用户名: 密码: 验证码:
20-35kg杜寒杂交羔羊能量与蛋白质需要量参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以20—35kg杜泊(♂)×小尾寒羊(♀)杂交F1代公羔和母羔为试验动物,应用饲养试验、比较屠宰试验、消化代谢试验和气体代谢试验,获得了羔羊生长性能、屠宰性能、器官指数、能量与蛋白质的消化代谢参数、甲烷排放量、能量和蛋白质的组织分布、机体组成的预测模型等研究结果,总结出了20—35kg杜寒杂交羔羊(公、母)维持和生长的代谢能和净能需要量、维持和生长的净蛋白质和可代谢蛋白质需要量参数。具体研究内容包括以下五部分:
     试验一:不同饲喂水平对杜寒杂交羔羊生长性能、屠宰性能及器官指数的影响
     研究不同饲喂水平对20—35kg杜寒杂交F1代公羔和母羔的生长性能、屠宰性能和器官指数的影响。针对公羔和母羔的两个试验设计相同。将21只杜寒杂交羔羊随机分为三组,按照自由采食(AL)、自由采食量的70%(IR70)和自由采食量的40%(IR40)三个水平饲喂,每个处理7只羊。当自由采食组试验羊达到35kg时进行屠宰试验,测定其生长(产)性能、屠宰性能及内脏器官(组织)的发育情况。结果表明:饲喂水平对AL组、IR70组及IR40组净增重、平均日增重和干物质采食量等指标有显著的影响,公羔的生长速度在数值上高于母羔;公羔和母羔的生长性能和部分屠宰指标(胴体重、净肉重和内脏脂肪重)顺序为AL组>IR70组>IR40组,三组之间差异显著(P<0.05);公羔和母羔的瘤胃占胃总重比例在AL组和IR70组差异不显著(P>0.05);肝脏占宰前活重比例以AL组最高,三组间差异显著(P<0.05);公羔和母羔在净肉率和胴体净肉率指标上三组间差异不显著(P>0.05)。饲喂水平对杂交肉羊生长性能、饲料转化效率、复胃的重量与发育程度、主要生理器官的发育具有不同程度的影响;用NRC标准配制的日粮与试验结果有一定的差距。
     试验二:不同饲喂水平对杜寒杂交羔羊能量与蛋白质消化代谢的影响
     本试验旨在探明自由采食及限饲条件下杜寒杂交羔羊(公、母)对主要营养物质的消化代谢规律,为比较屠宰试验提供基础参数。两个试验设计相同。将15只杜寒杂交羔羊随机分为三组,按自由采食、自由采食量的70%和自由采食量的40%三个水平饲喂,通过消化代谢试验和气体代谢试验确定蛋白质和能量的代谢规律及气体代谢规律。结果显示,公羔IR40组干物质(DM)、有机物(OM)消化率在数值上随饲喂水平的降低而升高,但差异不显著(P>0.05),氮的表观消化率三组间差异不显著(P>0.05);母羔DM、OM和N的表观消化率IR40组显著高于AL组和IR70组(P<0.05)。公羔和母羔中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)消化率IR40组显著高于AL组(P<0.05),与IR70组差异不显著(P>0.05);公羔和母羔总能摄入量、粪能、甲烷气体能、CO2排出量和甲烷产生量三组间均差异显著(P<0.05);甲烷能占总能比例变化范围公羔为7.45—8.75,母羔为7.55—8.85,三组间差异不显著(P>0.05);公羔和母羔呼吸熵的变化范围分别在在0.68—0.84和0.82—0.98之间。公羔和母羔在限饲时主要营养物质的表观消化率高于自由采食水平,但限饲条件下氮的沉积率较低;日粮饲喂水平对甲烷能占总能比例和消化能的代谢率等指标影响不显著,但会显著影响肉羊的甲烷产量。
     试验三:杜寒杂交羔羊能量与蛋白质的组织分布及机体组成的预测模型研究
     本试验旨在揭示不同饲喂水平对20—35kg杜寒杂交羔羊(公、母)机体组织中能量和蛋白质的含量及分布规律,建立通过活体体重估测杂交羔羊机体组成和化学组成的预测模型。两个试验设计相同。将21只杜寒杂交羔羊随机分为三组,按照自由采食(AL)、自由采食量的70%(IR70)和自由采食量的40%(IR40)三个水平饲喂,每个处理7只羊。当自由采食组羊只达到35kg时进行屠宰试验,测定不同组织(骨骼、肌肉、脂肪、血+内脏、皮和毛)的干物质、粗蛋白、粗脂肪及总能含量。从机体组成看,脂肪/水分在AL组最高,与IR40组差异显著(P<0.05);蛋白/脂肪在IR40组最高,与AL组差异显著(P<0.05);组织鲜重占去毛空体重的比例,肌肉、血+内脏和皮三组间差异不显著(P>0.05),但骨骼在三组间差异显著(P<0.05);所有组织在不同组别间能量含量(MJ/kg)和蛋白质含量(%)均差异不显著(P>0.05);羊毛中能量和蛋白总量在三个饲喂水平间差异不显著(P>0.05);三组间干物质和粗蛋白占去毛空体的比例差异不显著(P>0.05),但水分和灰分比例IR40组显著高于AL组及IR70组(P<0.05)。饲喂水平显著影响20—35kg杜寒杂交羔羊机体中粗蛋白、脂肪和水分的比例,其中脂肪和水分含量成高度负相关关系;不同组织的能值/机体总能值、蛋白/机体总蛋白参数受饲喂水平的影响不尽相同;机体的蛋白含量相对稳定,脂肪含量受年龄和饲喂水平的影响;羔羊空腹体重与不同的组织与器官存在强相关关系,去毛空体重与机体的主要化学成分存在强相关关系。
     试验四:20—35kg杜寒杂交羔羊能量需要参数
     试验研究20—35kg杜寒杂交F1代羔羊(公羔和母羔)维持和生长的代谢能与净能需要量,为杜寒杂交羔羊的能量需要和科学饲养提供依据。两个试验均采用完全随机化设计。选取杜寒杂交羔羊(公羔和母羔分期进行,初始体重分别19.14±2.37kg和20.34±2.15kg)50只,其中35只用于比较屠宰试验,15只用于消化代谢试验。用于比较屠宰试验的35只羊体重为20kg时,随机抽取7只进行屠宰用以估测羔羊初始体组成;剩余的28只羊分为自由采食组(AL,14只)、70%自由采食组(IR70,7只)和40%自由采食组(IR40,7只)3个饲喂水平组。当自由采食组的14只羊体重达到28kg时,随机选取7只羊屠宰;将剩余的21只羊按上述3个饲喂水平饲喂,每个饲喂水平包括7只羊。当自由采食组羊只平均体重达到35kg时,所有羔羊屠宰。在消化代谢试验中,将15只同品种羔羊(公羔:30.24±1.93kg;母羔:28.71±1.75kg)随机分为3个处理组(每个处理组5只羊),试验日粮及饲喂水平同比较屠宰试验,采用全收粪尿法收集粪、尿,采用开路式呼吸测热系统测定24h甲烷产生量、CO2排放量和耗氧量。结果显示:杜寒杂交公羔和母羔维持净能与维持代谢能需要量分别为250.6、374.2kJ·kg~(-1)SBW0.75d~(-1)和247.7、386.7kJ/kgSBW0.75d~(-1);代谢能的维持利用效率公羔和母羔分别为0.67和0.64;在20—35kg体重阶段,日增重分别为100、200、300和350g·d~(-1)公羔和母羔的生长净能和生长代谢能的需要量为1.10—5.04MJ·d~(-1)、2.43—11.13MJ·d~(-1)和1.18—5.18MJ·d~(-1)、2.68—11.71MJ·d~(-1);代谢能的生长利用效率公羔为0.45,母羔为0.44。20—35kg杜寒杂交F1代羔羊能量代谢参数(包括维持净能、维持代谢能、生长净能和生长代谢能)参数略低于NRC和AFRC的推荐标准。
     试验五:20—35kg杜寒杂交羔羊蛋白质需要参数
     试验研究20—35kg杜寒杂交F1代羔羊(公羔和母羔)维持和生长的蛋白质需要量,为杜寒杂交羔羊的蛋白质需要和科学饲养提供依据。采用饲养试验和比较屠宰试验相结合的研究方法,结合先期研究得到的瘤胃微生物蛋白质合成量的基本参数,得出了以下结果:公羔和母羔维持净蛋白质需要量分别为1.86和1.82g/kg SBW0.75d~(-1),可代谢蛋白质的维持需要量分别为2.80和2.86g/kg SBW0.75d~(-1),公羔和母羔可代谢蛋白质的维持利用效率为0.66和0.64;在20—35kg体重阶段,日增重分别为100、200、300和350g·d~(-1)公羔和母羔的生长净蛋白质和生长可代谢蛋白质的需要量为12.43—42.35g·d~(-1)、18.17—61.92g·d~(-1)和12.12—38.12g·d~(-1)、18.34—57.67g·d~(-1);公羔和母羔可代谢蛋白质的生长利用效率分别为0.68和0.66。在相同体重和日增重,净蛋白质需要量和可代谢蛋白质需要量公羔略高于母羔;美国NRC对绵羊可代谢蛋白质的推荐量高于本研究的结果。
Experiment1: Effects of feeding levels on growth, carcass traits and organ indexes of Dorper×thin-tailed Han crossbred lambs
     This experiment was conducted to investigate the growth patterns, carcass traits and organ indexesof Dorper×thin tailed Han crossbred lambs from20to35kg of live weight. The same experimentaldesign was used in two experiments. Twenty-one lambs were randomly assigned to three groups withone group fed ad libitum (AL), and the other two groups fed either70(IR70) or40%(IR40) of ad libitum.A slaughter trial was performed when the lambs in AL group reached35kg of live weight. The resultsshowed that there were significant differences in net gain, average daily gain and dry matter intake amongthree groups. ADG of ram lambs were higher than ewe lambs and the F/G was also lower. No significantdifference was found between AL group and IR70group in the ratio of relative rumen weight to totalstomach (P>0.05). Besides, the relative liver weight in AL group was higher than that in either of theother two groups (P<0.05). No significant differences were found in meat percentage and meatpercentage of carcass (P>0.05). Feeding levels had different effects on growth performance, feedconversion ratios, weight of the four stomach and other main organs of the lambs. Results of growth,carcass traits and organ indexes of Dorper×thin-tailed Han lambs were different from therecommendations of NRC (2007).
     Experiment2: Effect of feeding levels on digestion and metabolism of energy and protein inDorper×thin-tailed Han crossbred lambs
     This study was conducted to investigate the effect of different levels of feed intake on digestibilityof main nutrients in Dorper×thin-tailed Han crossbred lambs, and provide some basic parameters forthe slaughter experiment. The same experimental design was used in two experiments. Fifteen Dorper×thin-tailed Han crossbred ram or ewe lambs were assigned to3levels of dry matter (DM) intake: adlibitum, or restricted to70%(IR70) or40%(IR40) of the ad libitum intake. Digestibility trial andrespiratory trial were conducted to determine the metabolic parameters of protein and energy, as well asCH4, CO2and O2. The values of digestibility of DM, OM increased with decreasing levels of feed intakeand the difference was not significant among ram lambs (P>0.05). There is no significant difference inN digestibility among three feed intake levels in ram lambs. The digestibility of DM, OM and N in IR40was higher than AL and IR70(P<0.05). The digestibility of NDF and ADF in IR40was significantlyhigher than AL (P<0.05) and showed no significantly difference compare to IR70in ram lambs and ewelambs (P>0.05). The gross energy intake, fecal energy, methane energy, carbon dioxide emissions andmethane production were significant difference among three groups in ram lambs and ewe lambs(P<0.05) The ratio of methane energy to gross energy increased from7.45to8.75in ram lambs andfrom7.55to8.85in ewe lambs, respectively, but the value was not significant (P>0.05). The respiratoryquotient ranged from0.68to0.84in ram lambs and0.82to0.98in ewe lambs. The apparentdigestibility of main nutrients was higher in intake restriction groups than the group fed ad libitum, but the N retention was lower in intake restriction groups. The feeding levels did not affect the ratio ofmethane energy to gross energy and the metabolic rate of digestible energy, but significantly influencedthe methane emissions of lambs.
     Experiment3: The distribution of energy and protein in body tissues and mathematical modelsfor predicting body composition of Dorper×thin-tailed Han crossbred lambs
     This study was aimed to determine the content and distribution of energy and protein in differentbody tissues of20-35kg Dorper×thin-tailed Han crossbred lambs, and to develop mathematicalmodels to predict body composition and chemical composition from live weight of lambs. Twenty-oneanimals were randomly assigned to three groups with one group fed ad libitum (AL), and the other twogroups fed either70(IR70) or40%(IR40) of ad libitum. Each group had7lambs. A slaughter trial wasperformed when the lambs in AL group reached35kg of live weight. Dry matter, crude protein, fat, aswell as gross energy were measured in bone, muscle, fat, blood, viscera, hide, and fleece. For bodycomposition, AL group lambs had the highest proportion of fat to moisture and showed a significantdifference from IR40group (P<0.05), while the proportion of protein/fat was higher in IR40group thanin AL group (P <0.05). No significant difference was found in the ratio of the muscle, blood plusviscera or hide weight to fleece-free empty body weight (P>0.05), but the ratio of bone to fleece-freeempty body weight was significantly different (P<0.05) among three treatments. There were nosignificant differences (P>0.05) in energy or protein content among three feeding levels. The ratio ofdry matter or protein to fleece-free empty body weight was not significantly different among the threegroups (P>0.05). However, IR40group had a higher ratio in moisture and ash contents than that in ALand IR70group (P <0.05). The feeding level significantly affected the proportion of crude protein, fatand moisture in Dorper×thin-tailed Han crossbred ram lambs growing from20to35kg of live weight,and a highly negative correlation was found between body fat and moisture. The parameters of E/GEand CP/GCP in different tissues were affected by the feeding levels, but the effects were different. Theprotein content was relatively stable while the fat content was largely affected by age and feeding levels.There was a strong correlation between empty body weight and the weight of different tissues andorgans, and a strong correlation relationship was also found between fleece-free empty body weight andthe main chemical composition of the body.
     Experiment4: Energy requirements of20-35kg Dorper×thin-tailed Han crossbred lambs
     The study aimed to define the energy requirement of metabolizable energy (ME) and net energy(NE) for maintenance and growth for20-35kg Dorper×thin-tailed Han crossbred F1lambs. The trialwas conducted according to a completely random design. Fifty Dorper×thin-tailed Han ram lambs wereselected, thirty five lambs were used for a comparative slaughter trial and15lambs were used for adigestibility trial. Seven lambs were randomly chosen and slaughtered at20kg BW for measuring theinitial body composition. The remaining28ram lambs were offered a pelleted mixture diet at ad libitumintake, or70or40%of the ad libitum intake. Seven of the ram lambs were randomly chosen and slaughtered when the14ram lambs fed ad libitum reached28kg. The remained21ram lambs wererandomly divided into3intake levels and fed a pelleted mixture diet, and the lambs were all slaughteredwhen the lambs in ad libitum treatment group reached at35kg of BW. In a digestibility trial, fifteenlambs were randomly divided into three groups (five lambs in each group) with the same feeding regimeas the comparative slaughter trial. Total feces and urine was collected. Methane production, carbondioxide output and oxygen consumption were measured by open-circuit respirometry. The resultsshowed that the maintenance requirements for NE and ME were250.6and374.2kJ·kg~(-1)metabolicshrunk BW (SBW0.75) for ram lambs and247.74and386.65kJ·kg~(-1)metabolic shrunk BW (SBW0.75) forewe lambs. The efficiency of ME utilization for maintenance were0.67and0.64, respectively. Netenergy and metabolic energy requirements for growth ranged from1.10to5.04MJ·d~(-1)and2.43to11.13MJ·d~(-1)for ram lambs and1.18—5.18MJ·d~(-1)and2.68—11.71MJ·d~(-1)of ewe lambs, respectively. Theefficiency of ME for growth was0.45and0.44, respectively. These parameters were lower than thoserecommended by NRC and AFRC.
     Experiment5: Protein requirements of20-35kg Dorper×thin-tailed Han Crossbred lambs
     This experiment was conducted to determine the protein requirements for maintenance and growthof Dorper×thin-tailed Han crossbred lambs growing from20to35kg of live weight. A feeding trialand a comparative slaughter trial were used. According to the data of ruminal microbial proteinsynthesis from other trials of our studies, the results showed that the maintenance requirements of netprotein (NP) for ram lambs and ewe lambs were1.86and1.82g/kg SBW0.75, respectively, and thecorresponding values of requirement for metabolizable protein (MP) were2.80and2.86g/kg SBW0.75.The utilization efficiency of MP for maintenance was0.66and0.64for ram lambs and ewe lambs. Theresults also showed that NP and MP requirements for growth ranged from12.43to42.35g·d~(-1),18.17to61.92g·d~(-1)for ram lambs and12.12to38.12g·d~(-1),18.34to57.67g·d~(-1)for ewe lambs that gained100to350g/d. Estimated efficiencies of MP use for body weight gain were0.68and0.66, respectively. Theram lambs shows a higher net protein requirements and MP requirements than ewe lambs with the samelive weight and ADG.
引文
1.蔡建森,刁其玉.舍饲肉羊的营养需要量(综述).兰州,2006
    2.曹斌云,赵敬贤,张若楠,等.杜泊肉羊繁殖性能观测.畜牧兽医杂志,2004(2):32-33.
    3.柴巍中.湖羊妊娠期维持代谢能需要量的测定.中国畜牧杂志,1990,26(1):7-9.
    4.初汉平.杜泊羊和小尾寒羊杂一代羔羊与小尾寒羊羔羊生长性能、屠宰性能及肉品品质的比较.畜牧与兽医,2012(3):46-49.
    5.刁其玉,屠焰,张乃锋.新技术新方法在羊饲料与营养中的应用.中国山东东营,2004,157-161.
    6.刁其玉,杨茁萌,陈荆芬.鲁梅克斯草颗粒在瘤胃内的降解与饲养价值.中国食物与营养,2000(5):56.
    7.刁其玉.肉羊饲养实用技术.北京:中国农业科学技术出版社,2009.
    8.丁耿芝,孟庆翔.反刍动物干物质采食量预测模型研究进展.动物营养学报,2013,25(2):248-255.
    9.董长生.家畜解剖学.北京:中国农业出版社,1978.
    10.董红敏,杨其长.反刍动物甲烷排放研究进展.农村生态环境,1993(S1):48-51.
    11.杜飞.20-35kg萨福克×阿勒泰杂交母羊能量需要量的研究.[硕士学位论文]:华中农业大学,2012.
    12.杜京.杂种母羊和育肥羔羊能量蛋白质需要的研究.[硕士学位论文]:河北农业大学,2004.
    13.敦伟涛,陈晓勇,田树军,等.肉用绵羊与小尾寒羊杂交羔羊屠宰试验.畜牧与兽医,2010(4):36-38.
    14.冯仰廉,李胜利,赵广永,等.牛甲烷排放量的估测.动物营养学报,2012(1):1-7.
    15.冯仰廉.反刍动物蛋白质营养饲养(小肠蛋白质)新体系.反刍动物营养需要及饲料营养价值评定与应用,2011,196-209.
    16.冯仰廉.反刍动物营养学.北京:科学出版社,2004.
    17.冯宗慈,奥德,卢德勋,等.不同饲养管理对8-10月龄羔羊体成分的影响.中国畜牧杂志,1987(4):37-39.
    18.冯宗慈,奥德,张殿荣,等.中国美利奴育成羊冬季放牧采食量及维持代谢能需要量的测定.内蒙古畜牧科学,1997(S1):221-223.
    19.冯宗慈,奥德,张殿荣,等.中国美利奴育成羊夏季放牧采草量及维持代谢能需要量的测定.内蒙古畜牧科学,1997(S1):217-220.
    20.高艳霞,李秋凤,李建国,等.新生反刍动物瘤胃发育及其对肝脏代谢的影响.中国奶牛,2007(8):13-15.
    21.郭雪峰,金海,卢德勋,等.甲烷气体产生量与牧草营养参数的相关性分析.江西农业大学学报,2009(1):35-42.
    22.郭雪峰,李华伟,金海,等.体内法与体外法测定反刍动物日粮的甲烷产生量比较.安徽农业科学,2008(12):4994-4995.
    23.郭雪峰.内蒙古白绒山羊甲烷产生量估测模型的建立及其影响因素的研究.[博士学位论文]:内蒙古农业大学,2008.
    24.国家畜禽遗传资源委员会.中国畜禽遗传资源志羊志.北京:中国农业出版社,2011.
    25.韩继福.粗饲料加工细度和日粮结构对肉牛能量代谢及消化规律的研究.[博士学位论文]:北京农业大学,1995.
    26.郝俊玺,王守清,赵志恭.育成期内蒙古细毛羊能量与蛋白质需要量研究.中国动物营养学报,1991(2):62.
    27.郝正里,刘世民,孟宪政.反刍动物营养学.兰州:甘肃民族出版社,2000.
    28.计成.动物营养学.北京:高等教育出版社,2008.
    29.孔祥浩,张玉枝,朱晓萍,等.青干草颗粒度对绵羊日粮养分后肠道消化的影响.中国农业大学学报,2005(4):97-101.
    30.李春华,高艳霞,曹玉凤,等.影响反刍动物瘤胃甲烷产生的因素及调控措施.黑龙江畜牧兽医,2010(15):33-34.
    31.李辉,刁其玉,张乃锋,等.不同蛋白质来源对早期断奶犊牛胃肠道形态发育的影响(二).动物营养学报,2009(2):186-191.
    32.李茂,字学娟,周汉林,等.不同能氮水平的日粮对生长期海南黑山羊采食量和营养物质消化代谢的影响.热带农业科学,2009(7):49-52.
    33.李琴.辽宁绒山羊育成母羊能量需要量的研究.[硕士学位论文]:中国农业大学,2011.
    34.李瑞丽.空怀期及妊娠前期辽宁绒山羊能量和蛋白质需要量研究.[硕士学位论文]:中国农业大学,2012.
    35.李文婷,叶丹妮,张春梅,等.添加月桂酸和亚麻酸对非动态人工瘤胃发酵、甲烷生成和微生物区系的影响.动物营养学报,2008(6):651-656.
    36.李元晓,赵广永.反刍动物饲料蛋白质营养价值评定体系研究进展.中国畜牧杂志,2006,42(1):61-63.
    37.林而达,李玉娥.全球气候变化和温室气体清单编制方法.北京:气象出版社,1998.
    38.刘洁,刁其玉,邓凯东.肉用羊营养需要及研究方法研究进展.中国草食动物,2010(3):67-70.
    39.刘洁,刁其玉,赵一广,等.肉用绵羊饲料养分消化率和有效能预测模型的研究.畜牧兽医学报,2012(8):1230-1238.
    40.刘洁.肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究.[博士学位论文]:中国农业科学院,2012.
    41.卢德勋.系统动物营养学导论.北京:中国农业出版社,2004.
    42.吕亚军,王永军,陈艳瑞,等.3—30日龄滩羊羔羊能量需要量研究.西北农林科技大学学报(自然科学版),2009(4):71-75.
    43.马涛,刁其玉,邓凯东,等.日粮不同精粗比对肉羊氮沉积和尿嘌呤衍生物排出量的影响.中国畜牧杂志,2012(15):29-33.
    44.马涛,刁其玉,邓凯东,等.应用~(15)N和嘌呤估测肉羊微生物N产量的研究.畜牧兽医学报,2012(12):1910-1916.
    45.马友记,李发弟.中国养羊业现状与发展趋势分析.中国畜牧杂志,2011(14):16-20.
    46.马章全,赵敬贤,黄莉萍.杜泊肉用绵羊的种质特性.中国草食动物,2005(1):63-64.
    47.门小明,雒秋江,唐志高,等.3种不同精粗比日粮条件下空怀小尾寒羊母羊的消化与代谢.中国畜牧兽医,2006,33(10):13-17.
    48.孟庆翔,姜成钢,张辉.畜禽饲料与饲养学.北京:中国农业大学出版社,2005
    49.莫放.反刍动物营养需要及饲料营养价值评定与应用.北京:中国农业大学出版社,2011.
    50.聂海涛,施彬彬,王子玉,等.杜泊羊和湖羊杂交F1代公羊能量及蛋白质的需要量.江苏农业学报,2012(2):344-350.
    51.聂海涛,游济豪,王昌龙,等.育肥中后期杜泊羊湖羊杂交F1代公羊能量需要量参数.中国农业科学,2012(20):4269-4278.
    52.彭津津,韩杰,张英杰,等.不同饲喂水平对无角陶赛特羊与小尾寒羊杂交二代公羔代谢产物及氮代谢的影响.中国陕西横山,2012,343-345.
    53.任婉丽.辽宁绒山羊成年种公羊能量和蛋白质需要量的研究.[硕士学位论文]:中国农业大学,2012.
    54.谭支良,卢德勋,胡明,等.绵羊日粮不同碳水化合物比例对纤维物质在消化道不同部位流通量和消化率的影响.动物营养学报,1999(4):29-38.
    55.汪诗平,李永宏.放牧率和放牧时期对绵羊排粪量、采食量和干物质消化率关系的影响.动物营养学报,1997(1):47-54.
    56.王德芹,王金文,张果平,等.不同杂交组合肉羊的屠宰性能及肉品质性状测定.山东农业科学,2005(6):53-55.
    57.王德芹,王金文,张果平,等.杜泊绵羊与小尾寒羊杂交后代的屠宰性能和肉品质性状研究.中国草食动物,2008(5):22-25.
    58.王德芹,王金文,张果平,等.杜泊羊、特克塞尔羊与小尾寒羊杂交对比试验.中国草食动物,2006(1):7-9.
    59.王积涛,王永梅,张宝申,等.有机化学.南京:南开大学出版社,2009.
    60.王金文,崔绪奎,王德芹,等.杜寒杂交类群横交固定与生产性能测定.中国宁夏银川,2010,344-346.
    61.王金文,崔绪奎,张果平,等.杜泊绵羊与小尾寒羊杂种优势利用研究.山东农业科学,2009(1):103-106.
    62.王金文,王德芹,张果平,等.杜泊羊、萨福克羊、无角陶塞特羊与小尾寒羊杂交肥羔羊肉质特性的研究.中国草食动物全国养羊生产与学术研讨会议论文集,2006.
    63.王金文,赵红波,李焕玲,等.杜泊绵羊与小尾寒羊杂交一代育肥试验.中国畜牧杂志,2005(5):47-49.
    64.王金文.绵羊肥羔生产.北京:中国农业大学出版社,2008.
    65.王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2002.
    66.王九峰,李同洲.动物营养学.中国农业大学出版社,2001
    67.王鹏.肉用公羔生长期(20-35kg)能量和蛋白质需要量研究.[硕士学位论文]:河北农业大学,2011.
    68.王钦,任继周,李峻成,等.不同日粮养分在绵羊体内消化量的研究.中国畜牧杂志,2003(4):8-10.
    69.王文奇,侯广田,卡纳提,等.不同饲喂水平对萨福克羊×阿勒泰羊杂交肉羊生长和屠宰性能的影响.中国宁夏银川,2010,327-328.
    70.王文元,王守清,赵志恭,等.内蒙古细毛羊哺乳羔羊(0—90d龄)能量和蛋白质需要量的研究.内蒙古农牧学院学报,1993(2):30-36.
    71.王莹,魏炳栋,邱玉朗,等.舍饲绵羊生长阶段绝食代谢研究.畜牧与饲料科学,2009(4):46-47.
    72.魏炳栋,邱玉朗,万伶俐,等.舍饲肉羊生长期能量和蛋白质代谢特点及需要量的研究.饲料博览,2010(7):5-8.
    73.吴秋珏,郝正里,李发弟,等.饲粮结构与非结构碳水化合物比例对绵羊消化代谢的影响.畜牧兽医学报,2009(1)
    74.许贵善,刁其玉,纪守坤,等.20—35kg杜寒杂交公羔羊能量需要参数.中国农业科学,2012(24):5082-5090.
    75.许贵善,刁其玉,纪守坤,等.不同饲喂水平对肉用绵羊能量与蛋白质消化代谢的影响.中国畜牧杂志,2012,48(17):40-44.
    76.许贵善,刁其玉,纪守坤,等.不同饲喂水平对肉用绵羊生长性能、屠宰性能及器官指数的影响.动物营养学报,2012(5):953-960.
    77.薛金果.引进杜泊羊在徐州地区的适应性观察.[硕士学位论文]:扬州大学,2006.
    78.杨凤.动物营养学.北京:中国农业出版社,2009.
    79.杨嘉实,冯仰廉.畜禽能量代谢.北京:中国农业出版社,2004.
    80.杨诗兴,彭大惠,张文远,等.湖羊能量与蛋白质需要量的研究.中国农业科学,1988(2):73-80.
    81.杨诗兴.开展经济杂交促进我国优质羊肉生产的思考.中国草食动物,2008(1):52-54.
    82.杨在宾,李风双,杨维仁,等.小尾寒羊空怀母羊能量维持需要及其代谢规律研究.动物营养学报,1996(1):28-33.
    83.杨在宾,李凤双,张崇玉,等.大尾寒羊泌乳期母羊能量需要量及其代谢规律研究.中国养羊,1994(3):18-21.
    84.杨在宾,杨维仁,张崇玉,等.大尾寒羊能量和蛋白质需要量及析因模型研究.中国畜牧兽医,2004(12):8-10.
    85.杨在宾,杨维仁,张崇玉,等.小尾寒羊和大尾寒羊能量与蛋白质代谢规律研究.中国草食动物,2004(5):11-13.
    86.杨在宾,张崇玉,姜淑贞,等.大尾寒羊哺乳羔羊能量代谢规律的研究.山东农业大学学报(自然科学版),2003(2):183-185.
    87.袁楷,卢建,顾小卫,等.反刍动物蛋白质小肠消化的研究进展.畜牧兽医科技信息,2008(4):4-5.
    88.岳喜新,刁其玉,邓凯东,等.饲喂代乳粉对羔羊生长性能和体组织参数的影响.饲料工业,2010(19):43-46.
    89.云强,刁其玉,屠焰,等.开食料中粗蛋白质水平对荷斯坦犊牛瘤胃发育的影响.动物营养学报,2010(1):57-62.
    90.臧强,李保明,施正香,等.我国舍饲养羊业的现状与发展对策.黑龙江畜牧兽医,2005(4):1-3.
    91.臧彦全,王加启.肉用山羊营养需要量的研究进展.中国畜牧兽医,2002(2):3-8.
    92.张崇玉,李凤双,师校军.青山羊后备公羊能量需要的研究.山东农业大学学报,1993(1):1-6.
    93.张峰,左晓磊,王昆,等.日粮中不同氮源对杂交绵羊消化代谢的影响.饲料研究,2008(5):4-6.
    94.张海容.不同精料补饲水平对藏绵羊生产性能和消化代谢影响的研究.畜牧与兽医,2009(8):24-28.
    95.张海涛,王加启,卜登攀,等.影响犊牛瘤胃发育的因素研究.乳业科学与技术,2008(2):86-89.
    96.张吉鹍.反刍动物日粮纤维的研究进展.饲料博览,2003(10):8-10.
    97.张晋青,岳度兵,罗海玲,等.日粮中维生素E水平对敖汉细毛羊内脏器官生长发育的影响.中国畜牧杂志,2010(17):43-46.
    98.张立涛,李艳玲,王金文,等.不同中性洗涤纤维水平饲粮对肉羊生长性能和营养成分表观消化率的影响.动物营养学报,2013,25(2):433-440.
    99.张丽英.饲料分析及饲料质量检测技术.北京:中国农业大学出版社,2003.
    100.张庆茹.新编动物生理学.北京:中国农业科学技术出版社,2012.
    101.张蓉,刁其玉.不同碳水化合物对犊牛消化生理功能的研究进展.乳业科学与技术,2007(5):216-218.
    102.张拴林,黄应祥,杨致玲,等.反刍动物蛋白质评价的新体系.中国饲料,2000(12):17-18.
    103.张英杰.羊生产学.北京:中国农业大学出版社,2010.
    104.张颖.山羊营养需要量的研究进展.中国动物保健,2007(2):79-82.
    105.赵广永.反刍动物营养.北京:中国农业大学出版社,2012.
    106.赵一广,刁其玉,邓凯东,等.反刍动物甲烷排放的测定及调控技术研究进展.动物营养学报,2011(5):726-734.
    107.赵一广,刁其玉,刘洁,等.肉羊甲烷排放测定与模型估测.中国农业科学,2012(13):2718-2727.
    108.赵有璋.杜泊羊及其在我国初步利用效果.现代畜牧兽医,2011(1):20-23.
    109.赵有璋.前景诱人的肉用养羊业.农村养殖技术,2004(17):5.
    110.赵有璋.正确认识和利用小尾寒羊.中国草食动物,2003(S1):1-4.
    111.赵玉民.中国美利奴羊育成母羊能量和蛋白质需要研究.[硕士学位论文]:延边大学,2005.
    112.郑琛.不同处理饲粮及不同组合全饲粮颗粒料对绵羊瘤胃内环境和养分消化代谢的影响.[硕士学位论文]:甘肃农业大学,2004.
    113.郑中朝,白跃宇,张雄.新编科学养羊手册.郑州:中原农民出版社,2002.
    114.中华人民共和国农业行业标准(NY/T816-2004).肉羊饲养标准,2004.
    115.周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控.草食家畜,2008,4:21-24.
    116. Aderbal Marcos De Azevêdo Silva, Ecileide Mamede Dos Santos, Pereira José Morais, et al.Body composition and nutritional requirements of protein and energy for body weight gain oflambs browsing in a tropical semiarid region. R. Bras. Zootec,2010,39(1):210-216.
    117. AFRC. Technical committee on responses to nutrients, Report9. Nutritive requirements ofruminants animals: Protein. Nutrition Abstracts and Reviews, Series B,1992.
    118. AFRC. Energy and Protein Requirements of Ruminants.An advisory manual prepared by theAFRC Technical Committee on Responses to Nutrients. Wallingford, UK: CAB International,
    1993.
    119. Aguileraa J. F., Prietoa C. Methane production in goats given diets based on lucerne hay andbarley. Arch-Tierernahr,1991,41(1):77-84.
    120. Allen Michael S. Effects of diet on short-term regulation of feed intake by lactating dairycattle. Journal of Dairy Science,2000,83(7):1598-1624.
    121. Alvarez-Rodriguez J., Sanz A., Delfa R., et al. Performance and grazing behaviour of ChurraTensina sheep stocked under different management systems during lactation on Spanishmountain pastures. Livestock Science,2007,107(2):152-161.
    122. ARC. The Nutrient Requirements of Ruminant Livestock. Slough, UK: CommonwealthAgricultural Bureaux,1980.
    123. Blaxter K. L. Energy metabolism in animals and man. New York: Cambridge UniversityPress,1989.
    124. Blaxter K. L., Clapperton J. L. Prediction of the amount of methane produced by ruminants.British Journal of Nutrition,1965,19(01):511-522.
    125. Blaxter K. L., Wainman Fow, Davidson J. L. The voluntary intake of food by sheep and cattlein relation to their energy requirements for maintenance. Animal Production,1966,8(01):75-83.
    126. Blum J. W., Gingins M., Vitins P., et al. Thyroid hormone levels related to energy andnitrogen balance during weight loss and regain in adult sheep. Acta endocrinologica,1980,93(4):440-447.
    127. Bonhomme A. Rumen ciliates: their metabolism and relationships with bacteria and theirhosts. Animal Feed Science And Technology,1990,30(3):203-266.
    128. Brand T. S. Grazing behaviour and diet selection by Dorper sheep. Small Ruminant Research,2000,36(2):147-158.
    129. Burton J. H., Reid J. T. Interrelationships among energy input, body size, age and bodycomposition of sheep. Journal of Nutrition,1969,97(4):517-524.
    130. C. Y. W. Ang. Interrelationships of protein, fat, and moisture content of broiler meat. Journalof Food Science,1984,49(2):359-362.
    131. Cannas A, Tedeschi L O, Fox D G, et al. A mechanistic model for predicting the nutrientrequirements and feed biological values for sheep. Journal of Animal Science,2004,82(1):149-169.
    132. Cannas Antonello, Tedeschi L. O., Fox D. G., et al. A mechanistic model for predicting thenutrient requirements and feed biological values for sheep. Journal of Animal Science,2004,82(1):149-169.
    133. Cannas Antonello, Tedeschi L. O., Fox D. G., et al. A mechanistic model for predicting thenutrient requirements and feed biological values for sheep. Journal of Animal Science,2004,82(1):149-169.
    134. Carvalho S, Pires C C, H Silva J. Body composition and net protein requirements for lambsweight gain. R. Bras. Zootec,2000,29(Suppl.2):2325-2331.
    135. Chase L. E. Effect of high moisture feeds on feed intake and milk production in dairy cattle.Proceedings-Cornell Nutrition Conference for Feed Manufacturers,1979:52-56.
    136. Chen, X.B., Gomes, M.J.,1995. Estimation of Microbial Protein Supply to Sheep and CattleBased on Urinary Excretion of Purine Derivatives–An Overview of the Technical Details.International Feed Resources Unit, Rowett Research Institute, Bucksburn, Aberdeen, UK.
    137. Chizzotti M. L., Valadares Filho S. C., Tedeschi L. O., et al. Energy and protein requirementsfor growth and maintenance of F1Nellore×Red Angus bulls, steers, and heifers. Journal ofAnimal Science,2007,85(8):1971-1981.
    138. Cloete S. W. P., Snyman M. A., Herselman M. J. Productive performance of Dorper sheep.Small Ruminant Research,2000,36(2):119-135.
    139. Coop I. E. The energy requirements of sheep for maintenance and gain. I. Pen fed sheep. TheJournal of Agricultural Science,1962,58(02):179-186.
    140. Corbett J. L., Freer M. Past and present definitions of the energy and protein requirements ofruminants. Asian Australasian Journal of Animal Sciences,2003,16(4):609-624.
    141. CSIRO. Nutrient Requirements of Domesticated Ruminants. Collingwood, Australia: CSIROPublishing,2007.
    142. Deng K. D., Diao Q. Y., Jiang C. G., et al. Energy requirements for maintenance and growthof Dorper crossbred ram lambs. Livestock Science,2012,150:102-110.
    143. Donnelly J. R., Freer M. Prediction of body composition in live sheep. Crop and PastureScience,1974,25(5):825-834.
    144. Drochner Winfried. Recommendations for the supply of energy and nutrients to goats:Empfehlungen zur Energie-und N hrstoffversorgung der Ziegen.: DLG-Verlags-GmbH,2003.
    145. Drouillard J. S., Klopfenstein T. J., Britton R. A., et al. Growth, body composition, andvisceral organ mass and metabolism in lambs during and after metabolizable protein or netenergy restrictions. Journal Of Animal Science,1991,69(8):3357-3375.
    146. Eckard R. J., Grainger C., De Klein Cam. Options for the abatement of methane and nitrousoxide from ruminant production: A review. Livestock Science,2010,130(1):47-56.
    147. Emmans G. C. Effective energy: a concept of energy utilization applied across species. BritishJournal Of Nutrition,1994,71(06):801-821.
    148. Esenbuga N., Macit M., Karaoglu M., et al. Effect of breed on fattening performance,slaughter and meat quality characteristics of Awassi and Morkaraman lambs. LivestockScience,2009,123(2):255-260.
    149. Fernandes M H, Resende K T, Tedeschi L O, et al. Energy and protein requirements formaintenance and growth of Boer crossbred kids. Journal of Animal Science,2007,85:1014-1023.
    150. Ferrell C. L. Contribution of visceral organs to animal energy expenditure. Journal of AnimalScience,1988,66(Suppl.3):23-34.
    151. Fick K. R., Ammerman C. B., Mcgowan C. H., et al. Influence of supplemental energy andbiuret nitrogen on the utilization of low quality roughage by sheep. Journal of Animal Science,1973,36(1):137-143.
    152. Forbes J. M. Models for the prediction of food intake and energy balance in dairy cows.Livestock Production Science,1983,10(2):149-157.
    153. Freetly H. C., Nienaber J. A., Brown-Brandl Tami. Relationships among heat production,body weight, and age in Finnsheep and Rambouillet ewes. Journal of Animal Science,2002,80(3):825-832.
    154. Freetly H. C., Nienaber J. A., Leymaster K. A., et al. Relationships among heat production,body weight, and age in Suffolk and Texel ewes. Journal of Animal Science,1995,73(4):1030-1037.
    155. Galvani D B, Pires C C, Kozloski G V, et al. Energy requirements of Texel crossbred lambs.Journal of Animal Science,2008,86:3480-3490.
    156. Galvani Diego B., Pires Cleber C., Kozloski Gilberto V., et al. Protein requirements of Texelcrossbred lambs. Small Ruminant Research,2009,81(1):55-62.
    157. Garcés-Yépez P., W E Kunkle D. B. Bates, Moore J. E., et al. Effects of supplemental energysource and amount on forage intake and performance by steers and intake and dietdigestibility by sheep. Journal of Animal Science,1997,75(7):1918-1925.
    158. Garrett W. N., Hinman N. Re-evaluation of the relationship between carcass density and bodycomposition of beef steers. Journal of Animal Science,1969,28(1):1-5.
    159. Garrett William N., Meyer J. H., Lofgreen G. P. The comparative energy requirements ofsheep and cattle for maintenance and gain. Journal of Animal Science,1959,18(2):528-547.
    160. Geenty K. G., Rattray P. V. The energy requirements of grazing sheep and cattle. Livestockfeeding on pasture. Occasional Publication,1987,(10):39-53.
    161. Gihad E. A. Intake, digestibility and nitrogen utilization of tropical natural grass hay by goatsand sheep. Journal of Animal Science,1976,43(4):879-883.
    162. Gonzaga Neto S., Silva Sobrinho A. G., Resende K. T., et al. Body composition andnutritional requirements of protein and energy for Morada Nova lambs. Revista Brasileira deZootecnia,2005,34(6):2446-2456.
    163. Graham Nmcc, Searle T. W. Studies of weaner sheep during and after a period of weightstasis. I. Energy and nitrogen utilization. Crop and Pasture Science,1975,26(2):343-353.
    164. Haque N., Murarilal M. Y., Khan M. Y., et al. Metabolizable energy requirements formaintenance of pashmina producing Cheghu goats. Small Ruminant Research,1998,27(1):41-45.
    165. Hickson R. C., Bomze H. A., Hollozy J. O. Faster adjustment of O2uptake to the energyrequirement of exercise in the trained state. Journal of Applied Physiology,1978,44(6):877-881.
    166. Houghton P. L.,Lemenager R. P.,Horstman L. A., et al. Effects of body composition, pre-andpostpartum energy level and early weaning on reproductive performance of beef cows andpreweaning calf gain. Journal of Animal Science,1990,68(5):1438-1446.
    167. Hurly J. J., Defibaugh D. R., Moldover M. R. Thermodynamic properties of sulfurhexafluoride. Int.J.Thermophys,2000,(21):739-765.
    168. Illius A. W., Jessop N. S. Metabolic constraints on voluntary intake in ruminants. Journal ofAnimal Science,1996,74(12):3052-3062.
    169. INRA. Alimentation des Ruminants, R. Jarrige, ed. Versailles, France: INRA Publications,1978.
    170. INRA. Ruminant Nutrition: Recommended Allowances and Feed Tables. Paris, France: JohnLibbey&Co. Ltd,1989.
    171. Jin Yan-Mei, Li Fa-Di, Guo Yan-Li, et al. Effects of different nutritional levels and dietcombinations on productive performance and slaughter performance. Journal of GansuAgricultural University,2004,5:2.
    172. Johnson Kristen, Mark Huyler, Hal Westberg, et al. Measurement of Methane Emissions fromRuminant Livestock Using a SF6Tracer Technique. Environ. Sci. Technol.,1994,28:359-362.
    173. Jones Sdm, Burgess T. D., Dupchak K., et al. The growth performance and carcasscomposition of ram and ewe lambs fed on pasture or in confinement and slaughtered atsimilar fatness. Canadian Journal of Animal Science,1984,64(3):631-640.
    174. Kashan N. E. J., Azar G. H. Manafi, Afzalzadeh A., et al. Growth performance and carcassquality of fattening lambs from fat-tailed and tailed sheep breeds. Small Ruminant Research,2005,60(3):267-271.
    175. Kearl L C. Nutritient Requirement of Ruminants in Developing Countries. Utah StateUniversity: International Feedstuffs Institute,1982.
    176. Kellems R. O., Jones R., Andrus D., et al. Effect of moisture in total mixed rations on feedconsumption and milk production and composition in Holstein cows. Journal of DairyScience,1991,74(3):929-932.
    177. Ketelaars J. J., Tolkamp Bert J. Oxygen efficiency and the control of energy flow in animalsand humans. Journal of Animal Science,1996,74(12):3036-3051.
    178. Lofgreen G. P., Garrett W. N. A system for expressing net energy requirements and feedvalues for growing and finishing beef cattle. Journal of Animal Science,1968,27(3):793-806.
    179. Luo J.,Goestch A. L.,Nsahlai I. V., et al. Prediction of metabolizable energy and proteinrequirements for maintenance, gain and fiber growth of Angora goats. Small RuminantResearch,2004,53(3):339-356.
    180. Luo J.,Goetsch A. L.,Sahlu T., et al. Prediction of metabolizable energy requirements formaintenance and gain of preweaning, growing and mature goats. Small Ruminant Research,2004,53(3):231-252.
    181. Ma T, Deng K, Jiang C, et al. The relationship between microbial N synthesis and urinaryexcretion of purine derivatives in Dorper×thin-tailed Han crossbred sheep. Small RuminantResearch,2012.112:49-55.
    182. Mc Geough E. J., O Kiely P., Foley P. A., et al. Methane emissions, feed intake, andperformance of finishing beef cattle offered maize silages harvested at4different stages ofmaturity. Journal of Animal Science,2010,88(4):1479-1491.
    183. Mcclelland T. H., Bonaiti B., Taylor S. C. S., et al. Breed differences in body composition ofequally mature sheep. Animal Production,1976,23(3):281-293.
    184. Mcdonald P, Edwards R A, Greenhalgh J F D, et al. Animal Nutrition: Pearson EducationLimited,2001.
    185. Mcdonald Peter. Animal nutrition: Addison-Wesley Longman Limited,2002.
    186. Mertens D. R. Regulation of forage intake. Forage Quality, Evaluation, and Utilization,1994,(forage quality ev.):450-493.
    187. Milford R., Minson D. J. The feeding value of tropical pastures. Tropical pastures,1966:106-114.
    188. Milne Charlotte. The history of the Dorper sheep. Small Ruminant Research,2000,36(2):99-102.
    189. Morgan D. E., Barber W. P. The adviser's approach to predicting the metabolizable energyvalue of feeds for ruminants. Recent Advances in Animal Nutrition,1979:93-106.
    190. NRC. Nutrient Requirement of Sheep. Washington, DC: National Academy Press,1985.
    191. NRC. Nutrient Requirements of Beef Cattle. Washington, DC: National Academy Press,2000.
    192. NRC. Nutrient requirements of dairy cattle. Washington, DC: National Academy Press,2001.
    193. NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New WorldCamelids. Washington, DC: National Academy Press,2007.
    194. Nsahlai I. V., Goetsch A. L., Luo J., et al. Metabolizable energy requirements of lactatinggoats. Small Ruminant Research,2004,53(3):253-273.
    195. Olthoff J. C., Dickerson G. E., Nienaber J. A. Energy utilization in mature ewes from sevenbreeds with diverse production potentials. Journal of Animal Science,1989,67(10):2550.
    196. Panaretto B. A., Till A. R. Body composition in vivo. II. The composition of mature goats andits relationship to the antipyrine, tritiated water, and N-acetyl-4-aminoantipyrine spaces. Cropand Pasture Science,1963,14(6):926-943.
    197. Pires C C, Silva L F, B Sanchez L. M. Corporal composition and nutritional requirements forenergy and protein of growing lambs. R. Bras. Zootec,2000,(29):853-860.
    198. Pirt S. J. The maintenance energy of bacteria in growing cultures. Proceedings of the RoyalSociety of London. Series B, Biological Sciences,1965:224-231.
    199. Rattray P. V., Garrett W. N., East N. E., et al. Efficiency of utilization of metabolizableenergy during pregnancy and the energy requirements for pregnancy in sheep. Journal ofAnimal Science,1974,38(2):383-393.
    200. Reid J. T., Robb J. Relationship of body composition to energy intake and energetic efficiency.Journal of Dairy Science,1971,54(4):553-564.
    201. Russel A. J. F., Doney J. M., Gunn R. G. Subjective assessment of body fat in live sheep. TheJournal of Agricultural Science,1969,72(3):451-454.
    202. Sahlu T., Goetsch A. L., Luo J., et al. Nutrient requirements of goats: developed equations,other considerations and future research to improve them. Small Ruminant Research,2004,53(3):191-219.
    203. SCA (Standing Committee on Agriculture, Ruminnants Subcommittee).1990. Feedingstandard for Australian Livestock. Ruminants. East Melbourne, Australia: CSIROPublication.
    204. Searle T. W. Body composition in lambs and young sheep and its prediction in vivo fromtritiated water space and body weight. The Journal of Agricultural Science,1970,74(02):357-362.
    205. Sheng H. P., Huggins R. A. A review of body composition studies with emphasis on totalbody water and fat. American Journal of Clinical Nutrition,1979,32(3):630-647.
    206. Silva A M A, Silva Sobrinho A G, Trindade I A C M, et al. Net and metabolizable proteinrequirements for body weight gain in hair and wool lambs. Small Ruminant Research,2007,67(2–3):192-198.
    207. Silva A. M. A., Da Silva Sobrinho A. G., Trindade I. A. C. M., et al. Net requirements ofprotein and energy for maintenance of wool and hair lambs in a tropical region. SmallRuminant Research,2003,49(2):165-171.
    208. Smolders E. A. A., Steg A., Hindle V. A. Organic matter digestibility in horses and itsprediction. Netherlands Journal of Agricultural Science,1990,38(3):435-447.
    209. Tovar-Luna I., A. L. Goetsch, R. Puchala, et al. effects of moderate feed restriction on energyexpenditure by2-years-old crossbred Boer goats. Small Ruminant Research,2007,(72):25-32.
    210. Tshabalala P. A., Strydom P. E., Webb E. C., et al. Meat quality of designated South Africanindigenous goat and sheep breeds. Meat Science,2003,65(1):563-570.
    211. Tyrrell H. F., Moe P. W. Effect of intake on digestive efficiency. Journal of Dairy Science,1975,(58):1151-1163.
    212. Webster A. J. The energetic efficiency of metabolism. Proceedings Of The Nutrition Society,1981,40(01):121-128.
    213. Wright A. D. G.,Kennedy P.,O Neill C. J., et al. Reducing methane emissions in sheep byimmunization against rumen methanogens. Vaccine,2004,22(29–30):3976-3985.
    214. Wright I. A., Russel Ajf. Partition of fat, body composition and body condition score inmature cows. Animal Production,1984,38(01):23-32.
    215. Yáňez. Relative development of the tissues and carcass characteristics of the Saanen kids,with different weights and nutritional levels.[PhD Diss.] Jaboticabal, SP, Brazil:Universidade Estadual Paulista/FCAVJ,2002.
    216. Yilmaz O., Denk H., Bayram D. Effects of lambing season, sex and birth type on growthperformance in Norduz lambs. Small Ruminant Research,2007,68(3):336-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700