用户名: 密码: 验证码:
二甲双胍对肺腺癌细胞系PC9、PC9/GR增殖抑制、凋亡诱导及吉非替尼增敏作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     非小细胞肺癌(non-small cell lung cancer, NSCLC)是我国高发肿瘤,其发病率位居男性肿瘤患者的第一位、女性肿瘤患者的第二位。手术、放疗、化疗是NSCLC的传统治疗手段。近年来,随着对NSCLC发病机制研究的深入,表皮生长因子(Epidermal Growth Factor Receptor, EGFR)信号通路在NSCLC的发生发展过程中的重要作用不断被认识。基于此发展起来的靶向EGFR信号通路的靶向治疗已应用于NSCLC的临床治疗。靶向治疗因其治疗效果好,副作用相对较小,已成为NSCLC的一种重要治疗手段。然而,患者接受一定时间的治疗后,几乎不可避免地出现耐药,而使治疗失效,病情进展。因此,寻找延缓、逆转靶向治疗耐药的方法是当前靶向治疗领域的一个重要问题。
     二甲双胍是目前广泛使用于II型糖尿病治疗的一种胰岛素增敏剂。近年来的研究发现,二甲双胍除对II型糖尿病的治疗作用外,在心血管疾病、多囊卵巢综合症及肿瘤的预防和治疗中可能发挥重要作用。二甲双胍与肿瘤的关系尤其受到重视。越来越多的证据表明,二甲双胍可能具有抑制肿瘤增殖,改善肿瘤对化疗药物敏感性的作用。本实验用二甲双胍作用于人肺腺癌PC9、PC9/GR细胞,观察其对不同EGFR突变状态的肺腺癌细胞增殖抑制作用,及其对PC9/GR细胞吉非替尼敏感性的影响及其可能机制,为进一步研究提供基础。
     第一章二甲双胍对肺腺癌PC9、PC9/GR细胞的增殖抑制、凋亡诱导作用
     研究目的:
     研究二甲双胍对人肺腺癌PC、PC9/GR细胞抑制增殖及诱导凋亡的效应
     研究方法:
     以不同浓度二甲双胍干预PC9、PC9/GR细胞,四甲基偶氮唑蓝(MTT)法检测细胞增殖抑制情况,AnnexinV-FITC/PI双染流式细胞术检测细胞凋亡率。
     结果:
     1.MTT比色法检测不同浓度二甲双胍作用于PC9,PC9/GR细胞,发现随着药物浓度的提高、作用时间的延长,药物对PC9、PC9/GR细胞的增殖抑制作用逐渐增强。且二甲双胍对PC9的增殖抑制作用与对PC9/GR的增殖抑制作用无明显差异。
     2.不同浓度二甲双胍(1mmol/L、2mmol/L、4mmol/L、8mmol/L、10mmol/L)干预PC9/PC9/GR细胞48h后,PC9细胞凋亡率由9.59%升高至25.94%,PC9/GR细胞凋亡率由7.28%上升至23.93%。各浓度二甲双胍干预组与对照组比较,差异具有统计学意义(P<0.05)。
     结论:
     1、体外实验证明,在一定浓度范围内,二甲双胍对人肺腺癌PC9、 PC9/GR细胞株具有抑制增殖作用,其作用具有浓度和时间依赖性。
     2、二甲双胍在体外可诱导PC9、PC9/GR发生凋亡,其作用具有浓度依赖性。
     第二章二甲双胍对肺腺癌PC9/GR细胞株吉非替尼敏感性的影响及其机制
     研究目的:
     研究二甲双胍对PC9/GR细胞吉非替尼敏感性的影响及其可能机制。
     研究方法:
     以5μmmol/L吉非替尼联合不同浓度二甲双胍作用于PC9/GR细胞48小时,以MTT法检测细胞增殖抑制率,判断不同浓度二甲双胍对PC9/GR细胞吉非替尼敏感性的影响。流式细胞术分析二甲双胍、吉非替尼、二甲双胍+吉非替尼干预PC9/GR细胞后,细胞凋亡率的变化。Western Blot法检测AMPK、p-AMPK、m-TOR、p-mTOR等有关蛋白的表达水平。
     结果:
     1.MTT法检测发现,不同浓度二甲双胍与吉非替尼联用后,均能较单药吉非替尼更强地抑制细胞增殖。两药表现为协同作用,且较低剂量的二甲双胍的协同效应较强。
     2.流式细胞术检测发现,2mmol/L二甲双胍与5μmol/L吉非替尼联用,干预PC9/GR细胞48h后,可较单药吉非替尼导致更高比例的细胞凋亡,细胞凋亡率从22.29%上升至35.98%,差异具有统计学意义(P<0.05)。两药的协同系数Q=1.094,表明两药在诱导PC9/GR细胞凋亡上具有相加作用。
     3.Western Blot法检测示2mmol/L二甲双胍干预PC9/GR细胞后,引起AMPK、p-AMPK、mTOR表达的上调,p-mTOR表达的下调。5μmol/L吉非替尼干预后,引起AMPK、p-AMPK、mTOR的下调,p-mTOR的上调。而两药联合作用干预PC9/GR细胞后,引起AMPK、 p-AMPK、mTOR表达上调,p-mTOR下调,其表达水平较单独用药组有显著差异(P<0.05)。
     结论:
     一定浓度范围内,二甲双胍具有增强PC9/GR细胞对吉非替尼敏感性的作用,其机制可能与二甲双胍影响AMPK/mTOR通路的活性,进而诱导细胞凋亡增加有关。
Background:
     Lung Cancer is the leading cause of death in China, whose incidence ranks No.1in male cancer patients and No.2in female cancer patients. Non-Small Cell Lung Cancer (NSCLC) is the major pathological subtype of lung cancer. Most of the patients are diagnosed at a comparatively late stage and lose the chance to take an operation. Thus, chemotherapy and radiotherapy is the major approaches for treatment. However, the efficacy of these approaches reaches a plateau; even though researchers from all over the world have given great effort to improve it. The5-year survival rate of NSCLC is less than15%. With the deepening understanding of NSCLC tumorgenesis, the importance of Epidermal Growth Factor Receptor (EGFR) signal pathway is unveiled. The target therapy based on EGFR signal pathway (eg. EGFR-TKI) is now widely used in the treatment of EGFR mutant positive NSCLC patients and achieves a great success. Nowadays, target therapy is a new and important treatment approach of NSCLC patients. However, nearly all the patients become resistant to the target therapy, which results in the progression of disease, with a median time-to-progression of about10months. Therefore, it is a challenging and important issue for both physician and researcher to find ways to delay or reverse the resistance.
     Metformin is a widely used insulin-sensitizer for the treatment of type II diabetes mellitus. However, recent studies showed that, besides its role in diabetes, metformin seems to play a protective role in the cardiovascular disease, poly-cystic ovary syndrome (PCOS) and cancer. The relation between metformin and cancer is emphasized. There have been pre-clinical evidences supporting that metformin can inhibit the proliferation of some kinds of cancer, including breast cancer, ovary cancer, and endometrial cancer, and increase their sensitivity to certain kinds of chemotherapy drugs. However, the exact mechanism of metformin's effect is not fully understood yet. It is now widely accepted that metformin can influent the intracellular proliferative signal transduction and induce apoptosis via the activation of adenosine monophosphate activated protein kinase (AMPK). The influence of metformin on the sensitivity of lung adenocarcinoma to EGFR-TKI is not reported. In this study, we use human lung adenocarcinoma cell lines PC9and PC9/GR as a model to evaluate the anti-proliferation, apoptosis-inducing, and EGFR-TKI sensitivization effect of metfotmin. Our study may provide a basis for the further study of the exact mechanism of metformin's effect and the possibility of using metformin as a EGFR-TKI sensitizer for NSCLC patient.
     Part I Anti-proliferation and apoptosis-inducing effect of metformin on PC9and PC9/GR cells
     Objective:
     To evaluate the effect of proliferation and apoptosis of metformin on PC9and PC9/GR cells
     Methods:
     Various concentrations of metformin were given to both PC9and PC9/GR cells. Tetrazolium blue (MTT) assay was used to evaluate proliferation inhibition rate. Flow cytometry was used to analyze the apoptosis rate.
     Results:
     1. MTT assay showed that metformin had proliferation inhibition effect on both PC9and PC9/GR manner in a dose and time-dependent manner, and the difference showed statistical significance. And the anti-proliferation effect of metformin showed no difference between PC9and PC9/GR.
     2. Flow cytometry assay showed that the apoptosis rate of both PC9and PC9/GR increased after48h exposure to metformin. And the apoptosis rate increased accompanied with the increase of metformin concentration.
     Conclusion:
     Metformin has anti-proliferation and apoptosis-inducing effect on both PC9and PC9/GR cells.
     Part ⅡEGFR-TKI sensitization effect of metformin on PC9/GR cell and its possible mechanism
     Objective:
     To study the EGFR-TKI sensitization effect of metformin on PC9/GR cell and its possible mechanism
     Methods:
     MTT assay was used to evaluate the proliferation inhibition rate of PC9/GR cell after treated with5μmol/L gefitinib combined with various concentration of metformin for48h. Flow cytometry was used to analyze the apoptosis rate of PC9/GR cell and western blot was used to evaluate the expression of AMPK、p-AMPK、mTOR and p-mTOR after treated with2mmol/L metformin,5μmol/L gefitinib and2mmol/L metformin+5μmol/L gefitinib for48h.
     Results:
     1. MTT assay showed that gefitinib combined with metformin, compared with gefitinib alone, exerted stronger proliferation inhibition effect on PC9/GR cell. And the difference is statistical significant.
     2. Flow cytometry assay showed that the apoptosis rate is higher after the treatment of2mmol/L metformin+5μmol/L gefitinib for48h, compared with5μmol/L gefitinib alone.
     3.Wstern Blot showed that metformin can increase the expression of AMPK、p-AMPK、mTOR, and down-regulate the expression of p-mTOR. While gefitinib could down-regulate the expression of AMPK、p-AMPK、 mTOR, and increase the expression of p-mTOR. The combination of metformin and gefitinib induced a even higher expression of AMPK、 P-AMPK、mTOR, and lower expression of p-mTOR compared with gefitinib alone.
     Conclusion:
     Metformin may sensitize PC9/GR cell to EGFR-TKI via affecting the AMPK/mTOR pathway and synergetic apoptosis-inducing effect.
引文
[1]Siegel, R., Naishadham, D.& Jemal, A. Cancer statistics,2013. CA Cancer J Clin 63,11-30(2013).
    [2]Folkman, J.& Beckner, K. Angiogenesis imaging. Acad Radiol 7,783-785 (2000).
    [3]Yun, C.H., et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105,2070-2075 (2008).
    [4]Nathan, D.M., et al. Medical management of hyperglycemia in type 2 diabetes:a consensus algorithm for the initiation and adjustment of therapy:a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32,193-203 (2009).
    [5]Noto, H., Goto, A., Tsujimoto, T.& Noda, M. Cancer risk in diabetic patients treated with metformin:a systematic review and meta-analysis. PLoS One 1, e33411 (2012).
    [6]Kumar, S., et al. Metformin intake is associated with better survival in ovarian cancer:A case-control study. Cancer 119,555-562 (2013).
    [7]Ashinuma, H., et al. Antiproliferative action of metformin in human lung cancer cell lines. Oncol Rep 28,8-14 (2012).
    [8]Liu, B., et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 8,2031-2040 (2009).
    [9]Shank, J.J., et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol 127,390-397 (2012).
    [10]Kobayashi, M., et al. Antitumor effect of metformin in esophageal cancer:In vitro study. Int J Oncol 42,517-524 (2013).
    [11]Siegel, R., Naishadham, D.& Jemal, A. Cancer statistics,2012. CA Cancer J Clin 62,10-29(2012).
    [12]Natali, A.& Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes:a systematic review. Diabetologia 49,434-441 (2006).
    [13]Gunton, J.E., Delhanty, P.J., Takahashi, S.& Baxter, R.C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab 88,1323-1332 (2003).
    [14]Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R.& Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330,1304-1305 (2005).
    [15]Alimova, I.N., et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8,909-915 (2009).
    [16]Gotlieb, W.H., et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 110,246-250 (2008).
    [17]Martin, M.J., Hayward, R., Viros, A.& Marais, R. Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. Cancer Discov 2,344-355 (2012).
    [18]Wu, N., et al. Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58,482-490 (2011).
    [19]Wang, W., Qin, S.K., Chen, B.A.& Chen, H.Y. Experimental study on antitumor effect of arsenic trioxide in combination with cisplatin or doxorubicin on hepatocellular carcinoma. World J Gastroenterol 7,702-705 (2001).
    [20]Arkhipov, A., et al. Architecture and membrane interactions of the EGF receptor. Cell 152,557-569 (2013).
    [21]Desai, M.D., Saroya, B.S.& Lockhart, A.C. Investigational therapies targeting the ErbB (EGFR, HER2, HER3, HER4) family in GI cancers. Expert Opin Investig Drugs 22,341-356 (2013).
    [22]Hynes, N.E.& Lane, H.A. ERBB receptors and cancer:the complexity of targeted inhibitors. Nat Rev Cancer 5,341-354 (2005).
    [23]Rusch, V., et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53,2379-2385 (1993).
    [24]Laskin, J.J.& Sandier, A.B. Epidermal growth factor receptor:a promising target in solid tumours. Cancer Treat Rev 30,1-17 (2004).
    [25]Nicholson, R.I., Gee, J.M.& Harper, M.E. EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4, S9-15 (2001).
    [26]Yarden, Y. The EGFR family and its ligands in human cancer, signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4, S3-8 (2001).
    [27]Roussidis, A.E.& Karamanos, N.K. Inhibition of receptor tyrosine kinase-based signal transduction as specific target for cancer treatment. In Vivo 16,459-469 (2002).
    [28]Yarden, Y.& Sliwkowski, M.X. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2,127-137 (2001).
    [29]Baselga, J.& Albanell, J. Epithelial growth factor receptor interacting agents. Hematol Oncol Clin North Am 16,1041-1063 (2002).
    [30]Sale, E.M., Hodgkinson, C.P., Jones, N.P.& Sale, G.J. A new strategy for studying protein kinase B and its three isoforms. Role of protein kinase B in phosphorylating glycogen synthase kinase-3, tuberin, WNK1, and ATP citrate lyase. Biochemistry 45,213-223 (2006).
    [31]Pao, W.& Miller, V.A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer:current knowledge and future directions. J Clin Oncol 23,2556-2568 (2005).
    [32]Cappuzzo, F., et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. JNatl Cancer Inst 97,643-655 (2005).
    [33]Morgan, S.& Grandis, J.R. ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res 315,572-582 (2009).
    [34]Lynch, T.J., et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350,2129-2139 (2004).
    [35]Ciardiello, F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 60 Suppl 1,25-32; discussion 41-22 (2000).
    [36]Mitsudomi, T., et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405):an open label, randomised phase 3 trial. Lancet Oncol 11, 121-128 (2010).
    [37]Maemondo, M., et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. NEngl JMed 362,2380-2388 (2010).
    [38]Zhou, C., et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802):a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12,735-742(2011).
    [39]Rosell, R., et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC):a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13,239-246 (2012).
    [40]Rosell, R., et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361,958-967 (2009).
    [41]Cappuzzo, F., et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol 20,298-304 (2009).
    [42]Hurbin, A., et al. Insulin-like growth factor-1 receptor inhibition overcomes gefitinib resistance in mucinous lung adenocarcinoma. J Pathol 225,83-95 (2011).
    [43]Viloria-Petit, A., et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo:a role for altered tumor angiogenesis. Cancer Res 61,5090-5101 (2001).
    [44]Chakravarti, A., Loeffler, J.S.& Dyson, N.J. Insulin-like growth factor receptor Ⅰ mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62,200-207 (2002).
    [45]Chen, G., et al. Synergistic effect of afatinib with su 11274 in non-small cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One 8, e59708 (2013).
    [46]Wang, W., et al. Met kinase inhibitor E7050 reverses three different mechanisms of hepatocyte growth factor-induced tyrosine kinase inhibitor resistance in EGFR mutant lung cancer. Clin Cancer Res 18,1663-1671 (2012).
    [47]Sano, T., et al. The novel phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor, BEZ235, circumvents erlotinib resistance of epidermal growth factor receptor mutant lung cancer cells triggered by hepatocyte growth factor. Int J Cancer (2013).
    [48]Tseng, S.C., et al. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol 85,583-594 (2013).
    [49]Hanna, R.K., et al. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol 125,458-469 (2012).
    [50]Iliopoulos, D., Hirsch, H.A.& Struhl, K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 71,3196-3201 (2011).
    [51]Viollet, B., et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism:from physiology to therapeutic perspectives. Acta Physiol (Oxf) 196, 81-98 (2009).
    [52]Rocha, G.Z., et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17,3993-4005 (2011).
    [53]Mihaylova, M.M.& Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13,1016-1023 (2011).
    [54]Mihaylova, M.M.& Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13,1016-1023 (2011).
    [55]La Monica, S., et al. Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol 78,460-468 (2009).
    [1]Nathan, D.M., et al. Medical management of hyperglycemia in type 2 diabetes:a consensus algorithm for the initiation and adjustment of therapy:a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32,193-203 (2009).
    [2]Cusi, K., Consoli, A.& DeFronzo, R.A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81,4059-4067 (1996).
    [3]Natali, A.& Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes:a systematic review. Diabetologia 49,434-441 (2006).
    [4]Gunton, J.E., Delhanty, P.J., Takahashi, S.& Baxter, R.C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab 88,1323-1332 (2003).
    [5]Hardie, D.G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 131,973; author reply 974-975 (2006).
    [6]El-Mir, M.Y., et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex Ⅰ.J Biol Chem 275,223-228 (2000).
    [7]Owen, M.R., Doran, E.& Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348 Pt 3,607-614 (2000).
    [8]Stein, S.C., Woods, A., Jones, N.A., Davison, M.D.& Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345 Pt 3, 437-443 (2000).
    [9]Viollet, B., et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism:from physiology to therapeutic perspectives. Acta Physiol (Oxf) 196, 81-98(2009).
    [10]Hardie, D.G. AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8,774-785 (2007).
    [11]Cool, B., et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3,403-416 (2006).
    [12]Huang, X., et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 412,211-221 (2008).
    [13]Shackelford, D.B.& Shaw, R.J. The LKB1-AMPK pathway:metabolism and growth control in tumour suppression. Nat Rev Cancer 9,563-575 (2009).
    [14]Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R.& Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330,1304-1305 (2005).
    [15]Tseng, C.H. Diabetes, metformin use, and colon cancer:a population-based cohort study in Taiwan. Eur J Endocrinol 167,409-416 (2012).
    [16]Chlebowski, R.T., et al. Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol 30,2844-2852 (2012).
    [17]Romero, I.L., et al. Relationship of type Ⅱ diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet Gynecol 119,61-67 (2012).
    [18]Lai, S.W., et al. Antidiabetes drugs correlate with decreased risk of lung cancer:a population-based observation in Taiwan. Clin Lung Cancer 13,143-148 (2012).
    [19]Lai, S.W., et al. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy:a population-based cohort study. Am J Gastroenterol 107,46-52 (2012).
    [20]Hassan, M.M., et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer 116,1938-1946 (2010).
    [21]Sadeghi, N., Abbruzzese, J.L., Yeung, S.C., Hassan, M.& Li, D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res 18,2905-2912 (2012).
    [22]Lee, M.S., et al. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese:a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11,20 (2011).
    [23]Noto, H., Goto, A., Tsujimoto, T.& Noda, M. Cancer risk in diabetic patients treated with metformin:a systematic review and meta-analysis. PLoS One 7, e33411(2012).
    [24]Libby, G, et al. New users of metformin are at low risk of incident cancer:a cohort study among people with type 2 diabetes. Diabetes Care 32,1620-1625 (2009).
    [25]Landman, G.W., et al. Metformin associated with lower cancer mortality in type 2 diabetes:ZODIAC-16. Diabetes Care 33,322-326 (2010).
    [26]Wright, J.L.& Stanford, J.L. Metformin use and prostate cancer in Caucasian men:results from a population-based case-control study. Cancer Causes Control 20,1617-1622 (2009).
    [27]Bodmer, M., Meier, C., Krahenbuhl, S., Jick, S.S.& Meier, C.R. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 33,1304-1308 (2010).
    [28]Bodmer, M., Becker, C., Meier, C., Jick, S.S.& Meier, C.R. Use of metformin is not associated with a decreased risk of colorectal cancer:a case-control analysis. Cancer Epidemiol Biomarkers Prev 21,280-286 (2012).
    [29]Bodmer, M., Becker, C., Jick, S.S.& Meier, C.R. Metformin does not alter the risk of lung cancer:a case-control analysis. Lung Cancer 78,133-137 (2012).
    [30]Luo, Q., et al. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. BMC Cancer 12,517 (2012).
    [31]Liu, B., et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 8,2031-2040 (2009).
    [32]Wurth, R., et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability:A role for metformin-induced inhibition of Akt. Cell Cycle 12,145-156 (2013).
    [33]Shank, J.J., et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol 127,390-397 (2012).
    [34]Rattan, R., Graham, R.P., Maguire, J.L., Giri, S.& Shridhar, V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 13,483-491 (2011).
    [35]Wu, B., et al. Metformin inhibits the development and metastasis of ovarian cancer. Oncol Rep 28,903-908 (2012).
    [36]Qu, Z., et al. In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma. Hepatol Res 42,922-933 (2012).
    [37]Kato, K., et al. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther 11,549-560 (2012).
    [38]Kobayashi, M., et al. Antitumor effect of metformin in esophageal cancer:In vitro study. Int J Oncol 42,517-524 (2013).
    [39]Wu, N., et al. Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58,482-490 (2011).
    [40]Ashinuma, H., et al. Antiproliferative action of metformin in human lung cancer cell lines. Oncol Rep 28,8-14 (2012).
    [41]Colquhoun, A.J., et al. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis 15, 346-352 (2012).
    [42]Martin, M.J., Hayward, R., Viros, A.& Marais, R. Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. Cancer Discov 2,344-355(2012).
    [43]Memmott, R.M., et al. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev Res (Phila) 3,1066-1076 (2010).
    [44]Kalaany, N.Y.& Sabatini, D.M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458,725-731 (2009).
    [45]Anisimov, V.N., et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40, 685-693 (2005).
    [46]Tomimoto, A., et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 99,2136-2141 (2008).
    [47]Gotlieb, W.H., et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 110,246-250 (2008).
    [48]Dowling, R.J., Zakikhani, M., Fantus, I.G., Pollak, M.& Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67,10804-10812 (2007).
    [49]Vazquez-Martin, A., Oliveras-Ferraros, C.& Menendez, J.A. The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 8,88-96 (2009).
    [50]Buzzai, M., et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67,6745-6752 (2007).
    [51]Alimova, I.N., et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8,909-915 (2009).
    [52]Zhuang, Y.& Miskimins, W.K.. Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 orp21Cip1. J Mol Signal 3,18 (2008).
    [53]Blandino, G., et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 3,865 (2012).
    [54]Hanna, R.K., et al. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol 125,458-469 (2012).
    [55]Dong, L., et al. Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J Obstet Gynaecol Res 38,1077-1085 (2012).
    [56]Chen, G, Xu, S., Renko, K.& Derwahl, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 97, E510-520(2012).
    [57]Tseng, S.C., et al. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol 85,583-594 (2013).
    [58]Rocha, G.Z., et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17,3993-4005 (2011).
    [59]Liu, H., et al Metformin and the mTOR inhibitor everolimus (RAD001) sensitize breast cancer cells to the cytotoxic effect of chemotherapeutic drugs in vitro. Anticancer Res 32,1627-1637 (2012).
    [60]Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N.& Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69,7507-7511 (2009).
    [61]Iliopoulos, D., Hirsch, H.A.& Struhl, K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 71,3196-3201 (2011).
    [62]Janjetovic, K., et al. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur JPharmacol 651, 41-50(2011).
    [63]Shi, W. Y., et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 3, e275 (2012).
    [64]Harlozinska, A. Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res 25,3327-3333 (2005).
    [65]Folkman, J. Anti-angiogenesis:new concept for therapy of solid tumors. Ann Surg 175,409-416 (1972).
    [66]Stacker, S.A.& Achen, M.G. Where to now with the VEGF signalling pathway in cancer? Chin J Cancer (2013).
    [67]Ferrara, N. VEGF-A:a critical regulator of blood vessel growth. Eur Cytokine Netw 20,158-163 (2009).
    [68]Rozman, A., Silar, M.& Kosnik, M. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients. Radiol Oncol 46,354-359 (2012).
    [69]Carmeliet, P., et al. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394,485-490 (1998).
    [70]Fukumura, D., et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94,715-725(1998).
    [71]Morabito, A., De Maio, E., Di Maio, M., Normanno, N.& Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11,753-764 (2006).
    [72]Teng, R.J., et al. AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 304, L29-42 (2013).
    [73]Xavier, D.O., et al. Metformin inhibits inflammatory angiogenesis in a murine sponge model. Biomed Pharmacother 64,220-225 (2010).
    [74]Ersoy, C., et al. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 81,56-60 (2008).
    [75]Ishibashi, Y., Matsui, T., Takeuchi, M.& Yamagishi, S. Metformin Inhibits Advanced Glycation End Products (AGEs)-induced Growth and VEGF Expression in MCF-7 Breast Cancer Cells by Suppressing AGEs Receptor Expression via AMP-activated Protein Kinase. Horm Metab Res (2012).
    [76]Liao, H., Zhou, Q., Gu, Y, Duan, T.& Feng, Y. Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep 27,1873-1878 (2012).
    [77]Skinner, H.D., et al. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol (2012).
    [78]Sandulache, V.C., et al. Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 118,711-721(2012).
    [79]Sanli, T., et al. Ionizing radiation activates AMP-activated kinase (AMPK):a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys 78,221-229 (2010).
    [80]Liu, J., et al. Enhanced cytotoxic effect of low doses of metformin combined with ionizing radiation on hepatoma cells via ATP deprivation and inhibition of DNA repair. Oncol Rep 28,1406-1412 (2012).
    [81]Song, C.W., et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep 2,362 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700