用户名: 密码: 验证码:
围产期暴露于DEHP对子代大鼠肾脏发育的影响及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎期和哺乳期是机体发育的重要时期,从生命的起源到发育成型要经历细胞增殖、分化、迁移和程序性调亡等一系列复杂的过程。上世纪90年代末,英国学者提出“成人疾病的宫内起源”假说,该观点发布后引起国内外广泛关注,学者们认为围产期经历的环境对于成年后健康影响巨大,可能影响机体成年后患心血管疾病、代谢性疾病和肾脏疾病等各种慢性非传染性疾病的风险。有研究发现宫内发育进程中胎盘功能不全、母体低蛋白质饮食、糖皮质激素暴露和高脂饮食等因素都会影响先天肾脏发育,可能会导致胎儿和新生儿肾单位数量降低,增加成年后疾病负担。
     邻苯二甲酸二(2-乙基己基)酯(Di-(2-ethylhexyl)-phthalate, DEHP),是生产聚氯乙烯产品中广泛使用的一种增塑剂,可以通过消化道、呼吸道及皮肤接触等途径进入人体。DEHP及其在体内的主要代谢产物邻苯二甲酸单乙基己基酯(Mono(2-ethylhexyl) phthalate, MEHP),均可以通过胎盘和乳汁进入子代体内,影响胎儿和新生儿的健康。既往关于DEHP的研究主要集中在短期高剂量暴露上,发现DEHP可以诱发肝毒性、睾丸毒性、肾脏毒性、发育障碍和生殖毒性等。考虑到MEHP是PPARs受体的激活剂,MEHP通过与PPARa结合可以影响能量代谢,与PPARy结合可能影响细胞分化。另外,PPARs可以影响糖皮质激素和肾素-血管紧张素系统(Renin-angiotensin system, RAS)的功能,从而直接或间接影响输尿管芽(ureteric bud, UB)在肾发生过程中的分支,干扰肾脏发育进程。因此,我们推测围产期暴露于DEHP可能会对子代大鼠肾脏发育产生影响。
     本研究首先在胚胎期和哺乳期通过母体将子代间接暴露于DEHP,观察DEHP对肾脏发育的影响,并观察子代大鼠成年后肾脏和血压的改变;然后,我们在断乳后给予部分大鼠高脂饮食,观察围产期DEHP暴露和成年高脂饮食对大鼠肾脏损害的协同作用;此外,选择肾脏发育窗口期的胚胎肾脏做基因表达谱分析,进一步探索DEHP损害肾脏发育的机制。
     第一部分围产期暴露于DEHP影响子代大鼠肾脏发育
     目的:探讨围产期通过母体间接暴露于DEHP对子代大鼠肾脏发育的影响及可能的机制。
     方法:将孕鼠随机分为三组:对照组、低剂量组和高剂量组。从受孕0天开始直至仔鼠出生后第21天断乳,分别进行玉米油和不同剂量的DEHP(0.25和6.25mg/kg body weight/day)灌胃染毒。测量子代大鼠体重、肾重、血压、肾功能等变化;通过H&E染色法、PAS染色和masson染色观察子代大鼠肾脏病理学变化,并且通过电镜观察肾脏超微结构变化;采用ELISA、Griss法和免疫组化切片法分别检测成年子代大鼠血清肾素、血管紧张素Ⅱ、内皮素-1和一氧化氮等血压调节相关指标;同时,采用Q-PCR、western blotting和免疫组化切片法分别检测幼年子代大鼠RAS、PPARs、肾脏早期发育相关基因和结构相关基因的变化。
     结果:与对照组相比,围产期通过母体间接暴露于DEHP会使断乳期子代大鼠肾单位数量降低、肾小球体积增大、肾小囊缩小等病理学改变,成年大鼠逐渐出现肾小球硬化、肾间质纤维化、足细胞足突肿胀甚至消失等病理学变化。并且,母体暴露于DEHP的子代大鼠成年后血压显著升高,RAS功能激活,肾功能显著降低,表现为内生肌酐清除率降低、血尿素氮升高、尿总蛋白升高。并且,肾脏肾素和血管紧张素Ⅱ的蛋白表达水平在出生时显著降低,但在断乳期显著升高。此外,母体暴露于DEHP同样也会导致肾脏分化关键基因Foxdl, Gdnf, Pax2和Wnt11的mRNA表达水平在出生时显著降低;肾脏发育结构相关基因Bmp4, Cdh11, Calm1和Ywhab的mRNA表达水平在出生时显著升高。
     结论:母体DEHP暴露将会影响子代大鼠肾脏发育,导致肾单位数量降低,以致成年后大鼠肾功能损害和血压升高。研究表明母体暴露于DEHP通过抑制子代RAS功能,影响肾单位发育和成年肾脏疾病。
     第二部分围产期暴露于DEHP加剧子代子代高脂饮食诱导的肾损害
     目的:第一部分研究显示围产期暴露于DEHP可以影响子代大鼠肾脏发育,在本部分,我们引入高脂高糖的暴露因素,进一步探讨围产期暴露于DEHP与子代断乳后高脂饮食暴露的协同效应及可能的影响机制。
     方法:将孕鼠随机分为对照组和试验组,从受孕0天开始直至仔鼠出生后第21天断乳,分别进行玉米油和DEHP (1.25mg/kg body weight/day)灌胃染毒。每组断乳后,子代被随机分为两个亚组,给予正常饮食(Normal diet, ND)或高脂饮食(High fat diet, HFD)。测量子代大鼠体重、肾重、血压、肾功能等的变化;通过H&E染色法、PAS染色和masson染色观察子代大鼠肾脏病理学变化;同时,采用Q-PCR、western blotting和免疫组化切片分别检测成年及幼年子代大鼠RAS系统、PPARs、肾脏早期发育相关基因和结构相关基因的变化。
     结果:研究发现,围产期暴露于DEHP会降低出生时子代大鼠肾单位的数量,增加肾脏PPARs蛋白质的表达,降低肾素-血管紧张素系统(RAS)蛋白质的表达。在成年期,如预期一样,高脂饮食显著增加大鼠的体重和血压。另外,DEHP或高脂饮食均可引起子代大鼠肾功能不全和肾小球硬化,并且同时暴露于DEHP和高脂饮食的子代大鼠肾脏损害现象最为严重。此外,围产期DEHP暴露会使高脂饮食暴露的子代大鼠肾脏PPARs蛋白的表达降低,RAS和TGFβ1蛋白的表达增加。
     结论:通过围产期间接暴露于DEHP与断乳后高脂饮食对于子代大鼠的肾损害具有协同效应。其影响原因可能是暴露于DEHP后,一方面降低子代肾单位数量,使肾脏功能过度代偿;另一方面使子代PPARs功能失调,肾脏自我保护能力降低。
     第三部分胚胎期DEHP暴露对大鼠肾脏发育窗口期肾脏基因表达谱的影响
     目的:分析暴露于DEHP对子代大鼠肾脏发育窗口期肾脏基因表达谱的影响,进一步探索胚胎期DEHP暴露对肾脏发育可能的影响机制。
     方法:将孕鼠随机分为对照组和试验组,从受孕0天开始分别进行玉米油和DEHP (0.25mg/kg body weight/day)灌胃染毒。在胚胎期14.5天和16.5天分别处死一批孕鼠取胚胎,分别标记为E14.5-C(胚胎期14.5天对照组)、E14.5-D(胚胎期14.5天DEHP组)、E16.5-C(胚胎期16.5天对照组)与E16.5-D(胚胎期16.5天DEHP组)。部分胚胎做HE染色观察肾脏的病理学改变,部分胚胎分离肾脏,提取肾脏RNA,制成混合样本应用表达谱分析技术,筛选差异表达基因,并对其进行聚类分析、Gene Ontology功能显著性富集分析和Pathway显著性富集分析。
     结果:胚胎期暴露于DEHP会导致子代大鼠肾脏发育不良。DEHP组与对照组相比,在E14.5天子代大鼠肾脏基因表达差异比E16.5天显著。并且,E14.5-D与E14.5-C的差异基因,和E16.5-C与E14.5-C与之间的差异基因变化规律相似;E16.5-D与E16.5-C的差异基因,和E16.5-D与E14.5-D之间的差异基因变化规律相似。另外,E14.5-D与E14.5-C的差异基因主要集中在细胞内,E16.5-D与E16.5-C的差异基因主要集中在细胞外区域,E16.5-C与E14.5-C的差异基因主要集中在细胞内,E16.5-D和E14.5-D的差异基因主要集中在收缩纤维。另外,E14.5-D与E14.5-C、E16.5-C与E14.5-C在PPAR信号转导、wnt信号转导、代谢等通路发生了变化,E16.5-D与E16.5-C在凋亡、黏附等通路发生了变化,E16.5-D与E14.5-D在蛋白质的消化吸收等通路发生了变化。
     结论:我们认为E14.5比E16.5肾脏发育更敏感,胚胎期DEHP暴露通过参与肾脏发育关键期PPAR通路、Wnt通路、糖脂代谢、凋亡等及相关信号通路,降低了基因的敏感性,影响了细胞、器官及系统的发育进程,导致胚胎大鼠肾脏发育速度加快,肾单位发育不足。
Embryonic and lactation are critical for organism development. From the origin to formation, the life undergoes cell proliferation, migration, differentiation, procedural apoptosis and other complex processes. During the late1990s, the British scholar put forward "the intrauterine origins of adult disease" hypothesis, and then this view had aroused worldwide attention from scholars. The researchers believed that conditions experienced during perinatal played powerful roles in later life, and leading to certain chronic diseases in adulthood, including cardiovascular disease, metabolic disease and chronic kidney disease. Some studies indicate that placental insufficiency, maternal low protein diet, glucocorticoid and high-fat diet are all known to affect kidney development, which would cause reduced fetal and neonatal nephron number, leading to enhanced adult disease burden.
     Di-(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer in many types of polyvinyl chloride consumer products, continually enters into human body via food, water, the atmosphere and medical devices. Both DEHP and Mono (2-ethylhexyl) phthalate (MEHP), a major metabolite of DEHP in vivo, were translocated across the placenta of pregnant rodents and distributed into the milk of lactating rat dams, leading to the fetus and neonate to be at risk. Previous animal studies have demonstrated short-term exposure to high-dosage DEHP induced hepatotoxicity, testicular toxicity, renal toxicity, developmental disturbance, reproductive toxicity, and teratogenicity. MEHP is believed as a peroxisome proliferator-activated receptor a (PPARa) activator, and PPARa is verified to be required for the metabolic toxicity of DEHP in the fetuses and pups. Interestingly, it can also transactivate PPARy which correlates with the ability to induce fibroblasts and adipocyte differentiation. Moreover, PPAR could influence the renin-angiotensin system (RAS) and glucocorticoid, which could directly and indirectly induce ureteric bud (UB) branching during nephrogenesis, which determines the nephron numbers. Therefore, we hypothesize that perinatal exposure to DEHP might affect kidney development in rat offspring.
     In this study, we have exposed maternal to DEHP during the embryos and lactating, and examine the effect of perinatal DEHP exposure on nephron formation, adult renal disease and blood pressure in offspring. To further confirm this damage, we gave parts of them high-fat diet (HFD) after weaning and examined the effects of maternal DEHP exposure combined with HFD on the development of kidney damage in the offspring. Otherwise, in order to explore the possible mechanisms of perinatal DEHP exposure on nephron formation, we detected the gene expression profiles of embryonic kidneys during critical periods in development, and analyzed the gene otology and pathway of the differentially expressed genes.
     Part1:Perinatal exposure to DEHP affects kidney development in offspring
     Objective:This study investigated the consequences of perinatal exposure to DEHP on nephron formation, examined the programming of renal function and blood pressure and explored the mechanism in offspring
     Methods:Two mature females and one male were placed together in one cage for breeding. Mating was confirmed by the appearance of a vaginal plug in the following morning. And then, maternal rats were treated with vehicle,0.25and6.25mg/kg body weight/day DEHP respectively from gestation day0to postnatal day21. Body weight and kidney weight were carefully recorded at birth day and week3,15and21. The H&E staining, PAS staining and Masson staining were used to detect the histopathological changes. The ELISA and Griss method were used to detect the concentration of serum rennin, angiotensin Ⅱ, ET-1and NO. Moreover, Q-PCR, western blotting and immunohistochemistry were used to detect the expression of RAS, PPARs and other kidney development-related genes.
     Results:Maternal DEHP exposure resulted in lower number of nephrons, higher glomerular volume and smaller Bowman's capsule in the DEHP-treated offspring at weaning, as well as glomerulosclerosis, interstitial fibrosis and effacement of podocyte foot processes in adulthood. In the DEHP-treated offspring, the renal function was lower and the blood pressure was higher. The renal protein expression of renin and angiotensin Ⅱ was reduced at birth day and increased at weaning. Maternal DEHP exposure also led to reduced mRNA expression of some renal development involved genes at birth day, including Foxdl, Gdnf, Pax2and Wntll. While, the mRNA expression of some genes was raised, including Bmp4, Cdhll, Calml and Ywhab.
     Conclution:These data show that maternal DEHP exposure impairs the offspring renal development, resulting in a nephron deficit, and subsequently elevated blood pressure later in life. Our findings suggest that DEHP exposure in developmental periods may affect the development of nephrons and adult renal disease through inhibition of the renin-angiotensin system.
     Part2:Perinatal exposure to DEHP exacerbates high fat diet-induced kidney damage in offspring
     Objective:The first part suggested that perinatal exposure to DEHP induced renal toxicity in offspring rats. And, high-fat diet induced obesity has emerged as a strong independent risk factor for kidney disease. In this study, we investigated the effects of perinatal DEHP exposure on the kidney development of the offspring and confirm whether the effects could exacerbate high fat diet-induced renal damage in offspring.
     Methods:Pregnant Wistar rats were exposed to vehicle or1.25mg/kg body weight/day DEHP throughout gestation and lactation by oral gavage, and then the offspring were randomLy assigned to a normal diet (ND) or a high-fat diet (HFD) after weaning. Body weight, blood pressure, renal morphology and renal function were evaluated in the offspring. The H&E staining, PAS staining and Masson staining were used to detect the histopathological changes. Moreover, Q-PCR, western blotting and immunohistochemistry were used to detect the expression of RAS, PPARs and other kidney development-related genes.
     Results:Maternal DEHP exposure decreased the number of nephrons, increased renal protein expression of peroxisome roliferator-activated receptors (PPARs) and reduced renin-angiotensin system (RAS) expression in the offspring at birth day. In adulthood, as expected, HFD significantly increased weight and blood pressure. In addition, DEHP or HFD induced renal dysfunction and glomerulosclerosis, and the DEHP/HFD offspring had the most serious phenomenon. Moreover, maternal DEHP exposure reduced PPARs expression, increased RAS expression and TGFβ1expression in kidney of HFD-fed offspring.
     Conclution:Our data suggest that the maternal DEHP exposure induces congenital dysplasia of the kidney in the offspring, which exacerbates HFD-induced kidney damage in offspring. The mechanism probably involves reducing nephron numbers and impairing PPARs expression.
     Part3:The influence on offspring gene expression profile in kidney developmental window by prenatal DEHP exposure
     Objective:Analyze the influence of offspring expression profile in kidney developmental window induced by prenatal DEHP exposure, to further explore the mechanism of the early life DEHP exposure on kidney development.
     Methods:Pregnant Wistar rats were exposed to vehicle or0.25mg/kg body weight/day DEHP respectively from gestation day0. Pregnant rats were scarified in embryonic14.5days (E14.5) and16.5days (E16.5) respectively. The H&E staining was used to detect the histopathological changes of embryonic kidney. Moreover, we separated the embryonic kidney and extraction of kidney RNA, and used gene chips to detect gene expression profiling. The differentially expressed genes (DEGs), cluster analysis, the Gene Ontology features significant enrichment and Pathway significant enrichment were analyzed.
     Results:Exposure to DEHP in embryonic period caused kidney dysphasia. Comparing with the control and the exposure group, the DEGs of E14.5were significant higher than E16.5. And, the DEGs of E14.5-D vs E14.5-C were similar with E16.5-C vs E14.5-C, while the DEGs of E16.5-D vs E16.5-C were similar with E16.5-D vs E16.5-C. Moreover, the DEGs of E14.5-D vs E14.5-C mainly concentrated in the cell, the DEGs of E16.5-D vs E14.5-D mainly concentrated in the extracellular region, the DEGs of E16.5-C vs E14.5-C also mainly concentrated in the cell, and the DEGs of E16.5-D vs E14.5-D mainly concentrated in the contractile fibers. Additionally, the DEGs of E14.5-D vs E14.5-C and E16.5-C vs E16.5-D were related with PPAR signaling pathways, Wnt signaling pathways, metabolic pathways and others. While, the DEGs of E16.5-D vs E16.5-C were related with apoptosis, adhesion, etc. and the DEGs of E16.5-D vs E14.5-D were related with protein digestion and absorption.
     Conclution:We believe that kidney development in E14.5is more sensitive than in E16.5. Prenatal DEHP exposure could affect kidney development by influencing the PPARs pathway, Wnt signaling pathway, glucose and lipid metabolism, apoptosis and other related signaling pathways. And thus, these changes could reduce the sensitivity of the genes and affect the development process of cells, organs and systems, resulting in accelerated programing of kidney development, leading to nephron hyperplasia.
引文
[1]Gluckman P. D., Hanson M. A., Cooper C., et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med,2008,359(1):61-73.
    [2]Bhargava S. K., Sachdev H. S., Fall C. H., et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med,2004,350(9):865-75.
    [3]Lackland D. T., Bendall H. E., Osmond C., et al. Low birth weights contribute to high rates of early-onset chronic renal failure in the southeastern united states. Arch Intern Med,2000,160(10):1472-6.
    [4]Osmond C., Barker D. J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect,2000,108 Suppl 3:545-53.
    [5]Warner M. J., Ozanne S. E. Mechanisms involved in the developmental programming of adulthood disease. Biochem J,2010,427(3):333-47.
    [6]Wei J., Lin Y., Li Y, et al. Perinatal exposure to bisphenol a at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology,2011,152(8):3049-61.
    [7]Sharpe R. M.; Fisher J. S., Millar M. M., et al. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect,1995,103(12):1136-43.
    [8]Lin Y., Wei J., Li Y, et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am J Physiol Endocrinol Metab,2011,301(3): E527-38.
    [9]Tomaszewski K. E., Heindel S. W., Jenkins W. L., et al. Induction of peroxisomal acyl coa oxidase activity and lipid peroxidation in primary rat hepatocyte cultures. Toxicology,1990,65(1-2):49-60.
    [10]NTP-CERHR. (national toxicology program center for the evaluation of risks to human reproduction) ntp-cerhr expert panel report on di(2-ethylhexyl) phthalate.2000.
    [11]Gartner S., Balski M., Koch M., et al. Analysis and migration of phthalates in infant food packed in recycled paperboard. J Agric Food Chem,2009,57(22): 10675-81.
    [12]Barr D. B., Silva M. J., Kato K., et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect,2003,111(9):1148-51.
    [13]Pak V. M., Nailon R. E., McCauley L. A. Controversy:Neonatal exposure to plasticizers in the nicu. MCN Am J Matern Child Nurs,2007,32(4):244-9.
    [14]Calafat A. M., McKee R. H. Integrating biomonitoring exposure data into the risk assessment process:Phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study. Environ Health Perspect,2006,114(11):1783-9.
    [15]CPSC U.S. Toxicity review of di(2-ethylhexyl) phthalate (dehp).2010.
    [16]Poon R., Lecavalier P., Mueller R., et al. Subchronic oral toxicity of di-n-octyl phthalate and di(2-ethylhexyl) phthalate in the rat. Food Chem Toxicol,1997, 35(2):225-39.
    [17]NTP. (national toxicology program) carcinogenesis bioassay of di(2-ethylhexyl)phthalate (cas no.117-81-7) in f344 rats and b6c3fl mice (feed studies). Natl. Toxicol. Program Tech. Rep.,1982,217:1-127.
    [18]Lamb J. C. th, Chapin R. E., Teague J., et al. Reproductive effects of four phthalic acid esters in the mouse. Toxicol Appl Pharmacol,1987,88(2): 255-69.
    [19]Jarfelt K., Dalgaard M., Hass U., et al. Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reprod Toxicol,2005,19(4):505-15.
    [20]Hayashi Y., Ito Y., Yamagishi N., et al. Hepatic peroxisome proliferator-activated receptor alpha may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology,2011, 289(1):1-10.
    [21]Vanden Heuvel J. P. Peroxisome proliferator-activated receptors:A critical link among fatty acids, gene expression and carcinogenesis. J Nutr,1999,129(2S Suppl):575S-580S.
    [22]Zandi-Nejad K., Luyckx V. A., Brenner B. M. Adult hypertension and kidney disease:The role of fetal programming. Hypertension,2006,47(3):502-8.
    [23]losipiv I. V., Schroeder M. A role for angiotensin ii atl receptors in ureteric bud cell branching. Am J Physiol Renal Physiol,2003,285(2):F199-207.
    [24]Song R., Spera M., Garrett C., et al. Angiotensin ii at2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol,2010,298(3): F807-17.
    [25]Zhang S. L., Moini B., Ingelfinger J. R. Angiotensin ii increases pax-2 expression in fetal kidney cells via the at2 receptor. J Am Soc Nephrol,2004,15(6): 1452-65.
    [26]Porteous S., Torban E., Cho N. P., et al. Primary renal hypoplasia in humans and mice with pax2 mutations:Evidence of increased apoptosis in fetal kidneys of pax2(lneu)+/- mutant mice. Hum Mol Genet,2000,9(1):1-11.
    [27]Sugawara A., Takeuchi K., Uruno A., et al. Transcriptional suppression of type 1 angiotensin ii receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology,2001,142(7):3125-34.
    [28]Diep Q. N., El Mabrouk M., Cohn J. S., et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin ii-infused rats: Role of peroxisome proliferator-activated receptor-gamma. Circulation,2002, 105(19):2296-302.
    [29]Benkirane K., Viel E. C., Amiri F., et al. Peroxisome proliferator-activated receptor gamma regulates angiotensin ii-stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension,2006,47(1):102-8.
    [30]Ji Y., Liu J., Wang Z., et al. Ppargamma agonist, rosiglitazone, regulates angiotensin ii-induced vascular inflammation through the tlr4-dependent signaling pathway. Lab Invest,2009,89(8):887-902.
    [31]ECB. (european chemicals bureau) summary risk assessment report-bis (2-ethylhexyl) phthalate (dehp).2008, ((EUR 23384 EN/2)).
    [32]Bruin J. E., Gerstein H. C., Morrison K. M., et al. Increased pancreatic beta-cell apoptosis following fetal and neonatal exposure to nicotine is mediated via the mitochondria. Toxicol Sci,2008,103(2):362-70.
    [33]Bruin J. E., Petre M. A., Raha S., et al. Fetal and neonatal nicotine exposure in wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction. PLoS One,2008,3(10):e3371.
    [34]Yasuno K., Ishihara S., Saito R., et al. Early-onset podocyte injury and glomerular sclerosis in osborne-mendel rats. J Vet Med Sci,2010,72(10): 1319-27.
    [35]Le Menuet D., Isnard R., Bichara M., et al. Alteration of cardiac and renal functions in transgenic mice overexpressing human mineralocorticoid receptor. J Biol Chem,2001,276(42):38911-20.
    [36]Cheng J., Ke Q., Jin Z., et al. Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog,2009,5(5):e1000427.
    [37]Cullen-McEwen L. A., Kett M. M., Dowling J., et al. Nephron number, renal function, and arterial pressure in aged gdnf heterozygous mice. Hypertension, 2003,41(2):335-40.
    [38]Manalich R., Reyes L., Herrera M., et al. Relationship between weight at birth and the number and size of renal glomeruli in humans:A histomorphometric study. Kidney Int,2000,58(2):770-3.
    [39]Woods L. L., Ingelfinger J. R., Nyengaard J. R., et al. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res,2001,49(4):460-7.
    [40]Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods,2001, 25(4):402-8.
    [41]David R. M., Moore M. R., Finney D. C., et al. Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci,2000,55(2):433-43.
    [42]Kamijo Y., Hora K., Nakajima T., et al. Peroxisome proliferator-activated receptor alpha protects against glomerulonephritis induced by long-term exposure to the plasticizer di-(2-ethylhexyl)phthalate. J Am Soc Nephrol, 2007,18(1):176-88.
    [43]Barker D. J., Forsen T., Eriksson J. G., et al. Growth and living conditions in childhood and hypertension in adult life:A longitudinal study. J Hypertens, 2002,20(10):1951-6.
    [44]Lifton R. P., Gharavi A. G., Geller D. S. Molecular mechanisms of human hypertension. Cell,2001,104(4):545-56.
    [45]Keller G., Zimmer G., Mall G., et al. Nephron number in patients with primary hypertension. N Engl J Med,2003,348(2):101-8.
    [46]Vallon V. Tubuloglomerular feedback and the control of glomerular filtration rate. News Physiol Sci,2003,18:169-74.
    [47]Griffin K. A., Picken M. M., Churchill M., et al. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol,2000,11(3):497-506.
    [48]Bagby S. P. Maternal nutrition, low nephron number, and hypertension in later life:Pathways of nutritional programming. J Nutr,2007,137(4):1066-72.
    [49]Guron G., Friberg P. An intact renin-angiotensin system is a prerequisite for normal renal development. J Hypertens,2000,18(2):123-37.
    [50]Woods L. L. Fetal origins of adult hypertension:A renal mechanism? Curr Opin Nephrol Hypertens,2000,9(4):419-25.
    [51]Hao X. Q., Zhang H. G., Yuan Z. B., et al. Prenatal exposure to lipopolysaccharide alters the intrarenal renin-angiotensin system and renal damage in offspring rats. Hypertens Res,2010,33(1):76-82.
    [52]Casals-Casas C., Feige J. N., Desvergne B. Interference of pollutants with ppars: Endocrine disruption meets metabolism. Int J Obes (Lond),2008,32 Suppl 6: S53-61.
    [53]Dostal L. A., Jenkins W. L., Schwetz B. A. Hepatic peroxisome proliferation and hypolipidemic effects of di(2-ethylhexyl)phthalate in neonatal and adult rats. Toxicol Appl Pharmacol,1987,87(1):81-90.
    [54]Feige J. N., Gerber A., Casals-Casas C., et al. The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific pparalpha-dependent mechanisms. Environ Health Perspect,2010,118(2): 234-41.
    [55]Pachnis V., Mankoo B., Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development,1993,119(4):1005-17.
    [56]Brophy P. D., Ostrom L., Lang K. M., et al. Regulation of ureteric bud outgrowth by pax2-dependent activation of the glial derived neurotrophic factor gene. Development,2001,128(23):4747-56.
    [57]Hatini V., Huh S. O., Herzlinger D.; et al. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor bf-2. Genes Dev,1996,10(12):1467-78.
    [58]Majumdar A., Vainio S., Kispert A., et al. Wnt11 and ret/gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development,2003,130(14):3175-85.
    [59]Cain J. E., Hartwig S., Bertram J. F., et al. Bone morphogenetic protein signaling in the developing kidney:Present and future. Differentiation,2008, 76(8):831-42.
    [60]Yosypiv I. V., Boh M. K.; Spera M. A., et al. Downregulation of spry-1, an inhibitor of gdnf/ret, causes angiotensin ii-induced ureteric bud branching. Kidney Int,2008,74(10):1287-93.
    [61]Cho E. A., Patterson L. T., Brookhiser W. T., et al. Differential expression and function of cadherin-6 during renal epithelium development. Development, 1998,125(5):803-12.
    [62]Luers G. H., Michels M., Schwaab U., et al. Murine calmodulin binding protein 1 (calmbpl):Tissue-specific expression during development and in adult tissues. Mech Dev,2002,118(1-2):229-32.
    [63]Kiberd B. The chronic kidney disease epidemic:Stepping back and looking forward. J Am Soc Nephrol,2006,17(11):2967-73.
    [64]Watanabe N., Hashimoto Y, Futamura A., et al. relationship between the prevalence of proteinuria and obesity in japanese men. Rinsho Byori,1999, 47(3):271-4.
    [65]USRDS. Usrds (us renal data system) 2005 annual data report:Atlas of end-stage renal disease in the united states. Bethesda, md:National institutes of health, national institute of diabetes and digestive and kidney diseases. 2005.
    [66]Deji N., Kume S., Araki S., et al. Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am J Physiol Renal Physiol,2009, 296(1):F118-26.
    [67]Shen W. W., Chen H. M., Chen H., et al. Obesity-related glomerulopathy:Body mass index and proteinuria. Clin J Am Soc Nephrol,2010,5(8):1401-9.
    [68]Ingelfinger J. R. Is microanatomy destiny?. N Engl J Med,2003,348(2): 99-100.
    [69]Rostand S. G. Oligonephronia, primary hypertension and renal disease:'Is the child father to the man?'. Nephrol Dial Transplant,2003,18(8):1434-8.
    [70]Schreuder M. F., Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int,2007,72(3):265-8.
    [71]Cataldi L., Leone R., Moretti U., et al. Potential risk factors for the development of acute renal failure in preterm newborn infants:A case-control study. Arch Dis Child Fetal Neonatal Ed,2005,90(6):F514-9.
    [72]Coresh J., Byrd-Holt D., Astor B. C., et al. Chronic kidney disease awareness, prevalence, and trends among U.S. Adults,1999 to 2000. J Am Soc Nephrol, 2005,16(1):180-8.
    [73]Srinivasan K., Mahadevappa K. L., Radhakrishnamurty R. Effect of maternal dietary hexachlorocyclohexane exposure on pup survival and growth in albino rats. J Environ Sci Health B,1991,26(3):339-49.
    [74]CPSC. Toxicity review of di(2-ethylhexyl) phthalate (dehp).2010.
    [75]NTP. Ntp (national toxicology program) carcinogenesis bioassay of di(2-ethylhexyl)phthalate in f344 rats and b6c3fl mice.1982, Natl Toxicol Program Tech Rep. p.1-127.
    [76]Hoy W. E., Hughson M. D., Bertram J. F., et al. Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol,2005,16(9):2557-64.
    [77]Chagnac A., Weinstein T., Korzets A., et al. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol,2000,278(5):F817-22.
    [78]Ribstein J., du Cailar G., Mimran A. Combined renal effects of overweight and hypertension. Hypertension,1995,26(4):610-5.
    [79]Kramer H. Obesity and chronic kidney disease. Contrib Nephrol,2006,151: 1-18.
    [80]ECB. Ecb (european chemicals bureau) summary risk assessment report-bis(2-ethylhexyl)phthalate (dehp).2008.
    [81]Luyckx V. A., Brenner B. M. Low birth weight, nephron number, and kidney disease. Kidney Int Suppl,2005, (97):S68-77.
    [82]Merlet-Benichou C., Vilar J., Lelievre-Pegorier M., et al. Fetal nephron mass: Its control and deficit. Adv Nephrol Necker Hosp,1997,26:19-45.
    [83]Hughson M., Farris A. B.,3rd, Douglas-Denton R., et al. Glomerular number and size in autopsy kidneys:The relationship to birth weight. Kidney Int,2003, 63(6):2113-22.
    [84]Hinchliffe S. A., Lynch M. R., Sargent P. H., et al. The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol,1992,99(4):296-301.
    [85]Welham S. J., Riley P. R., Wade A., et al. Maternal diet programs embryonic kidney gene expression. Physiol Genomics,2005,22(1):48-56.
    [86]Lisle S. J., Lewis R. M., Petry C. J., et al. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr, 2003,90(1):33-9.
    [87]Langley-Evans S. C. Nutritional programming of disease:Unravelling the mechanism. J Anat,2009,215(1):36-51.
    [88]Braissant O., Foufelle F., Scotto C., et al. Differential expression of peroxisome proliferator-activated receptors (ppars):Tissue distribution of ppar-alpha,-beta, and -gamma in the adult rat. Endocrinology,1996,137(1):354-66.
    [89]Sugawara A., Uruno A., Kudo M., et al. Effects of ppargamma on hypertension, atherosclerosis, and chronic kidney disease. Endocr J,2010,57(10):847-52.
    [90]Bagby S. P. Obesity-initiated metabolic syndrome and the kidney:A recipe for chronic kidney disease? J Am Soc Nephrol,2004,15(11):2775-91.
    [91]Vallon V. Tubuloglomerular feedback in the kidney:Insights from gene-targeted mice. Pflugers Arch,2003,445(4):470-6.
    [92]Hao X. Q., Zhang H. G., Li S. H., et al. Prenatal exposure to inflammation induced by zymosan results in activation of intrarenal renin-angiotensin system in adult offspring rats. Inflammation,2010,33(6):408-14.
    [93]Lewis E. J., Hunsicker L. G., Clarke W. R., et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med,2001,345(12):851-60.
    [94]Brenner B. M., Cooper M. E., de Zeeuw D., et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med,2001,345(12):861-9.
    [95]Kotsis V., Stabouli S., Papakatsika S., et al. Mechanisms of obesity-induced hypertension. Hypertens Res,2010,33(5):386-93.
    [96]Hall J. E., Crook E. D., Jones D. W., et al. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci,2002,324(3):127-37.
    [97]Hall J. E., Kuo J. J., da Silva A. A., et al. Obesity-associated hypertension and kidney disease. Curr Opin Nephrol Hypertens,2003,12(2):195-200.
    [98]Komlosi P., Fintha A., Bell P. D. Current mechanisms of macula densa cell signalling. Acta Physiol Scand,2004,181(4):463-9.
    [99]Border W. A., Noble N. A. Interactions of transforming growth factor-beta and angiotensin ii in renal fibrosis. Hypertension,1998,31(1 Pt 2):181-8.
    [100]Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int,2006,70(11): 1914-9.
    [101]Henegar J. R., Bigler S. A., Henegar L. K., et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol,2001, 12(6):1211-7.
    [102]Border W. A., Noble N. A., Yamamoto T., et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature,1992,360(6402):361-4.
    [103]Loukovaara S., Robciuc A., Holopainen J. M., et al. Ang-2 upregulation correlates with increased levels of mmp-9, vegf, epo and tgfbetal in diabetic eyes undergoing vitrectomy. Acta Ophthalmol,2012.
    [104]Carmeliet P. Angiogenesis in health and disease. Nat Med,2003,9(6):653-60.
    [105]Guo B., Koya D., Isono M., et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit tgf-beta 1-induced fibronectin expression in glomerular mesangial cells. Diabetes,2004,53(1):200-8.
    [106]Isshiki K., Haneda M., Koya D., et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes,2000,49(6):1022-32.
    [107]Nakamura T., Ushiyama C., Suzuki S., et al. Effect of troglitazone on urinary albumin excretion and serum type iv collagen concentrations in type 2 diabetic patients with microalbuminuria or macroalbuminuria. Diabet Med, 2001,18(4):308-13.
    [108]McCarthy K. J., Routh R. E., Shaw W., et al. Troglitazone halts diabetic glomerulosclerosis by blockade of mesangial expansion. Kidney Int,2000, 58(6):2341-50.
    [109]Guan Y, Breyer M. D. Peroxisome proliferator-activated receptors (ppars): Novel therapeutic targets in renal disease. Kidney Int,2001,60(1):14-30.
    [110]Carlson Bruce M., ed. Human embryology and developmental biology.2004, Saint Louis:Mosby.
    [111]Dressler G. R. Advances in early kidney specification, development and patterning. Development,2009,136(23):3863-74.
    [112]Michos O. Kidney development:From ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev,2009,19(5):484-90.
    [113]Bertram J. F., Young R. J., Spencer K., et al. Quantitative analysis of the developing rat kidney:Absolute and relative volumes and growth curves. Anat Rec,2000,258(2):128-35.
    [114]Celsi G., Kistner A., Aizman R., et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res,1998,44(3):317-22.
    [115]佘玮.苎麻对重金属吸收和积累特征及镉胁迫响应基因表达研究[博士学位论文].湖南农业大学,2010.
    [116]t Hoen P. A., Ariyurek Y., Thygesen H. H., et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res,2008, 36(21):e141.
    [117]Morrissy A. S., Morin R. D., Delaney A., et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res,2009,19(10):1825-35.
    [118]王海英.草菇不同发育时期菌柄基因表达谱差异初步分析[博士学位论文].福建农林大学,2011.
    [119]Audic S., Claverie J. M. The significance of digital gene expression profiles. Genome Res,1997,7(10):986-95.
    [120]Benjamini Y. and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 2001,29: 1165-1188.
    [121]Eisen M. B., Spellman P. T., Brown P. O., et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A,1998,95(25): 14863-8.
    [122]Saldanha A. J. Java treeview--extensible visualization of microarray data. Bioinformatics,2004,20(17):3246-8.
    [123]Kanehisa M., Araki M., Goto S., et al. Kegg for linking genomes to life and the environment. Nucleic Acids Res,2008,36(Database issue):D480-4.
    [124]Moritz K. M., Wintour E. M. Functional development of the meso- and metanephros. Pediatr Nephrol,1999,13(2):171-8.
    [125]Olkkonen V. M., Gottlieb P., Strassman J., et al. In vitro assembly of infectious nucleocapsids of bacteriophage phi 6:Formation of a recombinant double-stranded rna virus. Proc Natl Acad Sci U S A,1990,87(23):9173-7.
    [126]Noumi T., Inoue H., Sakurai T., et al. Identification and characterization of functional residues in a na+/h+ antiporter (nhaa) from escherichia coli by random mutagenesis. J Biochem,1997,121(4):661-70.
    [127]Hong D., Li X. W., Lian Q. Q., et al. Mono-(2-ethylhexyl) phthalate (mehp) regulates glucocorticoid metabolism through 11beta-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells. Biochem Biophys Res Commun, 2009,389(2):305-9.
    [128]Wintour E. M., Moritz K. M.; Johnson K., et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol,2003,549(Pt 3):929-35.
    [129]Amri K., Freund N., Duong Van Huyen J. P., et al. Altered nephrogenesis due to maternal diabetes is associated with increased expression of igf-ii/mannose-6-phosphate receptor in the fetal kidney. Diabetes,2001,50(5): 1069-75.
    [130]Young L. E. Imprinting of genes and the barker hypothesis. Twin Res,2001, 4(5):307-17.
    [131]Constancia M., Angiolini E., Sandovici I., et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A,2005,102(52): 19219-24.
    [132]Fuglsang J., Ovesen P. Aspects of placental growth hormone physiology. Growth Horm IGF Res,2006,16(2):67-85.
    [133]Moritz K. M., Dodic M., Wintour E. M. Kidney development and the fetal programming of adult disease. Bioessays,2003,25(3):212-20.
    [134]Wintour E. M., Alcorn D., McFarlane A., et al. Effect of maternal glucocorticoid treatment on fetal fluids in sheep at 0.4 gestation. Am J Physiol,1994,266(4 Pt 2):R1174-81.
    [135]Stuart R. O., Bush K. T., Nigam S. K. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A,2001,98(10):5649-54.
    [136]Katoh M. Wnt signaling pathway and stem cell signaling network. Clin Cancer Res,2007,13(14):4042-5.
    [137]Merkel C. E., Karner C. M., Carroll T. J. Molecular regulation of kidney development:Is the answer blowing in the wnt? Pediatr Nephrol,2007, 22(11):1825-38.
    [138]Bridgewater D., Cox B., Cain J., et al. Canonical wnt/beta-catenin signaling is required for ureteric branching. Dev Biol,2008,317(1):83-94.
    [139]Park J. S., Valerius M. T., McMahon A. P. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development,2007, 134(13):2533-9.
    [140]Dooley R., Harvey B. J., Thomas W. The regulation of cell growth and survival by aldosterone. Front Biosci,2011,16:440-57.
    [141]Welham S. J., Wade A., Woolf A. S. Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int,2002,61(4):1231-42.
    [142]McDonald S. P., Hoy W. E., Maguire G. P., et al. The p53pro72arg polymorphism is associated with albuminuria among aboriginal australians. J Am Soc Nephrol,2002,13(3):677-83.
    [143]Ekblom P., Alitalo K., Vaheri A., et al. Induction of a basement membrane glycoprotein in embryonic kidney:Possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A,1980,77(1):485-9.
    [144]Pohl M., Sakurai H., Stuart R. O., et al. Role of hyaluronan and cd44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol,2000,224(2): 312-25.
    [1]Wei J., Lin Y, Li Y., et al. Perinatal exposure to bisphenol a at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology,2011,152(8):3049-61.
    [2]Barker D. J., Forsen T., Eriksson J. G., et al. Growth and living conditions in childhood and hypertension in adult life:A longitudinal study. J Hypertens, 2002,20(10):1951-6.
    [3]Zandi-Nejad K., Luyckx V. A., Brenner B. M. Adult hypertension and kidney disease:The role of fetal programming. Hypertension,2006,47(3):502-8.
    [4]Penrose L. S. Observations on the aetiology of mongolism. Lancet,1954, 267(6837):505-9.
    [5]Dabelea D., Pettitt D. J., Hanson R. L., et al. Birth weight, type 2 diabetes, and insulin resistance in pima indian children and young adults. Diabetes Care, 1999,22(6):944-50.
    [6]Puddu M., Fanos V., Podda F., et al. The kidney from prenatal to adult life: Perinatal programming and reduction of number of nephrons during development. Am J Nephrol,2009,30(2):162-70.
    [7]Keller G., Zimmer G., Mall G., et al. Nephron number in patients with primary hypertension. N Engl J Med,2003,348(2):101-8.
    [8]Hoy W. E., Douglas-Denton R. N., Hughson M. D., et al. A stereological study of glomerular number and volume:Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl,2003, (83):S31-7.
    [9]Poulter N. R., Chang C. L., MacGregor A. J., et al. Association between birth weight and adult blood pressure in twins:Historical cohort study. BMJ,1999, 319(7221):1330-3.
    [10]Hoy W. E., Hughson M. D., Bertram J. F., et al. Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol,2005,16(9):2557-64.
    [11]Hughson M.; Farris A. B.,3rd, Douglas-Denton R., et al. Glomerular number and size in autopsy kidneys:The relationship to birth weight. Kidney Int,2003, 63(6):2113-22.
    [12]Brenner B. M., Chertow G. M. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis,1994, 23(2):171-5.
    [13]Rostand S. G. Oligonephronia, primary hypertension and renal disease:'Is the child father to the man?'. Nephrol Dial Transplant,2003,18(8):1434-8.
    [14]Woolf A. S., Price K. L., Scambler P. J., et al. Evolving concepts in human renal dysplasia. J Am Soc Nephrol,2004,15(4):998-1007.
    [15]Bagby S. P. Maternal nutrition, low nephron number, and hypertension in later life:Pathways of nutritional programming. J Nutr,2007,137(4):1066-72.
    [16]Nwagwu M. O., Cook A., Langley-Evans S. C. Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr,2000,83(1):79-85.
    [17]Sanders M. W., Fazzi G. E., Janssen G. M., et al. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats. Hypertension,2005,46(1):71-5.
    [18]Woods L. L., Weeks D. A., Rasch R. Programming of adult blood pressure by maternal protein restriction:Role of nephrogenesis. Kidney Int,2004,65(4): 1339-48.
    [19]Nagata M., Scharer K., Kriz W. Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture. Kidney Int, 1992,42(1):136-47.
    [20]Woods L. L. Neonatal uninephrectomy causes hypertension in adult rats. Am J Physiol,1999,276(4 Pt 2):R974-8.
    [21]Hayslett J. P., Kashgarian M., Epstein F. H. Functional correlates of compensatory renal hypertrophy. J Clin Invest,1968,47(4):774-99.
    [22]Vallon V., Blantz R. C., Thomson S. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus:A tubulo-centric view. J Am Soc Nephrol,2003,14(2):530-7.
    [23]Griffin K. A., Picken M. M., Churchill M., et al. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol,2000,11(3):497-506.
    [24]Giapros V., Drougia A., Hotoura E., et al. Kidney growth in small-for-gestational-age infants:Evidence of early accelerated renal growth. Nephrol Dial Transplant,2006,21(12):3422-7.
    [25]Kriz W., LeHir M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int,2005,67(2):404-19.
    [26]Carlson Bruce M., ed. Human embryology and developmental biology.2004, Saint Louis:Mosby.
    [27]Dressier G. R. Advances in early kidney specification, development and patterning. Development,2009,136(23):3863-74.
    [28]Michos O. Kidney development:From ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev,2009,19(5):484-90.
    [29]Hinchliffe S. A., Lynch M. R., Sargent P. H., et al. The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol,1992,99(4):296-301.
    [30]Moritz K. M., Wintour E. M. Functional development of the meso- and metanephros. Pediatr Nephrol,1999,13(2):171-8.
    [31]Woods L. L. Fetal origins of adult hypertension:A renal mechanism? Curr Opin Nephrol Hypertens,2000,9(4):419-25.
    [32]Bertram J. F., Young R. J., Spencer K., et al. Quantitative analysis of the developing rat kidney:Absolute and relative volumes and growth curves. Anat Rec,2000,258(2):128-35.
    [33]Celsi G., Kistner A., Aizman R., et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res,1998,44(3):317-22.
    [34]Hotoura E., Argyropoulou M., Papadopoulou F., et al. Kidney development in the first year of life in small-for-gestational-age preterm infants. Pediatr Radiol,2005,35(10):991-4.
    [35]Ingelfinger J. R. Is microanatomy destiny?. N Engl J Med,2003,348(2): 99-100.
    [36]Amann K., Plank C., Dotsch J. Low nephron number--a new cardiovascular risk factor in children?. Pediatr Nephrol,2004,19(12):1319-23.
    [37]Singh G. R., Hoy W. E. The association between birthweight and current blood pressure:A cross-sectional study in an australian aboriginal community. Med J Aust,2003,179(10):532-5.
    [38]Spencer J., Wang Z., Hoy W. Low birth weight and reduced renal volume in aboriginal children. Am J Kidney Dis,2001,37(5):915-20.
    [39]Merlet-Benichou C., Vilar J., Lelievre-Pegorier M., et al. Fetal nephron mass: Its control and deficit. Adv Nephrol Necker Hosp,1997,26:19-45.
    [40]Manalich R., Reyes L., Herrera M., et al. Relationship between weight at birth and the number and size of renal glomeruli in humans:A histomorphometric study. Kidney Int,2000,58(2):770-3.
    [41]Rodriguez M. M., Gomez A. H., Abitbol C. L., et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol,2004,7(1):17-25.
    [42]Huxley R. R., Shiell A. W., Law C. M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure:A systematic review of the literature. J Hypertens,2000,18(7):815-31.
    [43]Rodriguez-Soriano J., Aguirre M., Oliveros R., et al. Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol,2005,20(5):579-84.
    [44]Abitbol C. L., Bauer C. R., Montane B., et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol,2003, 18(9):887-93.
    [45]Woods L. L., Ingelfinger J. R., Nyengaard J. R., et al. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res,2001,49(4):460-7.
    [46]Boubred F., Buffat C., Feuerstein J. M., et al. Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol,2007,293(6):F1944-9.
    [47]Bhat P. V.; Manolescu D. C. Role of vitamin a in determining nephron mass and possible relationship to hypertension. J Nutr,2008,138(8):1407-10.
    [48]Lelievre-Pegorier M., Vilar J., Ferrier M. L., et al. Mild vitamin a deficiency leads to inborn nephron deficit in the rat. Kidney Int,1998,54(5):1455-62.
    [49]Makrakis J., Zimanyi M. A., Black M. J. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol, 2007,22(11):1861-7.
    [50]Goodyer P., Kurpad A., Rekha S., et al. Effects of maternal vitamin a status on kidney development:A pilot study. Pediatr Nephrol,2007,22(2):209-14.
    [51]Schreuder M. F., Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int,2007,72(3):265-8.
    [52]Cataldi L., Leone R., Moretti U., et al. Potential risk factors for the development of acute renal failure in preterm newborn infants:A case-control study. Arch Dis Child Fetal Neonatal Ed,2005,90(6):F514-9.
    [53]Giapros V., Papadimitriou P., Challa A., et al. The effect of intrauterine growth retardation on renal function in the first two months of life. Nephrol Dial Transplant,2007,22(1):96-103.
    [54]Fanos V., Cataldi L. Antibacterial-induced nephrotoxicity in the newborn. Drug Saf,1999,20(3):245-67.
    [55]Fanos V., Cuzzolin L, Atzei A., et al. Antibiotics and antifungals in neonatal intensive care units:A review. J Chemother,2007,19(1):5-20.
    [56]Nathanson S., Moreau E., Merlet-Benichou C., et al. In utero and in vitro exposure to beta-lactams impair kidney development in the rat. J Am Soc Nephrol,2000,11(5):874-84.
    [57]Gilbert T., Gaonach S., Moreau E., et al. Defect of nephrogenesis induced by gentamicin in rat metanephric organ culture. Lab Invest,1994,70(5):656-66.
    [58]Smaoui H., Schaeverbeke M., Mallie J. P., et al. Transplacental effects of gentamicin on endocytosis in rat renal proximal tubule cells. Pediatr Nephrol, 1994,8(4):447-50.
    [59]Kent A. L., Maxwell L. E., Koina M. E., et al. Renal glomeruli and tubular injury following indomethacin, ibuprofen, and gentamicin exposure in a neonatal rat model. Pediatr Res,2007,62(3):307-12.
    [60]Cuzzolin L., Dal Cere M., Fanos V. Nsaid-induced nephrotoxicity from the fetus to the child. Drug Saf,2001,24(1):9-18.
    [61]van der Heijden B. J., Carlus C., Narcy F., et al. Persistent anuria, neonatal death, and renal microcystic lesions after prenatal exposure to indomethacin. Am J Obstet Gynecol,1994,171(3):617-23.
    [62]Kaplan B. S., Restaino I., Raval D. S., et al. Renal failure in the neonate associated with in utero exposure to non-steroidal anti-inflammatory agents. Pediatr Nephrol,1994,8(6):700-4.
    [63]Norton M. E., Merrill J., Cooper B. A., et al. Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med,1993, 329(22):1602-7.
    [64]Cuzzolin L., Fanos V., Pinna B., et al. Postnatal renal function in preterm newborns:A role of diseases, drugs and therapeutic interventions. Pediatr Nephrol,2006,21(7):931-8.
    [65]Hasan J., Beharry K. D., Gharraee Z., et al. Early postnatal ibuprofen and indomethacin effects in suckling and weanling rat kidneys. Prostaglandins Other Lipid Mediat,2008,85(3-4):81-8.
    [66]Landau D., Shelef I., Polacheck H., et al. Perinatal vasoconstrictive renal insufficiency associated with maternal nimesulide use. Am J Perinatol,1999, 16(9):441-4.
    [67]Peruzzi L., Gianoglio B., Porcellini M. G., et al. Neonatal end-stage renal failure associated with maternal ingestion of cyclo-oxygenase-type-1 selective inhibitor nimesulide as tocolytic. Lancet,1999,354(9190):1615.
    [68]Cunniff C., Jones K. L., Phillipson J., et al. Oligohydramnios sequence and renal tubular malformation associated with maternal enalapril use. Am J Obstet Gynecol,1990,162(1):187-9.
    [69]Rosa F. W., Bosco L. A., Graham C. F., et al. Neonatal anuria with maternal angiotensin-converting enzyme inhibition. Obstet Gynecol,1989,74(3 Pt 1): 371-4.
    [70]Schubiger G., Flury G., Nussberger J. Enalapril for pregnancy-induced hypertension:Acute renal failure in a neonate. Ann Intern Med,1988,108(2): 215-6.
    [71]Buttar H. S. An overview of the influence of ace inhibitors on fetal-placental circulation and perinatal development. Mol Cell Biochem,1997,176(1-2): 61-71.
    [72]Cooper W.O., Hernandez-Diaz S., Arbogast P. G., et al. Major congenital malformations after first-trimester exposure to ace inhibitors. N Engl J Med, 2006,354(23):2443-51.
    [73]Alwan S., Polifka J. E., Friedman J. M. Angiotensin ⅱ receptor antagonist treatment during pregnancy. Birth Defects Res A Clin Mol Teratol,2005,73(2): 123-30.
    [74]Lambot M. A., Vermeylen D., Noel J. C. Angiotensin-ⅱ-receptor inhibitors in pregnancy. Lancet,2001,357(9268):1619-20.
    [75]Schuchardt A., D'Agati V., Larsson-Blomberg L., et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature,1994,367(6461):380-3.
    [76]Pichel J. G., Shen L., Sheng H. Z., et al. Defects in enteric innervation and kidney development in mice lacking gdnf. Nature,1996,382(6586):73-6.
    [77]Moore M. W., Klein R. D., Farinas I., et al. Renal and neuronal abnormalities in mice lacking gdnf. Nature,1996,382(6586):76-9.
    [78]Kim D., Dressler G. R. Pten modulates gdnf/ret mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol,2007,307(2): 290-9.
    [79]Tang M. J., Cai Y., Tsai S. J., et al. Ureteric bud outgrowth in response to ret activation is mediated by phosphatidylinositol 3-kinase. Dev Biol,2002, 243(1):128-36.
    [80]Tang M. J., Worley D., Sanicola M., et al. The ret-glial cell-derived neurotrophic factor (gdnf) pathway stimulates migration and chemoattraction of epithelial cells. J Cell Biol,1998,142(5):1337-45.
    [81]Lee D. C., Chan K. W., Chan S. Y. Ret receptor tyrosine kinase isoforms in kidney function and disease. Oncogene,2002,21(36):5582-92.
    [82]Skinner M. A., Safford S. D., Reeves J. G., et al. Renal aplasia in humans is associated with ret mutations. Am J Hum Genet,2008,82(2):344-51.
    [83]Porteous S., Torban E., Cho N. P., et al. Primary renal hypoplasia in humans and mice with pax2 mutations:Evidence of increased apoptosis in fetal kidneys of pax2(1neu)+/- mutant mice. Hum Mol Genet,2000,9(1):1-11.
    [84]Sorenson C. M., Rogers S. A., Korsmeyer S. J., et al. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol,1995,268(1 Pt 2):F73-81.
    [85]Vehaskari V. M., Aviles D. H., Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int,2001,59(1):238-45.
    [86]Welham S. J., Wade A., Woolf A. S. Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int,2002,61(4):1231-42.
    [87]Pham T. D., MacLennan N. K., Chiu C. T., et al. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term iugr rat kidney. Am J Physiol Regul Integr Comp Physiol,2003,285(5):R962-70.
    [88]Lertratanangkoon K.; Wu C. J., Savaraj N., et al. Alterations of DNA methylation by glutathione depletion. Cancer Lett,1997,120(2):149-56.
    [89]Salomon R., Tellier A. L., Attie-Bitach T, et al. Pax2 mutations in oligomeganephronia. Kidney Int,2001,59(2):457-62.
    [90]McDonald S. P., Hoy W. E., Maguire G. P., et al. The p53pro72arg polymorphism is associated with albuminuria among aboriginal australians. J Am Soc Nephrol,2002,13(3):677-83.
    [91]Guron G., Friberg P. An intact renin-angiotensin system is a prerequisite for normal renal development. J Hypertens,2000,18(2):123-37.
    [92]Kingdom J. C., McQueen J., Connell J. M., et al. Fetal angiotensin ii levels and vascular (type i) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br J Obstet Gynaecol,1993,100(5):476-82.
    [93]Kingdom J. C., Hayes M., McQueen J., et al. Intrauterine growth restriction is associated with persistent juxtamedullary expression of renin in the fetal kidney. Kidney Int,1999,55(2):424-9.
    [94]Vehaskari V. M., Stewart T., Lafont D., et al. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol,2004,287(2):F262-7.
    [95]Woods L. L., Rasch R. Perinatal ang ii programs adult blood pressure, glomerular number, and renal function in rats. Am J Physiol,1998,275(5 Pt 2): R1593-9.
    [96]losipiv I. V., Schroeder M. A role for angiotensin ii atl receptors in ureteric bud cell branching. Am J Physiol Renal Physiol,2003,285(2):F199-207.
    [97]Song R., Spera M., Garrett C., et al. Angiotensin ii at2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol,2010,298(3): F807-17.
    [98]Zhang S. L., Moini B., Ingelfinger J. R. Angiotensin ii increases pax-2 expression in fetal kidney cells via the at2 receptor. J Am Soc Nephrol,2004,15(6): 1452-65.
    [99]Hohenfellner K., Wingen A. M., Nauroth O., et al. Impact of ace i/d gene polymorphism on congenital renal malformations. Pediatr Nephrol,2001, 16(4):356-61.
    [100]Nagai Y., Miyata K., Sun G. P., et al. Aldosterone stimulates collagen gene expression and synthesis via activation of erkl/2 in rat renal fibroblasts. Hypertension,2005,46(4):1039-45.
    [101]Terada Y, Kobayashi T., Kuwana H., et al. Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin d1, and cyclin a. J Am Soc Nephrol,2005,16(8):2296-305.
    [102]Dooley R., Harvey B. J., Thomas W. The regulation of cell growth and survival by aldosterone. Front Biosci,2011,16:440-57.
    [103]Sherman R. C., Langley-Evans S. C. Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin Sci (Lond),2000,98(3):269-75.
    [104]Edwards C. R., Benediktsson R., Lindsay R. S., et al. Dysfunction of placental glucocorticoid barrier:Link between fetal environment and adult hypertension? Lancet,1993,341(8841):355-7.
    [105]Wintour E. M., Moritz K. M., Johnson K., et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol,2003,549(Pt 3):929-35.
    [106]Wintour E. M., Alcorn D., McFarlane A., et al. Effect of maternal glucocorticoid treatment on fetal fluids in sheep at 0.4 gestation. Am J Physiol,1994,266(4 Pt 2):R1174-81.
    [107]Bertram C., Trowern A. R., Copin N., et al. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase:Potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology,2001, 142(7):2841-53.
    [108]Peers A., Hantzis V., Dodic M., et al. Functional glucocorticoid receptors in the mesonephros of the ovine fetus. Kidney Int,2001,59(2):425-33.
    [109]Amri K., Freund N., Duong Van Huyen J. P., et al. Altered nephrogenesis due to maternal diabetes is associated with increased expression of igf-ii/mannose-6-phosphate receptor in the fetal kidney. Diabetes,2001,50(5): 1069-75.
    [110]Young L. E. Imprinting of genes and the barker hypothesis. Twin Res,2001, 4(5):307-17.
    [111]Bard J. B. Growth and death in the developing mammalian kidney:Signals, receptors and conversations. Bioessays,2002,24(1):72-82.
    [112]Glassberg K. I. Normal and abnormal development of the kidney:A clinician's interpretation of current knowledge. J Urol,2002,167(6):2339-50; discussion 2350-1.
    [113]Constancia M., Angiolini E., Sandovici I., et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A,2005,102(52): 19219-24.
    [114]Fuglsang J., Ovesen P. Aspects of placental growth hormone physiology. Growth Horm IGF Res,2006,16(2):67-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700