用户名: 密码: 验证码:
NF-кB信号通路在间充质干细胞调节巨噬细胞治疗烧伤脓毒症的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧伤脓毒症的发生机制及治疗方法一直是研究的热点与重点。间充质干细胞具有较强的抗炎、免疫调节作用,可通过旁分泌各种细胞因子或与各种免疫细胞相互调节而发挥作用,用于炎症性或免疫性疾病的治疗。近年来已经在GVHD、系统性红斑狼疮、类风湿性关节炎、急性肺损伤、急性肾功能损害、急性免疫性肝损伤等疾病,脂肪间充质干细胞取得了明显的治疗效果,但是针对严重烧伤脓毒症的治疗研究仍然甚少,且具体机制仍不十分清楚。
     首先,建立一个有效的完全模拟脓毒症发病机制的动物模型及分离扩增培养获得大量脂肪间充质干细胞非常关键。在第一部分实验,以C57/BL6J小鼠10%III°烫伤创面,接种2×10~5CFU铜绿假单胞菌建立小鼠烧伤脓毒症模型。实验结果:具有稳定的脓毒症发病率及死亡率,死亡率达50%-80%,;IL-1、IL-6、TNF-a及CRP等炎性因子明显升高,IL-6最高达20ng/ml;心、肝、脾、肺及肾脏细菌含量增高,其中脾脏含量最高;各脏器炎性细胞浸润及炎症损伤严重,可见大量的炎性细胞浸润及血性渗出;ALT、AST、BUN、Cr持续升高,肾功及肝功能明显下降。该实验表明该烧伤脓毒症模型有较高的死亡率和可重复的稳定性,并可进一步可发展为SIRS和MODS;该模型较好的反应了烧伤脓毒症的病理机制及临床特征。
     在第二部分实验采用酶消化、贴壁筛选以及差速离心法分离培养小鼠脂肪间充质干细胞,通过流式细胞分析获得90%以上的CD90、CD105、CD44表达阳性,以及90%以上的CD34、CD45表达阴性的;同时通过油红O及碱性磷酸酶染色证明该细胞是有向成脂、成骨多向分化能力的脂肪来源的间充质干细胞。
     在第三部分实验在脓毒症模型制备6h后,运用2×105脂肪间充质干细胞输注治疗小鼠烧伤脓毒症,观察小鼠的一般状况、生存率,检测全身各脏器细菌及内毒素定量、各脏器功能,以及促炎/抗炎因子的改变,明确脂肪间充质干细胞在烧伤脓毒症的治疗作用。实验结果表明:1、小鼠一般状况、自主活动及对外界的反应都有明显改善;2、小鼠24h、48h至72h脏器的细菌含量明显减少,而脾脏细菌定量变化最大,心脏的变化最小;3、随时间延长,TNF-、IL-12表达明显下降及抗炎因子IL-10表达明显升高,血清中TNF-、IL-6等促炎症因子及抗炎因子IL-10变化也是相同的。4、各脏器组织HE染色示炎性细胞浸润明显减少,肝小叶放射状结构保持完整;肾脏组织肾小管坏死细胞明显减少,肺间质增厚及肺泡内的血性渗出明显改善,肝、肺及肾脏组织细胞坏死凋亡明显减少,脏器功能得到改善。这些实验结果表明,脂肪间充质干细胞治疗烧伤脓毒症得到了肯定的疗效。
     在第四部分实验体外单独或共培养脂肪间充质干细胞与Raw264.7小鼠巨噬细胞,以探讨脂肪间充质干细胞调节巨噬细胞及其NF-кB信号通路在干细胞治疗脓毒症可能的作用机制。将细胞分为四组:正常对照组、LPS刺激组、Transwell组、混合细胞组。实验结果证明:1、经LPS刺激后,促炎因子TNF-a、IL-6及抗炎因子TGF-b均有明显升高,但随时间延长,抗炎因子迅速下降,而促炎因子持续升高;当细胞共培养时,促炎因子明显下降,抗炎因子明显升高,其中促炎因子TNF-a,及抗炎因子COX-2变化最明显。2、经LPS刺激24h后,CD206阳性细胞增幅10%;随时间延长,LPS刺激组CD206阳性细胞无明显变化;但细胞Transwell及混合细胞共培养组,分别由23.3%增至38.5%,24.2%增至52.7%,较LPS刺激组有显著的提高,且发现,混合细胞组CD206的细胞比例最高,具有统计学差异。3、间充质干细胞共培养组,细胞内的P65的核转位及其上游分子p-IKB-a、p-IKK-a的磷酸化水平明显抑制。该实验结果表明,脂肪间充质干细胞可能不仅通过旁分泌的作用来调节巨噬细胞,还可通过与巨噬细胞间接触而发挥调节的作用。其中PGE2及NF-кB信号通路可能是间充质干细胞调节巨噬细胞变化的关键性因素,也是间充质干细胞
The mechanism and treatment of burn sepsis has been a difficult research focus.Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored asa new therapeutic for treating a variety of immune-mediated diseases. The alternativefunctions are now being characterized in the context of MSC transplantation, wherebyparacrine interactions between MSCs and host cells of both the innate and adaptiveimmune systems have been shown to relate directly to the therapeutic activity of MSCs. Inrecent years, it has pioneered studies to investigate systemic administration of MSCs as atherapy for steroid-refractive graft-versus-host disease (GvHD), Crohn’s disease, type Idiabetes mellitus (IDDM), myocardial infarction (MI), and chronic obstructive pulmonarydisease (COPD) and other diseases. Because early has been in GVHD, systemic lupuserythematosus, rheumatoid arthritis, acute lung injury, acute renal dysfunction, acuteautoimmune liver damage, adipose mesenchymal stem cells made significant therapeuticeffect. However, there is still little research about MSC therapeutic on burn sepsis. And its therapeutic mechanism is still not very clear.
     First, it is a very important to establish an stable, high replicated burn sepsis modeland harvest a large mount of mesenchymal stem cells. In the first experiment, weestablished a mouse model of burn sepsis with a III°burn wound of about10%ofTBSA, followed by inoculating with2×105CFU Pseudomonas aeruginosa in femaleC57BL/6mice. The mice with burn sepsis developed SIRS and MODS and had a50%-80%high rate of mortality,, which were reproducible. This novel mouse model of burnsepsis assembled the pathogenesis and clinical characteristics of human with burn sepsis.
     In the second part of the experiment, it aim to harvest Adipose-derived stem cells ofC57mice in vitro. ADSCs were isolated by enzyme digestion. And ADSCs within3passages were used to verify the mult-potential differentiation capacity and FACS analysis.It showed us the cells had typical morphological characters of stem cells and were positivein the ADSCs’markers CD90, CD105, CD44, negative in CD34, CD45.
     In the third experiment,it aim to investigate ADSCs therapeutic function on burnsepsis. After administration of2×105ADSCs, we obeseved clinical severity score forevaluation of the clinical status and tested mortality, organ bacteria quantitation, liver andkidney function, as well as changes in proinflammatory/anti-inflammatory cytokines inorgans or blood. Experimental results show that:1, the general condition of mice,spontaneous activity, and the reaction of the outside has improved significantly; After24h,48h to72h, organs bacteria quantitation were significantly reduced;3, TNF-, IL-12expression decreased significantly and anti-inflammatory cytokines IL-10expression wassignificantly elevated in liver and lung mRNA. The serum TNF-, IL-6and otherproinflammatory cytokines and anti-inflammatory cytokines IL-10changes have the sameresults.4, HE staining of liver, lung and kidney organs is shown the infiltration ofinflammatory cells significantly reduce, cell necrosis and apoptosis was significantlyreduced, improved organ function. These results suggest that intravenous administration ofADSCs improves SIRS and MODS with burn sepsis. These demonstrated that thefeasibility and effectiveness of ADSCs administration for experimental burn sepsis,providing the basis for development of a potentially effective immunomodulatory strategy to decrease morbidity and mortality in clinical sepsis.
     In the fourth experiment, it aims to investigate interaction of ADSCs withRaw264.7macrophages and interaction of ADSCs with NF-кB signaling pathway in theirantiinfammatory/immune modulatory effects. We co-culture ADSCs with Raw264.7macrophages after stimulated by LPS. And We used cell surface antigen CD206expression and intracellular cytokine expression patterns to study the immunophenotypeof macrophages at the end of this coculture period in vitro. They were divided into fourgroups: normal control group, LPS stimulation group Transwell group, mixed group.Experimental results show that:1, Macrophages cocultured with ADSCs consistentlyshowed high-level expression of CD206, a marker of alternatively activated macrophages.However, macrophages cocultured with MSCs also expressed high levels of TGF-b,COX-2and low levels of tumor necrosis factor alpha (TNF-a) and IL-6compared tocontrols.2, ADSCs co-cultured group, nuclear translocation of P65cells and its upstreammolecular p-IKB-a, p-of IKK-phosphorylation significantly inhibited. The experimentalresults show that the ADSCs may be adjusted not only by paracrine role of macrophages,but also by contact between macrophages play a regulating role. PGE2and NF-кBsignaling pathway may be key factors, it is also the key point in therapy for sepsis withADSCs.
引文
1. De Jong HK, van der Poll T, Wiersinga WJ. The systemic pro-inflammatory responsein sepsis. J Innate Immun,2010,2(5):422-430.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the unitedstates from1979through2000. N Engl J Med,2003,348(16):1546-1554.
    3. Angus DC,Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR.Epidemiology of severe sepsis in the united states: Analysis of incidence, outcome, anassociated costs of care. Crit Care Med,2001,29(7):1303-1310.
    4. Vindenes HA, Ulvestad E, Bjerknes R. Concentration of cytokines in plasma ofpatients with large burns their relation to time after injury, burn size, inflammatoryvariables, infection and outcome. Eur J Surg,1998,164(9):647-656.
    5. Reinhart K, Wiegand-Lohnert C, Grimminger F, et al. Assessment of the safety andefficacy of the monoclonal anti-tumor necrosis factor antibody-fragment MAK195F,in patients with sepsis and septic shock: a multicenter randomized placebo-controlleddose-ranging study. Crit Care Med,1996,24(5):733-742.
    6. Schwacha MG, Schneider CP, Bland KI, et al. Resistance of macrophages to thesuppressive effect of interleukin-10following thermal injury. Am J Physiol cellphysiol,2001,281(4):1180-1187.
    7. Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta Ⅰnullmutation in mice cause excessive inflammatory response and early death. Proc NatlAcad Sci,1993,90(2):770-774.
    8. Nishimura T, Nishura T, deSerres S, et al. Transforming growth factor-beta1andsplenocyte apoptotic cell death after burn injuries. J Burn Care Rehabit,2000,21(2):128-134.
    9. Ishikawa K, Nishimura T, DeSerres S, et al. The effects of transforming growthfactor-beta neutralization on postburn humoral immunity. J Trauma,2004,57(3):529-536.
    10. Hobson KG, Cho K, Adamson LK, et al. Burn-induced thymic apoptosis correspondswith altered TGF-beta and Smad2/3. J Surg Res,2002,105(1):4-9.
    11. Schwacha MG, Ayala A, Chaudry IH. Insights into the role of γ T-lymphocytes in theimmunopathogenic response to thermal injury. J Leukoc Biol,2000,67(5):644-650.
    12. Shoup M, He LK, Liu H, et al. Cyclooxygenase-2inhibitor NS-398improves survivaland restores leukocyte counts in burn infection. J Trauma,1998,45(2):215-220.
    13. de Jong HK, van der Poll T, Wiersinga WJ. The systemic pro-inflammatory responsein sepsis. J Innate Immun.2010,2(5):422-430.
    14. Huet O, Dupic L, Harrois A, Duranteau J. Oxidative stress and endothelialdysfunction during sepsis. Front Biosci,2011,16(1):1986-1995.
    15. Duffield JS. The inflammatory macrophage: a story Jekyll and Hyde. Clin Sci,2003,104(1):27-38.
    16.彭代智,黄文.烧伤后失控性炎症反应的巨噬细胞信号转导机制研究.第三军医大学学报,2004,26(23):2138-2140.
    17. Wang X, Zhang J, Su Y, Li C, Feng W, Zhang Z. Effect of thermal injury on LPSmediated Toll signal pathways by murine peritoneal macrphages: inhibition ofDNA-binding of transcription factor AP-1and NF-кB and gene expression of c-fosand IL-12p40. Sci China C Life Sci.2002,45(6):613-22.
    18. PengD, McManus A T, HuY, etal. Complement activation stimulate GTPase activityand secretory function of macrophages following burns. J Burn Care Rehabil,2001,22(2suppl):126.
    19. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4signal transduction pathway. Cytokine,2008,42(2):145-151.
    20. Loof TG, Goldmann O, Gessner A, Herwald H, Medina E. Aberrant inflammatoryresponse to Streptococcus pyogenes in mice lacking myeloid differentiation factor88.Am J Pathol,2010,176(2):754-763.
    21. O’Neill LA, Bowie AG. The family of five: TIR-domain containing adaptors inToll-like receptor signalling. Nat Rev Immunol,2007,7(5):353-364.
    22. Puneet P, McGrath MA, Tay HK, Al-Riyami L, Rzepecka J, Moochhala SM, PervaizS, Harnett MM, Harnett W, Melendez AJ. The helminth product ES-62protectsagainst septic shock via Toll-like receptor4-dependent autophagosomal degradationof the adaptor MyD88. Nat Immunol,2011,12(4):344-51.
    23. Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M. Different modesof ubiquitination of the adaptor TRAF3selectively activate the expression of type Iinterferons and proinflammatory cytokines. Nat Immunol,2010,11(1):70-75.
    24. Zhu J, Mohan C. Toll-like receptor signaling pathways--therapeutic opportunities.Mediators Inflamm.2010,781235.
    25. Friedenstein A, Chailakhyan R, LatsinikN, Panasyuk A, Keiliss-Borok I.1974.Stromal cells responsible for transferring the microenvironment of the hemopoietictissues: cloning in vitro and retransplantation in vivo. Transplantation,17(4):331-340.
    26. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, MoormanMA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult humanmesenchymel stem cells. Science,1999,284(5411):143-147.
    27. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, LorenzHP, Hedrick MH. Multilineage cells from human adispose tissue: implication forcell-based therapies. Tissue Eng,2001,7(2):211-228.
    28. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterizationand expression analysis of mesenchymal stem cells from human bone marrow andadipose tissue. Cell Physiol Biochem,2004,14(4-6):311-324.
    29. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, BlakeJ, Schwager C, Eckstein V, Ansorge W, Ho AD. Comparative characteristics ofmesenchymal stem cells from human bone marrow, adipose tissue and umbilical cordblood. Exp Hemat,2005,33(11):1402–1416.
    30. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM. Clonalanalysis of the differentiation potential of human adipose-derived adult stem cells. JCell Physiol,2006,206(1):229-237.
    31. Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL,Santos AR, Zago MA. The profile of gene expression of human marrow mesenchymalstem cells. Stem Cells,2003,21(6):661-669.
    32. Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P. A simple andefficient method for deriving neurospheres from bone marrow stromal cells. BiochemBiophys Res Commun,2008,372(4):520-524.
    33. Zhang HT, Liu ZL, Yao XQ, Yang ZJ, Xu RX. Neural differentiation ability ofmesenchymal stromal cells from bone marrow and adipose tissue: a comparativestudy. Cytotherapy,2012,14(10):1203-14..
    34. Li N, Sarojini H, An J, Wang E. Prosaposin in the secretome of marrowstroma-derived neural progenitor cells protects neural cells from apoptotic death. JNeurochem,2010,112(6):1527-1538.
    35. Kitada M. Mesenchymal cell populations: development of the induction systems forSchwann cells and neuronal cells and finding the unique stem cell population. AnatSci Int,2012,87(1):24-44.
    36. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromalcells protect and repair damaged neurons through multiple mechanisms. J NeurosciRes,2008,86(5):1024-1035.
    37. Xie ST, Lu F, Xi-Jing Zhang, Qi SHen, Da-Hai Hu, Hao Yang. Retinoic acid andhuman olfactory ensheathing cells cooperate to promote neuralinduction from humanbone marrow mesenchymal stem cells. Neuromolecular Medicine,2013.
    38. Paul G, zen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, JanssonK, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstr mE,Svensson M, Haegerstrand A, Brundin P. The adult human brain harborsmultipotent perivascular mesenchymal stem cells. PLoS One,2012,7(4):e35577.
    39. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT. Hypoxicpreconditioning enhances the therapeutic potential of the secretome from culturedhuman mesenchymal stem cells in experimental traumatic brain injury. Clin Sci(Lond),2013,124(3):165-176.
    40. Yazdani SO, Pedram M, Hafizi M, Kabiri M, Soleimani M, Dehghan MM, JahanzadI, Gheisari Y, Hashemi SM. A comparison between neurally induced bone marrowderived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinalcord injuries in rat. Tissue Cell,2012,44(4):205-13.
    41. Lee J, Baek JH, Choi KS, Kim HS, Park HY, Ha GH, Park H, Lee KW, Lee CG, YangDY, Moon HE, Paek SH, Lee CW. Cyclin-dependent kinase4signaling acts as amolecular switch between syngenic differentiation and neural transdifferentiation inhuman mesenchymal stem cells. Cell Cycle,2013,12(3):442-51.
    42. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stemcells spontaneously express neural proteins in culture and are neurogenic aftertransplantation. Stem Cell,2006,24(4):1054-1064.
    43. Tomita K, Madura T, Sakai Y, Yano K, Terenghi G, Hosokawa K. Glial differentiationof human adipose-derived stem cells: Implications for cell-based transplantationtherapy. Neuroscience,2013,236(C):55-65.
    44. Mantovani C, Terenghi G, Shawcross SG. Isolation of adult stem cells and theirdifferentiation to Schwann cells. Methods Mol Biol,2012,91(6):47-57.
    45. Liu GB, Cheng YX, Feng YK, Pang CJ, Li Q, Wang Y, Jia H, Tong XJ.Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci,2011,7(4):592-596.
    46. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T,Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyoctes can be generated frommarrow stromal cells in vitro. J Clin Invest,1999,103(5):697-705.
    47. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotentmesenchymal stem cells from umbilical cord blood. Blood,2004,103(5):1669-1675.
    48. Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cellsinto pancreatic islet beta-cells. World J Gastroenterol,2004,10(20):3016-3020.
    49. Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bonemarrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice.DNA Cell Biol,2005,24(7):458-463.
    50. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V,Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S,Annunziato F. Role for interferon-gamma in the immunomodulatory activity ofhuman bone marrow mesenchymal stem cells. Stem Cells,2006,24(2):386-398.
    51. Weil BR, Markel TA, Herrmann JL, Abarbanell AM, Meldrum DR. Mesenchymalstem cells enhance the viability and proliferation of human fetal intestinal epithelialcells following hypoxic injury via paracrine mechanisms. Surgery,2009,146(2):190-197.
    52. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, CantosC, Jorgensen C, No l D. Mesenchymal stem cells inhibit the differentiation ofdendritic cells through an interleukin-6-dependent mechanism. Stem Cells,2007,25(8):2025-2032.
    53. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymalstem cells inhibit differentiation and function of monocyte-derived dendritic cells.Blood,2005,105(10):4120-4126.
    54. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, OttonelloL, Pistoia V. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model forneutrophil preservation in the bone marrow niche. Stem Cells,2008,26(1):151-162.
    55. Xu G, Zhang Y, Zhang L, Ren G, Shi Y. The role of IL-6in inhibition of lymphocyteapoptosis by mesenchymal stem cells. Biochem Biophys Res Commun,2007,361(3):745-750.
    56. Gieseke F, Schütt B, Viebahn S, Koscielniak E, Friedrich W, Handgretinger R, MüllerI. Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCsindependently of IFNγR1signaling and IDO expression. Blood,2007,110(6):2197-2200.
    57. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, K ppel A, TolosaE, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M. Toll-like receptorengagement enhances the immunosuppressive properties of human bonemarrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1via interferon-beta and protein kinase R. Stem Cells,2009,27(4):909-919.
    58. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitricoxide plays a critical role in suppression of T-cell proliferation by mesenchymal stemcells. Blood,2007,109(1):228-234.
    59. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymalstem cell-mediated immunosuppression occurs via concerted action of chemokinesand nitric oxide. Cell Stem Cell,2008,2(2):141-150.
    60. Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A, Zhang J, Lu Y, Roberts AI, Ji W,Zhang H, Rabson AB, Shi Y. Species variation in the mechanisms of mesenchymalstem cell-mediated immunosuppression. Stem Cells,2009,27(8):1954-1962.
    61. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneicimmune cell responses. Blood,2005,105(4):1815-1822.
    62. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, RobeyPG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E.Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependentreprogramming of host macrophages to increase their interleukin-10production. NatMed,2009,15(1):42-49.
    63. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derivedDC maturation and function by selectively interfering with the generation ofimmature DCs: central role of MSC-derived prostaglandin E2. Blood,2009,113(26):6576-6583.
    64. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P,Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyteproliferation induced by cellular or nonspeciic mitogenic stimuli. Blood,2002,99(10):3838-3843.
    65. Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP, Anegon I, CuturiMC. A role for heme oxygenase-1in the immunosuppressive effect of adult rat andhuman mesenchymal stem cells. Blood,2007,110(10):3691-3694.
    66. Nasef A, Mazurier C, Bouchet S, Fran ois S, Chapel A, Thierry D, Gorin NC,Fouillard L. Leukemia inhibitory factor: role in human mesenchymal stem cellsmediated immunosuppression. Cell Immunol,2008,253(1-2):16-22.
    67. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, TiberghienP, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5secretion by human mesenchymal stem cells is required to suppress T lymphocyte andnatural killer function and to induce CD4+CD25high FOXP3+regulatory T cells.Stem Cells,2008,26(1):212-222.
    68. Nasef A, Zhang YZ, Mazurier C, Bouchet S, Bensidhoum M, Francois S, Gorin NC,Lopez M, Thierry D, Fouillard L, Chapel A. Selected Stro-1-enriched bone marrowstromal cells display a major suppressive effect on lymphocyte proliferation. Int J LabHematol,2009,31(1):9-19.
    69. Le Blanc K, Rasmusson I, Sundberg B, G therstr m C, Hassan M, UzunelM, Ringdén O. Treatment of severe acute graft-versus-host disease with third partyhaploidentical mesenchymal stem cells. Lancet,2004,363(9419):1439–1441.
    70. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, SundbergB, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, RingdénO. Mesenchymal stem cells for treatment of steroid-resistant, severe, acutegraft-versus-host disease: a phase II study. Lancet,2008,371(9624):1579-1586.
    71. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J, Yu Z, Li B, Xu C, Li Y, Wang J, HuJ, Lou X, Chen H. The correlation between cotransplantation of mesenchymal stemcells and higher recurrence rate in hematologic malignancy patients: outcome of apilot clinical study. Leukemia,2008,22(3):593-599.
    72. Gonzalo-Daganzo R, Regidor C, Martin-Donaire T, Rico MA, Bautista G, Krsnik I,Fores R, Ojeda E, Sanjuan I, Garcia-Marco JA, Navarro B, Gil S, Sanchez R,Panadero N, Gutierrez Y, Garcia-Berciano M, Perez N, Millan I, Cabrera R,Fernandez MN. Results of a pilot study on the use of third-party donor mesenchymalstromal cells in cord blood transplantation in adults. Cytotherapy,2009,11(3):278-288.
    73. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noel D.Reversal of the immunosuppressive properties of mesenchymal stem cells by tumornecrosis factor alpha in collagen-induced arthritis. Arthritis Rheum,2005,52(5):1595-1603.
    74. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell andmesenchymal stem cell-dif erentiated chondrocyte suppress the responses of type IIcollagen-reactive T cells in rheumatoid arthritis. Rheumatology(Oxford),2008,47(1):22-30.
    75. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D,Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A. Mesenchymal stem cellsameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood,2005,106(5):1755-1761.
    76. Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D, DaudtL, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of humanmesenchymal stem cells with cells involved in alloantigen-specific immune responsefavors th differentiation of CD4+T2cell subsets expressing a regulatory/suppressivephenotype. Haematologica,2005,90(4):516-525.
    77. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy usingallogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen2induced arthritis. Arthr Rhe,2007,56(4):1175-1186.
    78. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stemcells induce division arrest anergy of activated T cells. Blood,2005,105(7):2821-2827.
    79. Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G,Uccelli A. Human mesenchymal stem cells promote survival of T cells in a quiescentstate. Stem Cells,2007,25(7):1753-1760.
    80. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibitthe formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytesor natural killer cells. Transplantation,2003,76(8):1208-1213.
    81. Zhou H, Jin Z, Liu J, Yu S, Cui Q, Yi D. Mesenchymal stem cells might be used toinduce tolerance in heart transplantation. Med Hypotheses,2008,70(4):785-787.
    82. Hanif a MA, Wang XN, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CM,Collin MP. Adult human fibroblasts are potent immunoregulatory cells andfunctionally equivalent to mesenchymal stem cells. J Immunol2007,179(3):1595-1604.
    83. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M.Interactions between human mesenchymal stem cells and natural killer cells. StemCells,2006,24(1):74-85.
    84. Gonzalez-Rey E, Gonzalez MA, Varela N, O'Valle F, Hernandez-Cortes P, RicoL, Büscher D, Delgado M. Human adipose-derived mesenchymal stem cells reduceinflammatory and T-cell responses and induce regulatory T cells in vitro inrheumatoid arthritis. Ann Rheum Dis,2009,69(1):241-248.
    85. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment ofexperimental arthritis by inducing immune tolerance with human adipose-derivedmesenchymal stem cells. Arthritis Rheum,2009,60(4):1006-1019.
    86. Ripoll CB, Flaat M, Klopf-Eiermann J, Fisher-Perkins JM, Trygg CB, ScruggsBA, McCants ML, Leonard HP, Lin AF, Zhang S, Eagle ME, Alvarez X, Li YT, LiSC,Gimble JM, Bunnell BA. Mesenchymal Lineage Stem Cells Have PronouncedAnti-Inflammatory Effects in the Twitcher Mouse Model of Krabbe's Disease. StemCells,2011,29(1):67-77.
    87. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: A novel type ofalternatively activated macrophages. Exp Hematol,2009,37(12):1445–1453.
    88. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells:Isolation, expansion and differentiation. Methods,2008,45(2):115-120.
    89. Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, GleneckK, Shihabuddin L, Tubo R. Systematic analysis of reportedly distinct populations ofmultipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng,2002,8(5):739-751.
    90. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells fromthe bone marrow of commony used strains of inbred mice: variations in yield, growth,and differentiation. J Cell Biochem,1999,72(4):570-585.
    91. Gonnert FA, Recknagel P, Seidel M, Jbeily N, Dahlke K, Bockmeyer CL, WinningJ, L sche W, Claus RA, Bauer M. Characteristics of clinical sepsis reflected in areliable and reproducible rodent sepsis model. J Surg Res,2011,170(1):e123-134.
    92.于燕,杨红明.促炎、抗炎介质在创、烧伤后免疫功能障碍及脓毒症发生发展中的作用.军医进修学院学报.2007
    93.王耘川.胰岛素对严重烧伤后机体失控性炎症反应的改善作用及机制.第四军医大学硕士论文.2007.
    94.冯林.大鼠脂肪组织来源干细胞的分离、培养、诱导分化以及与丝素材料相容性的初步研究.苏州大学博士论文.2006.
    95.黄志伟.间充质干细胞的多向分化及其应用研究新进展.国际儿科学杂志.2006.
    96.杨东明.人骨髓间充质干细胞免疫原性及其相关机制的实验研究.第三军医大学博士论文.2007.
    1.姚咏明,柴家科,林洪远,主编.现代脓毒症理论与实践.北京:科学出版社,
    2005.155-28.
    2. Kox WJ, Volk T, Kox SN, et al. Immunomodulatory therapies in sepsis. IntensiveCare Med,2000,26(Supll):124-128.
    3. Bone RC. Immunologic dissonance: a continuing evolution in our understanding ofthe systemic inflammatory response syndrome (SIRS) and the multiple organdysfunction syndrome (MODS). Ann Intern Med,1996,125(8):680-687.
    4. Heidecke CD, Hensler T, Weighardt H, et al. Selective defects of T lymphocytefunction in Patients with lethal intra-abdominal infection. Am J Surg,1999,178(4):288-292
    5. Shi HN, Walker A. T helper cell subclasses and clinical disease states. Curr OpinGastro,2002,18(6):711-716.
    6. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med,2003,348(2):138-150.
    7. Krueger A, Fas SC, Baumann S, eta1.The role of CD95in the regulation ofperipheral T cell apoptosis.Immunol Rev,2003,193(1):58-69.
    8. Monneret G, Debard AL, VenetF, etal.Marked elevation of humancirculatingCD4+CD25+regulatory T cells in sepsis-induced imuno paralysis. CritCare Mer,2003,31(7):2068.
    9. Venet F,Pachot A,Debard AL,etal. Increased percentage of CD4CD25+regulatoryTcells during septic shock is due to the decreaseCD4+CD25+lymphocytes. Crit CareMed,2004,32(11):232.
    10. MacConmara MP, etal. Increased CD4+CD25+T regulatory cell ativity in traumapatients depresses protective Thl immunity. Ann Surg,2006,244(4):514.
    11. Wisnoski N, Chung CS, Chen Y, etal. The contribution of CD4+CD25+T-regulatory-cells to immune suppression in sepsis. Shock,2006,27(3):251.
    12. Offner H, Subramanian S,Parker SM, etal.Splenic atrtophy in experimental stroke isaccompanied by increased regulatory Tcells and circulating macrophages. J Immunol,2006,176(11):6523.
    13. Chen X,Baumel M, Mannel DN,etal. Interaction of TNF with TNF-receptor type2promotes expansion and function of mouse CD4+CD25+T regulatory cells.J Immunol,2007,179(11):154.
    14. Duffield JS. The inflammatory macrophage: a story Jekyll and Hyde. Clin Sci,2003,104(3):27-38.
    15.彭代智,黄文.烧伤后失控性炎症反应的巨噬细胞信号转导机制研究.第三军医大学学报,2004,26(23):2138-2140.
    16. Wang XY, Zhang JS, Su YY, et al. Effect of thermal injury on LPS mediated Tollsignal pathways by murine peritoneal macrphages: inhibition of DNA-binding oftranscription factor AP-1and NF-кB and gene expression of c-fos and IL-12p40.Science In China (Series C),2002,45(4):613-622.
    17. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses.Exp Hematol,2000,28(8):875-884.
    18. Tagami M, Ichinose S, Yamagala K, etal. Genetic and ultrastructra demonstration ofstrong reversibility in human mesenchymal stem cells. Cell TissueRes,2003,312(1):31-40.
    19. Goodwin HS, Bicknese AR, Chien SN, etal. Multilineage differentiation activity bycells isolated from umbilical cord blood: expression of bone, fat and neural markers.Biol Blood Marrow Transplant,2001,7(11):581-588.
    20. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneicimmune cell responses. Blood2005,105(4):1815-22.
    21. Maccario R, Podests M, Moretta A et al. Interaction of human mesenchymal stemcells with cells involved in alloantigen-specific immune response favors thdifferentiation of CD4+T2cell subsets expressing a regulatory/suppressive phenotype.Haematologica,2005,90(2):516-525.
    22. Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bonemarrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice.DNA Cell Biol,2005,24:458-463.
    23. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role forinterferon-gamma in the immunomodulatory activity of human bone marrowmesenchymal stem cells. J Stem Cells,2006,24:386-398.
    24. Sorrentino A, Ferracin M, Castelli G, et al. Isolation and characterization of CD146+multipotent mesenchymal stromal cells. J Exp Hematol,2008,36(8):1035-1046.
    25. Weil BR, Markel TA, Hermann JL, et al. Mesenchymal stem cells enhance theviability and proliferation of human fetal intestinal epithelial cells following hypoxicinjury via paracrine mechanisms. Surgery,2009,146(2):190-197.
    26. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneicimmune cell responses. Blood2005,105(4):1815-22.
    27. Rojas M, Xu J, Woods CR, et al.Bone marrow-derived mesenchymal stem cells inrepair of the injured lung. Am J Respir Cell Mol Biol2005;33(2):145-152.
    28. Yamada M, Kubo H, Kobayashi S, et al.Bone marrow-derived progenitor cells areimportant for lung repair after lipopolysaccharide-induced lung injury. J Immunol2004;172(2):1266-1272
    29. Zappia E Casazza S Pedemonte E et al. Mesenchymal stem cells ameliorateexperimental autoimmune encephalomyelitis inducing T-cell anergy. Blood2005,106(5):1755-61.
    30. Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cellsrecruit macrophages and endothelial lineage cells and enhance wound healing.[J]PLoS One,2008,3(4):e1886.
    31. Guo J, Lin GS, Anti-inflammation role for mesenchymal stem cells transplantation inmyocardial infarction.[J] Inflammation,2007,30(3-4):97-104.
    32. Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derivedmesenchymal stem cells reduce inflammatory and T-cell responses and induceregulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis,2009,5(2):815-22.
    33. Gonzalez MA, Gonzalez-Rey E, Rico L, et al. Treatment of experimental arthritis byinducing immune tolerance with human adipose-derived mesenchymal stem cells.Arthritis Rheum,2009,60(4):1006-1019.
    34. Ripoll CB, Flaat M, Klopf-Eiermann J,et al. Mesenchymal Lineage Stem Cells HavePronounced Anti-Inflammatory Effects in the Twitcher Mouse Model of Krabbe'sDisease. Stem Cells.2011Jan;29(1):67-77.
    35. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: A novel type ofalternatively activated macrophages. Exp Hematol2009;37(4):1445–1453.
    36. Qun-zhou ZH, Wen-ru S, Shi-hong S, et al. Human Gingiva-Derived MesenchymalStem Cells Elicit Polarization of M2Macrophages and Enhance Cutaneous WoundHealing. Stem Cells.2010Oct;28(10):1856-68.
    37. Augello A,Tasso R,Negrini S M,et al.Cell therapy using all ogeneic bone marrowmesenchymal stem cells p revents tissue damage in collagen2induced arthritis. ArthrRhe,2007,56(4):1175–1186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700