用户名: 密码: 验证码:
草鲢复合养殖池塘主要营养要素生物学循环过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先通过研究草鱼(Ctenopharyngodon idella)主要营养要素的收支情况评估了其集约化养殖的排污问题,并利用稳定同位素技术探讨了其营养要素收支的生理学机制,然后基于稳定同位素的混合模型研究了在混养生态系统中鲢鱼(Hypophthalmichthys molitrix)的食物来源及其对养殖排污的去除作用,并根据经济效益和环境效益优化了集约化养殖结构,随后通过其营养要素的收支情况进一步分析了鲢鱼对养殖排污的去除能力,最后测定了浮游植物对鱼类代谢产生碳源的再利用效率。通过上述研究,阐明了草鲢复合养殖池塘主要营养要素的生物学循环过程,以及鲢鱼作为生物过滤器对草鱼集约化养殖排污的生物学修复机理。主要研究结果如下:
     1.草鱼C、N和P的收支及其养殖排污问题:本实验通过搭建围隔生态系统,对草鲢混养模式下草鱼主要营养要素的收支情况进行了测定。结果表明,不同月份草鱼C、N和P三种营养要素的净收支率和吸收总量有显著变动。投喂饲料中大部分的营养要素(81.7%的C、65.6%的N和67.5%的P)排放到养殖水环境中。通过计算每生产一吨草鱼就会向水环境中排放355-385kg的C、30-40kg的N和3-4kg的P。
     2.草鱼不同体组织碳氮稳定同位素周转和分馏作用的研究:本实验基于稳定同位素的富集-稀释法,通过投喂稳定同位素信号差异的人工饲料,对草鱼进行摄食转换实验,研究了草鱼不同组织稳定同位素周转过程以及代谢和生长对稳定同位素周转过程的驱动作用。结果表明,草鱼体组织碳氮稳定同位素的周转率按鳃、肌肉和肝脏的顺序递增,并且碳稳定同位素的周转率要明显快于氮稳定同位素。生长作用和代谢作用共同驱动了草鱼体组织稳定同位素的周转过程,而两者的贡献比例在不同体组织间有所差异。草鱼不同体组织间碳氮稳定同位素的分馏系数也有所不同,并且氮同位素的分馏系数要明显大于碳同位素的分馏系数。
     3.鲢鱼的食物来源及其对养殖排污的去除作用:本实验基于稳定同位素的混合模型,通过搭建不同放养比例的草鲢混养围隔生态系统,分析了鲢鱼的食物来源及其作为生物过滤器对养殖排污(残饵、鱼粪)的去除作用。结果表明,鲢鱼可以有效的降低水体中的总颗粒物浓度和有机质含量,对水体起到净化作用。颗粒有机物是鲢鱼主要的食物来源,其次是残饵,最后是鱼粪。鲢鱼一方面通过直接滤食水体中的残饵和鱼粪等颗粒物以去除养殖排污,另一方面对浮游植物较高的利用效率也暗示其对去除水体中溶解态养殖排污的巨大潜力。
     4.鲢鱼C、N和P的收支及其对养殖排污的去除能力:本实验通过测定优化的养殖模式中鲢鱼C、N和P三种营养要素的收支情况,评估了鲢鱼对养殖排污的去除能力。结果表明,在养殖周期内受环境因子和自身生理因素的影响,不同月份鲢鱼主要营养要素收支出现显著波动。通过计算每生产一吨鲢鱼,对残饵和鱼粪的直接滤食达到185.01kg,而从水体中去除的C、N和P三种营养要素的总量分别为73.65、18.84和1.57kg。
     5.浮游植物对鱼类代谢碳营养要素再利用效率的研究:本实验基于稳定同位素技术研究了浮游植物对鱼类呼吸代谢产生碳源的再利用效率。结果表明,鱼类呼吸代谢产生的碳源对水体中溶解态无机碳的浓度和碳稳定同位素值均有较大的影响。浮游植物的生长和繁殖对鱼类呼吸代谢产生的碳源表现出了较强的选择性,并有较高的利用效率。鲢鱼通过滤食浮游植物,间接的吸收了水体中溶解态的营养盐,从而在浮游植物和鲢鱼间形成了“短路”和类似浮游动物“微食物环”的互惠互利机制,一方面降低了水体的富营养化,另一方面提高了渔副产量,实现了经济效益和环境效益的双赢。
The present study assessed nutrient pollution derived from intensive farming of grass carp (Ctenopharyngodon idella) by means of determining the carbon, nitrogen and phosphorus budgets and the physiological mechanisms of nutrient budgets by using the enrichment-dilution approach of stable isotopes. Based on the stable isotopic mixing model, we studied the food sources of silver carp (Hypophthalmichthys molitrix) and uptake of farming wastes in the pelyculture ecosystems, to optimize the aquaculture mode in accordance with an economic and environmental win-win resolution scheme. Subsequently, the nutrient budgets of silver carp in the optimized mode and phytoplankton fixation of the carbon excretion by grass carp and silver carp were studies. Finally, the biological cycling of nutrients in polyculture ponds were constructed, which evaluated the feasibility and capacity of using silver carp as a biofilter to remove the farming wastes of grass carp. The results are summarized as follows:
     Carbon, nitrogen and phosphorus budgets-ograss carp and assessment of nutrient pollution in polyculture ponds. We-developed mesocosmic enclosures and studied the main nutrient budgets of grass carp in monoculture and polyculture comprising grass carp and silver carp. The results showed that the net budget rate in terms of scope for growth (SFG) and total assimilation of carbon, nitrogen and phosphorus varied during the culture period. We estimated that for each ton of grass carp production,355~385kg C,30~40kg N and3~4kg P, on average, were released into the water column and approximately81.7%C,65.6%N and67.5%P in feed were not retained by fish, which could become nutrient pollution in the form of uneaten pellets, feces and excretion.
     Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of grass carp. Based on the enrichment-dilution approach, we conducted a diet-switch experiment using grass carp cultured using artificial feed with distinct stable isotopic compositions, to assess turnover and fractionation of carbon and nitrogen stable isotopes in different tissues, including liver, muscle and gill. The results revealed that the turnover rates exhibited significant differences between tissues and stable isotopes, and increased in the sequence of gill     Uptake of farming wastes by silver carp in polyculture ponds of grass carp. Based on the stable isotopic mixing model, we developed mesocosmic enclosures combing grass carp and silver carp with different proportions, to analyze the food sourcess of silver carp and evaluate the feasibility and capacity of using silver carp as a biofilter to remove the farming wastes. The results showed that silver carp can efficiently reduced total particulate matter and organic content in water column. Particulate organic matter was the most principal food source of silver carp, followed by feed residues, then fish feces. Filter-feeding silver carp can directly take up feed residues-and fish feces in water to remove farming wastes. On the other hand, the high filtration rate in phytoplankton demonstrated that silver carp had great potential to remove-dissolved farming wastes, i.e. nitrogen and phosphorus excretion derived from grass carp.
     Carbon, nitrogen and phosphorus budgets of silver carp:implication, for removal of nutrients. We assessed the feasibility and capacity of silver carp.as a biofilter to remove excess nutrient pollution through carbon, nitrogen and phosphorus budgets in optimized polyculture mode. The results revealed that the metabolic acquisition and expenditure of silver carp exhibited considerable temporal fluctuation during the culture period, owing to changes in exogenous environmental conditions and autogenous physiological status. Silver carp can efficiently remove nutrient pollution in polyculture pond by taking up particulate organic matter, feed residues and fish feces. We estimated that for each ton of silver carp production,73.65kg C,18.84kg N and1.57kg P were removed from water and the total uptake of feed residues and fish feces reached185.01kg.
     Study on the phytoplankton fixation of the carbon excretion by the grass carp and silver carp. The phytoplankton Synedra sp. fixation of the carbon excretion by the grass carp and silver carp was studied by using carbon stable isotope technique. The results revealed that the respiration activities by fishes significantly altered the concentration and carbon stable isotope value of dissolved inorganic carbon (DIC). The growth and reproduction of phytoplankton coold effectively utilize the carbon excretion by fish, and exhibited strong preferential selectivity. In polyculture ecosystem, calculation with stable isotopic moxing model showed that the proportional contributions of carbon excretion by grass carp and silver carp to the phytoplankton fixation were51.66%and14.27%, respectively, while that of DIC was34.07%, which indicated that there were mutually beneficial mechanisms between fishes and phytoplankton.
引文
[1]蔡德陵,洪旭光,毛兴华,等.崂山湾潮间带食物网结构的碳稳定同位素初步研究[J].海洋学报,2001,23(4):41-47
    [2]陈少莲,刘肖芳,华俐.鲢、鳙在东湖生态系统的氮、磷循环中的作用.水生生物学报,1990,14(1):49-59
    [3]方耀林.淡水鱼类种质资源人工生态库水质分析[J].淡水渔业,1998,28(3):37-39
    [4]冯建祥等.综合海水养殖池塘主要营养盐要素及重金属污染物的食物网传递过程的初步研究.硕士论文,2010.
    [5]房英春,刘广纯,田春,等.养殖水体污染对养殖生物的影响及水体的修复.水土保持研究,2005,12(3):198-200
    [6]李由明,黄翔鹄,刘楚吾.碳氮稳定同位素技术在动物食性分析中的应用.广东海洋大学学报,2007,4:99-103
    [7]李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用.生态学报,2005,25(11):3052-3060
    [8]苗卫卫,江敏.我国水产养殖对环境的影响及其可持续发展.农业环境科学学报,2007,26:319-323
    [9]苏东琼.我国淡水养殖业的现状及可持续性发展措施.养殖技术顾问,2012,5
    [10]孙侦龙.刺参养殖主要营养要素代谢过程的研究.博士论文,中国海洋大学,2012
    [11]王玉玉,于秀波,张亮,等.应用碳、氮稳定同位素研究鄱阳湖枯水末期水声食物网结构.生态学报,2009,29(3):1181-1187
    [12]温志良.集约化淡水养殖对水环境的影响与对策.内蒙古水利,2008,4:138-139
    [13]吴庆龙,陈开宁,高光,等.大水面网围精养对水环境的影响及其对策.水产 学报,1995,19(4):343-349
    [14]杨延宝,王博,林龚娜,等.海水不同品种混养的环境效益研究.中山大学学报(自然科学版),2006,45(1):73-76
    [15]曾庆飞,谷孝鸿,毛志刚,等.鲢鳙控藻排泄物生态效应研究进展.生态学杂志,2010,29(9):1806-1811
    [16]赵安芳,刘瑞芳.水产养殖对水环境的影响与污染控制对策.平顶山工学院学报,2003,12(4):15-17
    [17]周劲风,温琰茂.珠江三角洲基塘水产养殖对环境的影响[J].中山大学学报(自然科学版),2004,43(5):103-106
    [18]Aguiar L H, Kalinlin A K, Rantin F T. The effects of temperature on the cardio-respiratory function of the neotropical fish Piaractus mesopotamicus. J. Therm. Biol.,2002,27:299-308
    [19]Ackefors H, Enell M. The release of nutrients and organic matter from aquaculture systems in Nordic countries. J. Appl. Ichthyol.,1994,10(4),225-241
    [20]Alabaster J S. A survey of fish-farm effluents in some EIFAC countries. EIFAC Technical Paper 41, FAO, Rome,1982,5-19
    [21]Arneson L S, MacAvoy S E. Carbon, nitrogen and sulfur diet-tissue discrimination in mouse tissues. Can. J. Zool.,2005,83:989-995
    [22]Atwell L, Hobson K A, Welch H E. Bio-magnification and bioaccumulation of mercury in an arctic marine food webs:insights from stable nitrogen isotope analysis. Can. J. Fish. Aquat. Sci.,1998,55:1114-1121
    [23]Ballestrazzi R, Lanari D, Agaro E D. Performance, nutrient retention efficiency, total ammonia and reactive phosphorus excretion of growing European sea-bass (Dicentrarchus labrax, L.) as affected by diet processing and feeding level. Aquaculture,1998,161:55-65
    [24]Barry J P, Echrei M J. Diet, food preference, and algal availability for fishes and crabs on intertidal reef communities in southern Claifornia. Environ. Biol. Fish., 1993,37:75-95
    [25]Beamish F W H. Seasonal changes in the standard rate of oxygen consumption of fishes. Can. J. Zool.,1964,42(2):189-194
    [26]Boley A, Muller W R, Haider G Biodegradable polymers as solid substrateand biofilm carrier for denitrification in recirculated aquaculture systems [J]. Aquacult. Eng.,2000(22):75-85
    [27]Bosley K L, Witting D A, Chambers R C, et al. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanns with stable isotopes. Mar. Ecol. Prog. Ser.,2002, 236:233-240
    [28]Buchheister A, Latour R J. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can. J. Fish. Aquat. Sci.,2001,67:445-461
    [29]Burke J S, Bayne D R, Rea H. Impacts of silver and bighead carp on plankton communities of channel catfish ponds. Aquaculture,1986,55(1):59-68
    [30]Cao L, Wang W, Yang Y, et al. Environmental Impact of Aquaculture and Countermeasures to Aquaculture Pollution in China. Environ. Sci. Pollut. R.,2007, 14:452-462
    [31]Canuel E A, Cloern J E, Ringelberg D B, et al. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into food webs of San Francisco Bay. Limnol. Oceanogr.,1995,40:129-142
    [32]Chen J X. Present status and prospects of sea cucumber industry in China. In: Lovatelli A, Conand C, Purcell S, et al, eds. Advance in sea cucumber aquaculture and management (ASCAM),463. Rome:FAO,2004,25-38
    [33]Chen S L, Liu X F, Hua L. The role of silver carp and bighead in the cycling of nitrogen and phosphorus in the East Lake ecosystem. Acta Hydrobiologica Sinica 1991,15(1):8-26
    [34]Chrismadha T, Borowitzka M A. Effect of cell density and irradiance on the growth, proximate composition and ecoisapentaenoic acid production of Phaeodactylum tricormutum grown in a tubular photobioreactor. J. Appl. Phycol., 1994,6:67-74
    [35]Clark D R, Flaynn K J. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proceedings of the Royal Scoiety Biological Sciences Series B.,2000,267:953-959
    [36]Cole J J, Fischer S G Nutrient budgets of a temporary pond ecosystem. Hydrobiologia,1979,63:213-222
    [37]Colman J, Edwards P. Feeding pathways and environmental constraints in waste-fed aquaculture:balance and optimization, in:Moriarty D J W, Pullin R S V, eds. Detritus and Microbial Ecology in Aquaculture. International Center for Living Aquatic Resources Managements, Manila,1987,240-281
    [38]Connolly R M. Differences in trophodynamics of commercially important fish between artificial waterways and natural coastal wetlands. Estuar. Coast. Shelf S., 2003,58(4):929-936
    [39]Cossins A R, Bowler K. Temperature Biology of Animals. Chaprman and Hall, London,1987.
    [40]Cranford P J, Grant G. Particle clearance absorption of phytoplankton and detritus by the sea scallop Placopecton magellanicus (Gmelin). J. Exp. Mar. Biol. Ecol., 1990,137(2):105-121
    [41]Cremer M C, Smitherman R O. Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture,1980,20(1):57-64
    [42]Crocker C E, Cech Jr J J. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ. Biol. Fish., 1997,50:383-389
    [43]Cui Y B, Liu X F, Wang S M, et al. Growth and energy budget in young grass carp, Ctenopharyngodon idella Val., fed plant and animal diets. J. Fish Biol.,1992, 41(2):231-238
    [44]Cui Y, Wootton R J. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus:the effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. J. Fish Biol.,1988,33:431-443
    [45]Darnaude A M, Salen-Picard C, Polunin N V C, et al. Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stbale isotope data in the Gulf of Lions (NW Mediterranean). Oecologia,2004,138:325-332
    [46]De la Higuera M, Akharbach H, Hidalgo M C, et al. Liver and white muscle protein turnover rates in the European eel (Anguilla anguilla):effects of dietary protein quality. Aquaculture,1999,179:203-216
    [47]DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science,1977,197:261-263
    [48]DeNiro M J, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Ac.,1981,45(3):341-351
    [49]Drenner R W, Threlked S T, McCracken M D. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. Aquat. Sci.,1986,43:1935-1945
    [50]Dong S L. Effect of silver carp stocking on water quality:research advances. Chinese Journal of Ecology,1994,13(2):66-68 (in Chinese with English abstract)
    [51]Dong S L, Li D S. Comparative studies on the feeding selectivity of silver carp Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis. J. Fish Biol., 1994,44(4):621-626
    [52]Dong S L, Li D S. Comparative studies on the feeding capacity of silver carp and bighead carp. Chin. J. Oceanol. Limnol.,1994,12(2):185-190
    [53]Dong S L, Li D S, Bing X W, et al. Suction volume and filtering efficiency of silver carp(Hypophthalmichthys molitrix Val.) and bighead carp(Aristichthys nobilis Rich.). J. Fish Biol.,1992,41(5):833-840
    [54]Dunseth D V. Polyculture of channel catfish, Ictalurus punctatus, silver carp, Hypophthalmichthys molitrix, and three all-male tilapias, Sarotherodon spp. PhD dissertation. Auburn University, Auburn, AL, USA,1977
    [55]Ehleringer J R. Evolutionary and ecological aspects of photosynthetic pathway variation [J]. Ann. Rev. Ecol. Syst.,1993,24:411-439
    [56]Ehleringer J R, Field C B, Lin Z F, et al. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline [J]. Oecologia,1986, 70:520-526
    [57]Evans-Ogden L J, Hobson K A, Lank D B. Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpine pacifica). Auk,2004,121:170-177.
    [58]Fan L M, Wu W, Hu G D, et al. Preliminary exploration on assessment of intensive pond ecosystem health. Chinese Agricultural Science Bulletin,2011, 27(7):395-399 (In Chinese with English abstract)
    [59]Fernandes M N, Barrionuevo W R, Rantin F T. Effects of thermal stress on respiratory responses to hypoxia of South American prochilodontidae fish, Prochilodus scrofa. J. Fish Biol.,1995,46:123-133
    [60]Fisk A T, Sash K, Jaerz J, et al. Metabolic turnover rates of carbon and nitrogen stable isotopes in captive juvenile snakes. Rapid Commun. Mass Sp.,2009,23: 319-326
    [61]Fogel M L, Tuross N. Extending the limits of paleodietary studies in humans with compound specific carbon isotope analysis of amino acids. J. Archaeol. Sci.,2003, 30:535-545
    [62]Folke C, Kautsky N. The role of ecosystems for a sustainable development of aquaculture. Ambio.1989,18:234-243
    [63]Foy R H, Rosell R. Loading of nitrogen and phosphorus from a Northern Ireland fish farm. Aquaculture,1991,96:17-30
    [64]Frazer T K, Ross R M, Quetin L B, et al. Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba dana:a stable isotope approach. J. Exp. Mar. Biol. Ecol.,1997,212:259-275
    [65]Fry B. Stable isotope ecology. Springer, New York,2006
    [66]Fry B. Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnol. Oceanogr.,1988,33:1182-1190
    [67]Fry B, Arnold C. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia,1982,54:200-204
    [68]Fry B, Sherr E B. S13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci.,1984,27:13-47
    [69]Fry B, Wainright S C. Diatom sources of 13C-rich carbon in marine food webs. Mar. Ecol. Prog. Ser.,1991,76:149-157
    [70]Fukushima M, Takamura N, Sun L, et al. Changes in the plankton community following introduction of filter-feeding planktivorous fish. Freshwater Biol.,1999, 42(4):719-735
    [71]Furuya V, Hayashi C, Furuya W, et al. Carbon stable isotope (13C) natural abundance of some foods and its contribution to the pintado juvenile growth, Pseudoplatystoma corruscans (Agassiz,1829) (Osteichthyes, Pimelodidae) [J]. Maringa,2002,24(2):493-498
    [72]Gannes L Z, O'Brien D M, Del Rio C M. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology,1997, 78:1271-1276
    [73]Gao Q F, Cheung K L, Cheung S G, et al. Effects of nutrient enrichment derived from fish farming activities on macroinvertebrate assemblages in a subtropical. Mar. Pollut. Bullet.,2005,51:994-1002
    [74]Gao Q F, Paul K S S, Lin G H, et al. Stable isotope and fatty acid evidence for uptake of organic waste by green-liiped mussels Perna viridis in a polyculture fish farm system. Mar. Ecol. Prog. Ser.,2006,317:273-283
    [75]Gao Q F, Shin P K S, Lin G H, et al. Stable isotopic and fatty acid evidence for uptake of organic wastes from fish farming through green-lipped mussels Perna viridis in a polyculture system. Mar. Ecol. Prog. Ser.,2006,317:273-283
    [76]Gao Q F, Wang Y S, Dong S L, et al. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata:Holothuroidea): Evidence from carbon stable isotope. Aquaculture,2011,319:272-276
    [77]Gao Q F, Wang Z L, Wong W H, et al. Effects of food quality and quantity on feeding and absorption in black-ribbed mussels, Septifer virgatus (Wiegmann) (Bivalvia:Mytilidae) dominating wave-exposed habitats in Hong Kong. J. Shellfish Res.,2002,21:51-57
    [78]Gao Q F, Xu W Z, Liu X S, et al. Seasonal changes in C, N and P budgets of green-lipped mussels Perna viridis and removal of nutrients from fish farming in Hong Kong. Mar. Ecol. Prog. Ser.,2008,353:137-146
    [79]Gaye-Siessegger J, Focken U, Muetzel S, et al. Feeding Level and individual metabolic rate affect δ13C and δ15N values in carp:Implications for food web studies. Oecologia,2003,138:175-183
    [80]Gophen M, Tsipris Y, Meron M, et al. The management of Lake Agmon, Wetlands (Hula Valley, Israel). Hydrobiologia,2003,506-509:803-809
    [81]Gowen R J, Ezzi I, Rosenthal H, et al. Environmental impact of aquaculture activities. European Aquaculture Society Special Publication, Belgium,1990, 257-283
    [82]Gu B, Schell D M, Alexander V. Stable carbon and nitrogen isotope analysis of the plankton food web in a subarctic lake. Can. J. Fish. Aquat. Sci.,1994,51: 1338-1344
    [83]Gu B, Schell D M, Huang X, et al. Stable carbon and nitrogen isotope evidence for dietary overlap between two planktivorous fish in aquaculture ponds [J]. Can. J. Fish. Aquat. Sci.,1996,53:2814-2818
    [84]Guelinckx J, Maes J, Van Den Driessche P, et al. Changes in δ13C and δ15 N in different tissues of juvenile sand goby Pomatoschistus minutus:a laboratory diet-switch experiment. Mar. Ecol. Prog. Ser.,2007,341:205-215
    [85]Hall P O J, Holby O, Kollberg S, et al. Chemical fluxes and mass balances in a marine fish cage farm Ⅳ. Nitrogen. Mar. Ecol. Prog. Ser.,1992,89:81-91
    [86]Haines E B, Montague C L. Food sources of estuarine invertebrates analyzed using 13C/12C ratios [J]. Ecology,1979,60:48-56
    [87]Handy R D, Poxton M G. Nitrogen pollution in mariculture:toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish. Biol. Fish.,1993,3: 205-241
    [88]Harvey C J, Hanson P C, Essinton T E, et al. Using bioenergetic models to predict stable isotope ratios in fishes. Can. J. Fish. Aquat. Sci.,2002,59:115-124
    [89]Herzka S Z, Holt G J. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts:potential applications to settlement studies. Can. J. Fish. Aquat. Sci.,2000,57:137-147
    [90]Herzka S Z, Holt S A, Holt G J. Documenting the settlement history of individual fish larvae using stable isotope ratios:model development and validation. J. Exp. Mar. Biol. Ecol.,2001,265:49-74
    [91]Hesslein R H, Capel M D, Fox D E, et al. Stable isotope of sulfur, carbon and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Base. Can. J. Fish. Aquat. Sci.,1992,48:2258-2265
    [92]Hesslein R H, Haallard K A, Ramlal P. Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S,δ13 C,δ15 N. Can. J. Fish. Aquat. Sci.,1993,50:2071-2076
    [93]Hobson K A, Clark R G Assessing avian diets using stable isotope Ⅰ:turnover of 13C in tissues. The Condor,1992,94:181-188
    [94]Hobson K A, Clark R G. Assessing avian diets using stable isotope Ⅱ:factors influencing diet-tissue fractionation. The Condor,1992,94:189-197
    [95]Hobson K A, Sirois J, Gloutney M L. Tracing nutrient allocation to reproduction with stable isotopes:a preliminary investigation using colonial waterbirds of Great Slave Lake. Auk,2000,117:760-774
    [96]Hobson K A, Welch H E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser.,1992, 84:9-18
    [97]Hovde S C, Vidal M C, Opstad I, et al. Design and synthesis of 14C-labbelled proteins as tools for protein digestion studies in fish larvae. Aquacut. Nutr.,2005, 11:395-401
    [98]Howarth R W, Marino R, Lane J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems.1. Rates and importance. Limnol. Oceanogr.,1988,33: 669-687
    [99]Houlihan D F, Hall S J, Gray C, et al. Growth rates and protein turnover in Atlantic cod, Gadus morhua. Can. J. Fish. Aquat. Sci.,1988,45:951-964
    [100]Howland M R, Corr L T, Young S M M, et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. International Journal of Osteoarchaeology,2003,13:54-65
    [101]Huertas I E, Colman B, Lubian L M. Active CO2 transport by three species of marine microalgae. J. Phycol.,2000,36:314-320
    [102]Januszko M. The effect of three species of phytophagous fish on algae development. Pol. Arch. Hydrobiol.,1974,21:431-454
    [103]Januszko M. The influence of silver carp Hypophthalmichthys molitrix (Val.) on eutrophication of the environment of carp ponds. Roczn. Nauk Rol.,1978,99: 55-79
    [104]Jensen O, Dempster T, Thorstad E B, et al. Escape of fishes from Norwegian sea-cage aquaculture:causes, consequences and prevention. Aquacult. Env. Interac.,2010,1:71-83
    [105]Jobling M. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L.. J. Fish Biol.,1981,18:87-96
    [106]Jobling M. The influences of feeding on the metabolic rate of fishes:a short review. J. Fish Biol.,1981,18:385-400
    [107]Johnston N T, Stamford M D, Ashley K L, et al. Response of rainbown trout and their prey to inorganic fertilization of and oligo trophic montane. Can. J. Fish. Aquat. Sci.,1999,56(6):1011-1025
    [108]Jones J I, Waldron S. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biol.,2003,48:1396-1407
    [109]Kadir A, Kundu R S, Milstein A, et al. Effects of silver carp and small indigenous species on pond ecology and carp polycultures in Bangladesh. Aquaculture,2006, 261(3):1065-1076
    [110]Kajak Z. The possible use of fish, especially silver carp-Hypophthalmichthys molitrix (Val.)-to overcome water blooms in temperate water bodies, in:Biro P, Salanki J, eds., Human Impacts on Life in Fresh Waters. Symp. Biol. Hung.1979, 19:77-86
    [111]Kajak Z, Rybak J I, Spodniewska I, et al. Influence of the planktonivorous fish Hypophthalmichthys molitrix (Val.) on the plankton and benthos of the eutrophic lake. Pol. Arch. Hydrobiol.,1975,22:301-310
    [112]Karlsson J, Joneson A, Meili M, et al.δ15 N of zooplankton species in subarctic lakes in northern Sweden:effects of diet and trohpic fractionation. Freshwater Biol.,2004,49:526-534
    [113]Ke Z X, Xie P, Guo L Q et al. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China:a large fish pen experiment. Aquaculture,2007,265:127-138
    [114]Kestemont P. Different systems of carp production and their impacts on the environment. Aquaculture,1995,129:347-372
    [115]Kharlamenko V I, Kiyashko S I, Rodkina S A, et al. Determination of food sources of marine invertebrates from a subtidal sand community using analyses of fatty acids and stable isotopes. Russian Journey of Marine Biology,2008,34: 101-109
    [116]Kioussis D R, Wheaton F W, Kofinas P. Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels [J]. Aquacult. Eng.,2000(23):315-332
    [117]Killingley J S, Lutcavage M. Loggerhead turtle movements reconstructed 818O and 513C profiles from commensal barnacle shells. Estuar. Coast. Shelf S.,1983, 16(3):345-349
    [118]Kurata K, Minami H, Kikuchi E. Stable isotope analysis of food sources for salt marsh snails. Mar. Ecol. Prog. Ser.,2001,223:167-177
    [119]Kikuchi K, Takeda S, Honda H, et al. Effect of feeding on nitrogen excretion of Japanese flounder Paralichthys olivaceus. Bulletin of the Japanese Society of Scientific Fisheries,1991,57:2059-2064
    [120]Knud-Hansen C F, Batterson T R, McNabb C D, et al. Nitrogen input, primary productivity and fish yield in fertilized freshwater ponds in Indonesia. Aquaculture, 2003,94:49-63
    [121]Kopp R, Palikova M, Navratil S, et al. Modulation of biochemical and haematological indices of silver carp (Hypophthalmichthys molitrix Val.) exposed to toxic cyanobacterial water bloom. Acta Vet. Brno,2010,79:135-146
    [122]Kristensen E, Andersen F O. Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. J. Exp. Mar. Biol. Ecol.,1987,109: 15-23
    [123]Kurle C M, Worthy G A J. Stable nitrogen and carbon isotope ratios in multiple tissues of the northern fur seal Callorhinus ursinus:implications for dietary and migratory reconstructions. Mar. Ecol. Prog. Ser.,2002,236:289-300
    [124]Kutty M N. Respiratory quotient and ammonia excretion in Tilapia mossambica. Mar.Biol.,1972,16:126-133
    [125]Lermen C L, Lappe R, Crestani M, et al. Effect of different temperature regimes on metabolic and blood parameters of silver catfish Rhamdia quelen. Aquaculture, 2004,239:497-507
    [126]Leung K M Y, Chu J C W.Wu R S S. Nitrogen budgets for the areolated grouper Epinephelus areolatus cultured under laboratory conditions and in open-sea cages. Mar. Ecol. Prog. Ser.,186:271-281
    [127]Leung K M Y, Chu J C W, Wu R S S. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper (Epinephelus areolatus) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture,1999, 170:215-227
    [128]Leventer H, Teltsch B. The contribution of silver carp (Hypophthalmichthys molitrix) to the biological control of Netofa reservoirs. Hydrobiologia,1990,191: 47-55
    [129]Lin C K, Yi Y. Minimizing environmental impacts of freshwater aquaculture and reuse of pond effluents and mud. Aquaculture,2003,226:57-68
    [130]Lin G C, Song R Q. Analysis on productive comparison and benefit of healthy breeding grass carp. Modern Agricultural Sciences and Technology,2010,3: 326-328 (In Chinese with English abstract)
    [131]Liu J K, Xie P. Enclosure experimentas on and lacustrine practice for eliminating Microcystis bloom. Chin. J. Oceanol. Limnol.,2002,20:113-117
    [132]Logan J, Haas H, Deegan L, et al. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia,2006,147:391-395
    [133]Logan J M, Jardine T D, Miller T J, et al. Lipid corrections in carbon and nitrogen stable isotope analyses:comparison of chemical extraction and modeling methods. J. Anim. Ecol.,2008,77:838-846
    [134]MacAvoy S E, Arneson L S, Bassett E. Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia,2006,150: 190-201
    [135]MacAvoy S E, Macko S A, Arnesion L S. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Can. J. Zool.,2005,83:631-641
    [136]MacAvoy S E, Macko S A, Garman G C. Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can. J. Fish. Aquat. Sci.,2001,58: 923-932
    [137]Macko S A, Estep M L, Hare P E, et al. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Isotope Geoscience, 1987,65:79-92
    [138]MacNeil M A, Drouilard K G, Fisk A T. Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can. J. Fish. Aquat. Sci.,2006,63: 345-353
    [139]MacNeil M A, Skomal G B, Fisk A T. Stable isotopes from multiple tissues reveal diet switching in sharks. Mar. Ecol. Prog. Ser.,2005,302:199-206
    [140]Mallekh R, Lagardere J P. Effect of temperature and dissolved oxygen concentration on the metabolic rate of the turbot and the relationship between metabolic scope and feeding demand. J. Fish Biol,2002,60:1105-1115
    [141]Marcogliese D J. Pursuing parasites up the food chain:implications of food web structure and function on parasite communities in aquatic systems. Acta Parasitol, 2001,46:82-93
    [142]Maricondi-Massari M, Kalinlin A L, Glass M L, et al. The effects of temperature on oxygen uptake, gill ventilation and ECG waveforms in the Nile tilapia, Oreochromis niloticus. J. Therm. Biol.,1998,23:283-290
    [143]Martin K L M. Aerial release of CO2 and respiratory exchange ratio in intertidal fishes out of water. Environ. Biol. Fish.1993,37:189-196
    [144]Martinez del Rio C, Wolf B O. Mass balance models for animal isotopic ecology. In:Starck MA, Wang T, eds. Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield,2005,141-174
    [145]Maruyama A, Yamada Y, Rusuwa B, et al. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can. J. Fish. Aquat. Sci.,2001,58:2125-2128
    [146]Mashall J D, Zhong P. Carbon isotope discrimination and water use efficiency in native plants of the North-Central Rockies [J]. Ecology,1994,75:1887-1895
    [147]Mazzola A, Sara G. The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED):stable carbon isotopic analysis. Aquaculture,2001,192:361-379
    [148]McCutchan J H Jr, Lewis W M, Kendall C, et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos,2003,102:378-390
    [149]McClelland J W, Montoya J P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology,2002,83:2173-2180
    [150]McClelland J W, Valiela I. Linking nitrogen in estuarine producers to land-dereived sources. Limnol. Oceanogr.,1998,43:577-585
    [151]McIntyre P B, Flecker A S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia,2006,148:12-21
    [152]Mckinney C R, Mcrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratio. Rev. Sci. Instrum.,1950,21:724-730
    [153]Milstein A. Ecological aspects of fish species in teractions in polyculture ponds. Hydrobiologia,1992,231:177-186
    [154]Milstein A, Ahmed A F, Masud O A, et al. Effects of the filter feeder silver carp and the bottom feeders mrigal and common carp on small indigenous fish species (SIS) and pond ecology. Aquaculture,2006,258:439-451
    [155]Milstein A, Hepher B, Telsch B. The effect of fish species combination in fish ponds on plankton composition. Aquaculture Res.,1988,19:127-137
    [156]Milstein A, Hulata G, Wohlfarth G. Canonical correlation analysis of relationships between management inputs and fish growth and yields in polyculture. Aquaculture Res.,1988,19:13-24
    [157]Minagawa M, Wada E. Stepwise enrichment of 15N along food chains:further evidence and the relationship between δ15N and animal age. Geochim. Cosmochim.Ac.,1984,48:1135-1140
    [158]Miura T. The effects of planktivorous fishes on the plankton community in a eutrophic lake. Hydrobiologia,1990,200-201:567-579
    [159]Mires D. Aquaculture and the aquatic environment:Mutual impact and preventive management. Bamidgeh,1995,47:163-172
    [160]MOAC (Ministry of Agriculture, China),2011. China Fisheries Yearbook,2010. China Agriculture Publisher, Beijing, China.
    [161]Monson D K, Hayes J M. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim. Cosmochim.Ac.,1982,46:139-149
    [162]Muir J F. Recirculated water systems in aquaculture, in:Muir, J.F., Roberts, R.J. (Eds), Recent Advances in Aquaculture. Croom Helm, London,1982,357-446
    [163]Murchie K J, Power M. Growth-and feeding-related isotopic dilution and enrichment patterns in young-of-the-year yellow perch (Perca flavescens). Freshwater Biol.,2004,49:41-54
    [164]Nelson J, Chanton J, Coleman F, et al. Patterns of stable carbon isotope turnover in gag, Mycteroperca microlepis, an economically important marine piscivore determined with a non-lethal surgical biopsy procedure. Environ. Biol. Fish.,2011, 90:243-252
    [165]Opuszynski K. Silver carp, Hypophthalmichthys molitrix (Val.) in carp ponds Ⅲ. Influence on ecosystem. Ekol. Pol.,1979,27:117-133
    [166]Opuszynski K. Comparison of the usefulness of the silver carp and the bighead carp as additional fish in carp ponds. Aquaculture,1981,25:223-233
    [167]Overmyer J P, MacNeil M A, Fisk A T. Fractionation and metabolic turnover of carbon and nitrogen stable isotopes in black fly larvae. Rapid Commun. Mass Sp.s 2008,22:694-700
    [168]Owens N J P. Natural variations in 15N in the marine environment. Adv. Mar. Biol., 1987,24:389-451
    [169]Packard G C, Boardman T J. The misuse of ratios to scale physiological data that vary allometrically with body size, in:Feder, M.E., Bennett, A.F., Burggern, W.W., Huey, R.B., (Eds.), New Directions in Ecological Physiology. London:Cambridge University Press,1987,216-239
    [170]Pang X, Cao Z D, Peng J L, et al. The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, Silurus meridionalis, acclimated at different temperatures. Comparative Biochemistry and Physiology, Part A,2010,155:253-258
    [171]Penczak T, Galicka W, Molinski M, et al. The enrichment of a mesotrophic lake by carbon, phosphorus and nitrogen from the cage aquaculture of rainbow trout, Salmo gairdneri. Journal of Applied Ecology,1982,19:371-393
    [172]Peterson B J, Fry B. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Evol. S., 1987,18:293-320
    [173]Perga M E, Gerdeaux D.'Are fish what they eat' all year round? Oecologia,2005, 144:598-606
    [174]Persaud A D, Dillon P J, Molot L A, et al. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci.,2012,74: 203-212
    [175]Persson A, Lars-Anders H. Diet shift in fish following competitive release. Can. J. Fish. Aquat. Sci.,1998,56(1):70-78
    [176]Peterson B J, Howarth R W, Garritt R H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science,1985,227:1361-1363
    [177]Peterson B J, Fry B. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Evol. S., 1987,18:293-320
    [178]Phan T P H, Managaki S, Nakada N, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci. Total Envron.,2011,409:2894-2901
    [179]Pillay T. Aquaculture and the Environment, Second ed. Blackwell, Rome,2007
    [180]Phillips D L, Gregg J W. Source partitioning using stable isotopes:coping with too many sources. Oecologia,2003,136:261-269
    [181]Phillips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models. Oecologia,2002,130:114-125
    [182]Phillips D L. Mixing models in analyses of diet using multiple stable isotopes:a critique. Oecologia,2001,127:166-170
    [183]Pinnegar J K, Polunin N V C. Differential fractionation of δ13C and δ15N among fish tissues:implications for the study of trophic interactions. Funct. Ecol.,1999, 13:225-231
    [184]Post D M. Using stable isotopes to estimate trophic position:models, methods and assumptions. Ecology,2002,83:703-718
    [185]Reich K J, Bjorndal K A, Martinez del Rio C. Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm. Oecologia,2008,155:651-663
    [186]Riera P, Richard P. Temporal variation of 813C in particulate organic matter and oyster Crassostera gigas in Marennes-Oleron Bay (France):effect of freshwater inflow. Mar. Ecol. Prog. Ser.,1997,147:105-115
    [187]Richard R D, Willian H, Geoff P. Identification of anadromous and nonanadromous adult brook trout and their progeny in the Tabusinatac River, New Brunswick, by means of multiple-stable-isotope analysis. T. Am. Fish. Soc.,1999, 122 (2):278-288
    [188]Rolff C, Elmgren R. Use of riverine organic matter in plankton food webs of the Baltic Sea. Mar. Ecol. Prog. Ser.,2000,197:81-101
    [189]Ruan J R, Rong K W, Wang S M. Experimental studies on the top-down effects of silver carp and bighead carp in freshwater microcosms (Ⅱ):nutrient levels. Journal of Lake Sciences,1995,7(4):334-340 (in Chinese with English abstract)
    [190]Saito L, Johnson B M, Bartolow J, et al. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models [J]. Ecosystems,2001,4:105-125
    [191]Sakano H, Fujiwara E, Nohara S, et al. Estimation of nitrogen stable isotope turnover rate of Oncorhynchus nerka. Environ. Biol. Fish.,2005,72:13-18
    [192]Sakdullah A, Tsuchiya M. The origin of particulate organic matter and the diet of tilapia from an estuarine ecosystem subjected to domestic wastewater discharge: fatty acid analysis approach. Aquat. Ecol.,2009,43:577-589
    [193]Salazar-Hermoso,2007. Evaluation of stable isotopes for the identification of aquaculture waste in the aquatic environment. MSc Thesis, University of Guelph, Canada.
    [194]Sara G, De Pirro M, Romano C, et al. Sources of organic matter for intertidal consumers on Ascophyllum-shores (SW Iceland):a multi-stable isotope approach. Helgoland Mar. Res.,2007,61:297-302
    [195]Schurmann H, Steffensen J F. Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J. Fish Biol.,1997,55(6):1166-1180
    [196]Shadwick E H, Thomas H, Chierici M, et al. Seasonal variability of the inorganic carbon system in the Amundsen Gulf region of the southeastern Beaufort Sea. Limnol. Oceanogr.,2011
    [197]Shi W L, Jin H Y, Wang D Q, et al. Effect of stocking of silver carp and bighead carp on the eutrophication in waters. Journal of Dalian Fisheries College 1989, 4(3-4):11-24 (in Chinese with English abstract)
    [198]Smith D W. The feeding selectivity of silver carp, Hypophthalmichthys molitrix Val. J. Fish Biol.,1989,34(6):819-828
    [199]Smith M A K. Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. J. Fish. Biol.,1981,19:213-220
    [200]Spataru P. Gut contents of silver carp Hypophthalmichthys molitrix (Val.) and some trophic relations to other fish species in a polyculture system. Aquaculture, 1977,11(2):137-146
    [201]Spataru P, Gophen M. Feeding behaviour of silver carp Hypophthalmichthys molitrix (Val.) and its impact on the food web in Lake Kinneret, Israel. Hydrobiologia,1985,120:53-61
    [202]SPSS Inc.,2008. SPSS 16.0 Student Version for Windows. Prentice Hall, Upper Saddle River, New Jersey.
    [203]Starling F L R M. Control of eutrophication by silver carp, Hypophthalmichthys molitrix, in the tropical Paranoa Reservoir (Brasilia, Brazil):a mesocosm experiment. Hydrobiologia,1993,257:143-152
    [204]Starling F L R M, Rocha A J A. Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir. Hydrobiologia,1990,200-201(1):581-591
    [205]Strychar K B, MacDonald B A. Imapcts of suspended particle on feeding and absorption rates in cultured eastern oysters (Crassostrea virginica, Gmelin). J. Shellfish. Res.,1999,18:437-444
    [206]Sun Z L, Gao Q F, Dong S L, et al. Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis:role of metabolism and growth. Mar. Ecol. Prog. Ser.,2012,457:101-112
    [207]Suring E, Wing S R. Isotopic turnover rate fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias):Consequences for ecological studies. J. Exp. Mar. Biol. Ecol.,2009,370:56-63
    [208]Suzuki K W, Kasai A, Nakayama K, et al. Diferential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles:implications for analyzing migration. Can. J. Fish. Aquat. Sci.,2005,62: 671-678.
    [209]Sweeting C J, Barry J, Barnes C, et al. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J. Exp. Mar. Biol. Ecol.,2007,340:1-10
    [210]Sweeting C J, Jennings S, Polunin N V C. Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Funct. Ecol.,2005,19: 777-784
    [211]Tarboush R A, MacAvoy S E, Macko S A, et al. Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. Can. J. Fish. Aquat. Sci.,2006,84:1453-1460
    [212]Tieszen L.L., Boutton T.W., Tesdahl K.G.C.& Slade N.A. (1983) Fractionation and turnover of stable carbon isotopes in animal tissues:implications for δ13C analysis of diet. Oecologia,57,32-37.
    [213]Tominaga O, Uno N, Seikai T. Influence of diet shift from formulated feed to live mysids on the carbon and nitrogen stable isotope ratio δ13C and δ15 N in dorsal muscles of juvenile Japanese flounders, Paralichthys olivaceus. Aquaculture,2003, 218:265-276
    [214]Tucker C S. Low-density silver carp Hypophthalmichthys molitrix (valenciennes) polyculture does not prevent cyanobacterial off-flavours in channel catfish Ictaluruspunctatus (Rafinesque). Aquac. Res.,2006,37(3):209-214
    [215]Turker H, Eversole A G, Brune D E. Comparative Nile tilapia and silver carp filtration rates of Partitioned Aquaculture System phytoplankton. Aquaculture, 2003,220:449-457
    [216]Urey H C. The thermodynamic properties of isotope substance. Chem. Soc. Rev., 1947,1:562-581
    [217]Vander Zanden M J, Hulshof M, Ridgway M S, et al. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. T. Am. Fish. Soc,1998, 127:729-739
    [218]Vanderklift M A, Ponsard S. Sources of variation in consumer-diet δ15N enrichment:a meta-analysis. Oecologia,2003,136:169-182
    [219]Vander Zanden M J, Gilbert C, Joseph B R. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios and literature dietary date. Can. J. Fish. Aquat. Sci.,1996,54(5):1142-1158
    [220]Vander Zanden M J, Menno H, Mark S R, et al. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. T. Am. Fish. Soc.,1998, 127(5):729-739
    [221]Vanni M J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst.,2002,33:341-70
    [222]Vizzini S, Sara G, Michener R H, et al. The role and contribution of the seagrass Posidonia oceanica (L.) Dellile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica-International Journal of Ecology,2002,23:277-285
    [223]Voro's L, Oldal I, Presing M, et al. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp(Hypophthalmichthys molitrix Val.). Hydrobiologia,1997,342-343:223-228
    [224]Watanabe Y, Seikai T, Tominaga O. Estimation of growth and food consumption in juvenile Japanese flounder Paralichthys olivaceus using carbon stable isotope ratios under laboratory conditions. J. Exp. Mar. Biol. Ecol.,2005,326:187-198
    [225]Whitledge G W, Rabeni C F. Energy sources and ecological role of crayfishes in an Ozark stream:insights from stable isotope and gut analysis [J]. Can. J. Fish. Aquat. Sci.,1997,54:2555-2563
    [226]Wissei B, Fry B. Tracing Mississipi River influences in estuarine food webs of coastal Louisiana. Oecologia,2005,144:659-672
    [227]Witting D A, Chambers R C, Bosley K L, et al. Experimental evaluation of ontogenetic diet transitions in summer flounder (Paralichthys dentatus), using stable isotopes as diet tracers. Can. J. Fish. Aquat. Sci.,2004,61:2069-2084
    [228]Wong W H, Cheung S G. Feeding behavior of the green mussel, Perna viridis (L.): response to variation in seston quantity and quality. J. Exp. Mar. Biol. Ecol.,1999, 236:191-207
    [229]Wood C M. Influence of feeding, exercise, and temperature on nitrogen metabolism and excretion. Fish Physiology,2001,20:201-238
    [230]Wong W H, Cheung S G Feeding rates and scope for growth of green mussels, Perna viridis (L.) and their relationship with food availability in Kat O, Hong Kong. Aquaculture,2001,193:123-137
    [231]Xie P. Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine. Aquaculture,1999,180:295-305
    [232]Wu R S S, Lam K S, Mackay D W, et al. Impact of marine fish farming on water quality and bottom sediment:a case study in the sub-tropical environment. Mar. Environ. Res.,1994,38:115-145
    [233]Xie P. Gut contents of silver carp, Hypophthalmichthys molitrix, and the distribution of a centric diatom, Cyclotella, on passage through the esophagus and intestine. Aquaculture,1999,180:295-305
    [234]Xie P,2003. Silver carp and Bighead, and their Use in the Control of Algal Blooms. Science Press, Beijing (in Chinese)
    [235]Xie P, Liu J C. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms:a synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World Journal 2001,1: 337-356
    [236]Yan L L, Zhang G F, Liu Q G, et al. Optimization of culturing the freshwater pearl mussels, Hyriopsis cumingii with filter feeding Chinese carp (bighead carp and silver carp) by orthogonal array design. Aquaculture,2009,292:60-66
    [237]Yang S D, Liou C H, Liu F G. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture,2002,213:363-372
    [238]Yokoyama H, Higano J, Adachi K, et al. Evaluation of shrimp polyculture system in Thailand based on stable carbon and nitrogen isotope ratios. Fish. Sci.,2002,68: 745-750
    [239]Zar J H. Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey, 1999
    [240]Zhao Z G, Dong S L, Wang F, et al. The measurements of filtering parameters under breathing and feeding of filter-feeding silver carp(Hypophthalmichthys molitrix Val.). Aquaculture,2011,319:178-183
    [241]Zhao Z G, Dong S L, Wang F, et al. Respiratory response of grass carp (Ctenopharyngodon idella) to temperature changes. Aquaculture,2011,322-323: 128-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700