4595-4602.
    [15]Gaidzik VI, Schlenk RF, Moschny S, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia:a study of the German-Austrian AML Study Group. Blood 2009; 113:4505-4511.
    [16]Baldus CD, Tanner SM, Ruppert AS, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics:a Cancer and Leukemia Group B Study. Blood 2003; 102:1613-1618.
    [17]Langer C, Marcucci G, Holland KB, et al. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B Study. J Clin Oncol 2009; 27:3198-3204.
    [18]Lugthart S, van Drunen E, van Norden Y, et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia:prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111:4329-4337.
    [19]Koreth J, Schlenk R, Kopecky KJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission:systematic review and meta-analysis of prospective clinical trials. JAMA 2009; 301:2349-2361.
    [20]Cornelissen JJ, van Putten WL, Verdonck LF, et al. Results of a HOVON/S AKK donor versus no-donor analysis of myeloablative HLA-identical siblingstem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults:benefits for whom? Blood 2007; 109:3658-3666.
    [21]Dillman RO, Davis RB, Green MR, et al. A comparative study of two different doses of cytarabine for acute myeloid leukemia:a phase III trial of Cancer and Leukemia Group B. Blood 1991; 78:2520-2526.
    [22]Estey E, Dohner H. Acute myeloid leukaemia. Lancet 2006; 368:1894-1907.
    [23]Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005; 106:1154-1163.
    [24]Preisler H, Davis RB, Kirshner J, et al. Comparison of three remission induction regimens and two postinduction strategies for the treatment of acute nonlymphocytic leukemia:a cancer and leukemia group B study. Blood 1987;69:1441-1449.
    [25]Schiller G, Gajewski J, Nimer S, et al. A randomized study of intermediate versus conventional-dose cytarabine as intensive induction for acute myelogenous leukaemia. Br J Haematol 1992; 81:170-177.
    [26]Weick JK, Kopecky KJ, Appelbaum FR, et al. A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia:a Southwest Oncology Group study. Blood 1996; 88:2841-2851.
    [27]Kolitz JE, George SL, Dodge RK, et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years:final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol 2004; 22:4290-4301.
    [28]Castaigne S, Chevret S, Archimbaud E, et al. Randomized comparison of double induction and timed-sequential induction to a '3+7' induction in adults with AML:long-term analysis of the Acute Leukemia French Association (ALFA) 9000 study. Blood 2004; 104:2467-2474.
    [29]Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009; 361:1249-1259.
    [30]Pautas C, Merabet F, Thomas X, et al. Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years:results of theALDA-9801 study. J Clin Oncol.2010; 28(5):808-814.
    [31]Mandelli F, Vignetti M, Suciu S, et al Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia:the EORTC and GIMEMS Groups Study AML-10. J Clin Oncol.2009; 27(32):5397-5403.
    [32]Kern W, Estey EH. High-dose cytosine arabinoside in the treatment of acute myeloid leukemia:review of three randomized trials. Cancer 2006; 107:116-24.
    [33]Lowenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003; 349:743-752.
    [34]Champlin R, Gajewski J, Nimer S, et al. Postremission chemotherapy for adults with acute myelogenous leukemia:improved survival with high-dose cytarabine and daunorubicin consolidation treatment. J Clin Oncol 1990; 8:1199-1206.
    [35]Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998; 58:4173-4179.
    [36]Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994; 331:896-903.
    [37]Tsimberidou AM, Stavroyianni N, Viniou N, et al. Comparison of allogeneic stem cell transplantation, high-dose cytarabine, and autologous peripheral stem cell transplantation as postremission treatment in patients with de novo acute myelogenous leukemia. Cancer 2003; 97:1721-1731. German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22:3741-3750.
    [38]Buchner T, Berdel WE, Schoch C, et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol 2006; 24: 2480-2489.
    [39]Hlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004 15; 22(18):3741-3750.
    [40]Burnett AK, Goldstone AH, Stevens RM, et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission:results of MRC AML10 trial. UK Medical Research Council Adult and Children's Leukaemia Working Parties. Lancet 1998; 351:700-708.
    [41]Zittoun RA, Mandelli F, Willemze R, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups. N Engl J Med 1995; 332: 217-223.
    [42]Nathan PC, Sung L, Crump M, et al. Consolidation therapy with autologous bone marrow transplantation in adults with acute myeloid leukemia:a meta-analysis. J Natl Cancer Inst 2004; 96:38-45.
    [43]Shipley JL, Butera JN. Acute myelogenous leukemia. Exp Hematol 2009; 37: 649-658.
    [44]Chang H, Brandwein J, Yi QL, et al. Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res 2004; 28:1007-1011.
    [45]Byrd JC, Edenfield WJ, Shields DJ, et al. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia:a clinical review. J Clin Oncol 1995; 13: 1800-1816.
    [46]Kobayashi R, Tawa A, Hanada R, e tal.Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatr Blood Cancer 2007; 48:393-398.
    [47]Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 2008; 9:257-268.
    [48]Castagnola C, Nozza A, Corso A, et al. The value of combination therapy in adult acute myeloid leukemia with central nervous system involvement. Haematologica 1997; 82:577-580.
    [49]Bomgaars L, Geyer JR., Franklin J, et al. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J Clin Oncol 2004; 22: 3916-3921.
    [50]Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate:results of the Children's Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children's Oncology Group. Blood 2006; 108:1165-1173.
    [51]Dombret H., Raffoux, E., Gardin, C. Acute myeloid leukemia in the elderly. Seminars in Oncology, (2008) 35,430-438.
    [52]Harousseau, J.L. Acute myeloid leukemia in the elderly. Blood Reviews, (1998)12,145-153.
    [53]Milligan DW, Grimwade D, Cullis JO,et al. Guidelines on the management of acute myeloid leukaemia in adults. British Journal of Haematology, (2006) 135, 450-474.
    [54]Dohner, H., Estey, E.H., Amadori, S., et al. Diagnosis and management of acute myeloid leukemia in adults:recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, (2010) 115,453-474.
    [55]Cohen, J.L. Pharmacokinetic changes in aging. American Journal of Medicine, (1986)80,31-38.
    [56]Appelbaum, F.R., Gundacker, H., Head, D.R., et al. Age and acute myeloid leukemia. Blood, (2006) 107,3481-3485.
    [57]Estey, E.H., Keating, M.J., McCredie, K.B., et al. (1982) Causes of initial remission induction failure in acute myelogenous leukemia. Blood,60,309-315.
    [58]Gross, C.P., Herrin, J., Wong, N et al. Enrolling older persons in cancer trials:the effect of sociodemographic, protocol, and recruitment center characteristics. Journal of Clinical Oncology, (2005) 23,4755-4763.
    [59]Deschler, B., de Witte, T., Mertelsmann, R. et al.Treatment decision-making for older patients with high-risk myelodysplastic syndrome or acute myeloid leukemia:problems and approaches. Haematologica, (2006)91,1513-1522.
    [60]Heinemann, V., Jehn, U. Acute myeloid leukemia in the elderly:biological features and search for adequate treatment. Annals of Hematology, (1991) 63, 179-188.
    [61]Konopleva M, Andreeff M. Targeting the leukemia microenvironment. Curr Drug Targets 2007;8:685-701.
    [62]Gajewski JL, Ho WG, Nimer SD, et al. Efficacy of intensive chemotherapy for acute myelogenous leukemia associated with a preleukemic syndrome. Journal of Clinical Oncology, (1989)7,1637-1645.
    [63]Appelbaum FR. What is the impact of hematopoietic cell transplantation (HCT) for older adults with acute myeloid leukemia (AML)? Best Practice & Research Clinical Haematology, (2008) 21,667-675.
    [64]Medeiros BC, Othus M, Fang M, et al.Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia:the Southwest Oncology Group experience. Blood, (2010) 116,2224-2228.
    [65]Roboz, G.J. Treatment of acute myeloid leukemia in older patients. Expert Review of Anticancer Therapy, (2007)7,285-295.
    [66]Sekeres MA. Treatment of older adults with acute myeloid leukemia:state of the art and current perspectives. Haematologica, (2008)93,1769-772.
    [67]Kuendgen A, Germing U. Emerging treatment strategies for acute myeloid leukemia (AML) in the elderly. Cancer Treatment Reviews, (2009)35,97-120.
    [68]Wilson CS, Davidson GS, Martin SB et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood, (2006) 108,685-696.
    [69]Raponi M, Lancet JE, Fan H, et al. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood, (2008)111,2589-2596.
    [70]Rao AV, Valk PJ, Metzeler KH,et al. Age-specific differences in oncogenic pathway dysregulation and anthracycline sensitivity in patients with acute myeloid leukemia. Journal of Clinical Oncology, (2009) 27,5580-5586.
    [71]de Jonge HJ, de Bont ES, Valk PJ,et al. AML at older age:age-related gene expression profiles reveal a paradoxical down-regulationregulation of p16INK4A mRNA with prognostic significance. Blood, (2009) 114,2869-2877.
    [72]Tiu RV, Gondek LP, O'Keefe CL, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. Journal of Clinical Oncology, (2009) 27,5219-5226.
    [73]Bacher U, Kern W, Schnittger S, et al. Population-based age-specific incidences of cytogenetic subgroups of acute myeloid leukemia. Haematologica, (2005)90, 1502-1510.
    [74]Beran, M, Luthra, R., Kantarjian, et al. FLT3 mutation and response to intensive chemotherapy in young adult and elderly patients with normal karyotype. Leukemia Research, (2004) 28,547-550.
    [75]Stirewalt, D.L., Kopecky, K.J., Meshinchi, S., et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood, (2001) 97, 3589-3595.
    [76]Wheatley, K., Brookes, C.L., Howman, A.J., et al. Prognostic factor analysis of the survival of elderly patients with AML in the MRC AML11 and LRF AML14 trials. British Journal of Haematology, (2009) 145,598-605.
    [77]Rollig, C., Thiede, C., Gramatzki, M., et al. A novel prognostic model in elderly patients with acute myeloid leukemia -results of 909 patients entered into the prospective AML96 trial. Blood, (2010) 116,971-978.
    [78]Estey, E. Acute myeloid leukemia and myelodysplastic syndromes in older patients. Journal of Clinical Oncology, (2007) 25,1908-1915.
    [79]Burnett, A.K., Milligan, D., Goldstone, A., et al.The impact of dose escalation and resistance modulation in older patients with acute myeloid leukaemia and high risk myelodysplastic syndrome:the results of the LRF AML 14 trial. British Journal of Haematology, (2009) 145,318-332.
    [80]Latagliata, R., Bongarzoni, V., Carmosino, I., et al.Acute myelogenous leukemia in elderly patients not eligible for intensive chemotherapy:the dark side of the moon. Annals of Oncology, (2006)17,281-285.
    [81]Tsimberidou, A.M., Kantarjian, H.M., Wen, S., et al.The prognostic significance of serum beta2 microglobulin levels in acute myeloid leukemia and prognostic scores predicting survival:analysis of 1,180 patients. Clinical Cancer Research, (2008) 14,721-730.
    [82]Albitar, M., Johnson, M., Do, K.A., et al. Levels of soluble HLA-I and beta2M in patients with acute myeloid leukemia and advanced myelodysplastic syndrome: association with clinical behavior and outcome of induction therapy. Leukemia, (2007)21,480-488.
    [83]Estey, E.H. Older adults:should the paradigm shift from standard therapy? Best Practice and Research Clinical Haematology, (2008) 21,61-66.
    [84]Menzin J, Lang K, Earle CC, et al. The outcomes and costs of acute myeloid leukemia among the elderly. Arch Intern Med 2002; 162:1597-1603.
    [85]Juliusson G, Billstrom R, Gruber A, et al. Attitude towards remission induction for elderly patients with acute myeloid leukemia influences survival. Leukemia 2006; 20:42-47
    [86]Lowenberg, B., Ossenkoppele, GJ., van Putten, W., et al. High-dose daunorubicin in older patients with acute myeloid leukemia. New England Journal of Medicine, (2009)361,1235-1248.
    [87]Lancet, J.E., Giralt, S. Therapy for older AML patients:the role of novel agents and allogeneic stem cell transplant. Journal of the National Comprehensive Cancer Network, (2008) 6,1017-1025.
    [88]Pulsoni, A., Pagano, L., Latagliata, R., et al. (2004) Survival of elderly patients with acute myeloid leukemia. Haematologica,89,296-302.
    [89]Preisler, H.D., Raza, A., Barcos, M., et al. Highdose cytosine arabinoside as the initial treatment of poor-risk patients with acute nonlymphocytic leukemia:a Leukemia Intergroup Study. Journal of Clinical Oncology, (1987) 5,75-82.
    [90]Kantarjian HM, Erba HP, Claxton D, et al. Phase II study of clofarabine monotherapy in previously untreated older adults with acute myeloid leukemia and unfavorable prognostic factors. J Clin Oncol 2010; 28:549-555.
    [91]Faderl S, Ravandi F, Huang X, et al. A randomized study of clofarabine versus clofarabine plus low-dose cytarabine as front-line therapy for patients aged 60 years and older with acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2008; 112:1638-1645.
    [92]Rowe JM, Andersen JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia:a study of the Eastern Cooperative Oncology Group (E1490). Blood 1995; 86:457-462.
    [93]Rowe JM, Neuberg D, Friedenberg W, et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia:a trial by the Eastern Cooperative Oncology Group. Blood 2004; 103:479-485.
    [94]Schiller, GJ. Postremission therapy of acute myeloid leukemia in older adults. Leukemia,10(Suppl 1), (1996) S18-S20.
    [95]Gardin, C., Turlure, P., Fagot, T., et al. Postremission treatment of elderly patients with acute myeloid leukemia in first complete remission after intensive induction chemotherapy:results of the multicenter randomized Acute Leukemia French Association (ALFA) 9803 trial. Blood, (2007)109,5129-5135.
    [96]Koreth, J., Aldridge, J., Kim, H.T., et al. Reduced-intensity conditioning hematopoietic stem cell transplantation in patients over 60 years:hematologic malignancy outcomes are not impaired in advanced age. Biology of Blood and Marrow Transplantation, (2010) 16,792-800
    [97]Aoudjhane, M., Labopin, M., Gorin, N.C., et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia:a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia, (2005) 19,2304-2312.
    [98]Falda, M., Busca, A., Baldi, I., et al. Nonmyeloablative allogeneic stem cell transplantation in elderly patients with hematological malignancies:results from the GITMO (Gruppo Italiano Trapianto Midollo Osseo) multicenter prospective clinical trial. American Journal of Hematology, (2007) 82,863-866.
    [99]Estey, E., de Lima, M., Tibes, R., et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood, (2007)109,1395-1400.
    [100]Burnett, A.K., Milligan, D., Prentice, A.G., et al. (2007) A comparison of low-dose cytarabine and hydroxyurea with or without alltrans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment.Cancer,109,1114-1124.
    [101]Kell J. Treatment of relapsed acute myeloid leukaemia. Rev Recent Clin Trials 2006; 1:103-111.
    [102]急性髓系白血病(复发难治性)中国诊疗指南(2011年版)[J],中华血液学杂志,2011,32(12):887-889
    [103]Breems DA, van Putten WL, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol 2005; 23: 1969-1978.
    [104]Craddock C, Tauro S, Moss P, et al. Biology and management of relapsed acute myeloid leukaemia. Br J Estey EH. Treatment of relapsed and refractory acute myelogenous leukemia. Leukemia 2000; 14:476-479.
    [105]Kern W, Schoch C, Haferlach T, et al. Multivariate analysis of prognostic factors in patients with refractory and relapsed acute myeloid leukemia undergoing sequential high-dose cytosine arabinoside and mitoxantrone (S-HAM) salvage therapy:relevance of cytogenetic abnormalities. Leukemia 2000; 14:226-231.
    [106]Karanes C, Kopecky KJ, Head DR, e tal. A phase Ⅲ comparison of high dose ARA-C (HID AC) versus HID AC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leuk Res 1999; 23:787-794.
    [107]Giles F, Vey N, DeAngelo D, et al. Phase 3 randomized, placebo-controlled, double-blind study of high-dose continuous infusion cytarabine alone or with laromustine (VNP40101M) in patients with acute myeloid leukemia in first relapse. Blood 2009; 114:4027-4033.
    [108]Linker C. The role of autologous transplantation for acute myeloid leukemia in first and second remission. Best Pract Res Clin Haematol 2007; 20:77-84.
    [109]Chantry AD, Snowden JA, Craddock C, et al. Long-term outcomes of myeloablation and autologous transplantation of relapsed acute myeloid leukemia in second remission:a British Society of Blood and Marrow Transplantation registry study. Biol Blood Marrow Transplant 2006; 12:1310-1317.
    [110]Biggs JC, Horowitz MM, Gale RP, et al. Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. Blood.1992;80(4):1090-1093.
    [111]Brown RA, Wolff SN, Fay JW, et al. High-dose etoposide, cyclophosphamide and total body irradiation with allogeneic bone marrow transplantation for resistant acute myeloid leukemia:a study by the North American Marrow Transplant Group. Leuk Lymphoma.1996;22(3-4):271-277.
    [112]Oyekunle AA, Kroger N, Zabelina T, et al. Allogeneic stem-cell transplantation in patients with refractory acute leukemia:a longterm follow-up. Bone Marrow Transplant.2006;37(1):45-50.
    [113]Michallet M, Thomas X, Vernant JP, et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for advanced stage acute myeloblastic leukemia:a retrospective study of 379 patients reported to the Society Francaise de Greffe de Moelle (SFGM). Bone Marrow Transplant.2000;26(11):1157-1163.
    [114]Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;29(23):3730-3738.
    [115]Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011;117:3294-3301.
    [116]Burnett AK, Russell NH, Kell J, et al. European development of clofarabine as treatment for older patients with acute myeloid leukemia considered unsuitable for intensive chemotherapy. J Clin Oncol 2010;28:2389-2395.
    [117]Thomas XG. Results from a randomized phase Ⅲ trial of decitabine versus supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed AML [ASCO abstract 6504]. J Clin Oncol 2011;29.
    [118]Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overallsurvival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010;28:562-569.
    [119]Marcucci G, Stock W, Dai G. Phase I study of oblimersed sodium,an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005;23:3404-3411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700