用户名: 密码: 验证码:
基于GIS的黑河市森林碳储量空间分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类在认识、改造、利用自然、造福全人类的过程中,引发了全球变暖等一系列的生态问题,如何发挥碳汇在减缓温室效应方面的巨大作用深受世人瞩目。森林生态系统的碳储量巨大,如何准确估算森林生态系统碳储量及其分布特征已受到普遍关注。本论文以黑龙江省黑河市各市县林区为研究对象,基于固定样地测定数据建立主要树种的相容性生物量模型,结合含碳率估算其生物量、碳储量密度和森林生态系统的碳储量,并从坡向、坡度、海拔等角度探讨碳储量与立地因子的关系,再利用ArcGIS软件中的空间插值功能对碳储量及其动态变化的空间分布特征进行分析,从而为制定科学有效的碳汇政策提供合理依据。
     本研究的主要成果包括:
     1、基于2009年在研究区内各县市生态公益林区固定样地中的解析木树干解析、生物量及各器官碳系数测定数据,建立了黑河市主要树种的相容性生物量模型,同时分析总结乔木层各器官、林下层各部分以及土壤层的含碳率,再结合研究区2005、2006年的重点生态公益林监测样地数据,估算出各林分类型各组成部分的生物量和碳储量密度,以及森林生态系统的碳储量。
     2、从坡向、坡位、坡度、海拔等方面分析乔木层碳储量的总体分布特征,以及各林分类型在不同的立地条件下的碳储量分布,发现黑河市重点生态公益林乔木层约35%的碳储量分布在阴坡,缓坡(5°≤坡度<15°)碳储量最大约为总量的52.27%,其次是平坡(坡度<5°)约占39.69%。柞树林、软阔混交林、硬阔混交林和白桦林是黑河市的四种主要林分类型,201-400m的海拔高度最适合它们生长,尤其以201-250m的森林碳储量最大。将坡向和坡位分别作为虚拟变量和数值化转换,尝试构建了碳储量与上述四个立地因子的多元线性回归方程,但发现仅用这些立地因子很难准确描述碳储量的变化规律,将样地的平均胸径和平均树高引入白变量,林木和立地因子一起构建的多元线性回归方程效果较好。
     3、以黑河市重点生态公益林的600块固定样地为数据源,选用GIS地统计分析中的四种插值方法(反距离权重法、样条函数法、普通克里格法和协同克里格法)分别对森林生态系统碳储量进行了空间内插,经过交叉验证和验证选出最优的碳储量空间内插方法,并用ArcGIS10.0软件绘制了黑河市重点生态公益林生态系统碳储量分布图。
     将样地点一分为二,使用训练子集样地点做空间插值,使用验证子集样地点来验证其插值表面的精度。经过交叉验证和验证比较插值精度发现,张力样条函数法是最适合描述研究区碳储量空间分布的插值方法。
     在碳储量空间插值分布图上,比较了不同龄组的样地点的空间分布位置发现,幼龄林数量少且碳储量平均水平低,中龄林比近熟林的数量多但后者比前者碳储量平均水平高,成熟林数量较少但碳储量平均水平高,过熟林数量少但碳储量平均水平较高,即从空间分布特征上验证了森林生态系统的林木生长规律。比较不同坡向和坡度上的碳储量分布特征,发现不同坡向上的样地碳储量多数在29.09-34.80T/hm2和34.80-42.50T/hm2区间内,阴坡的样地数量、总碳储量和平均碳储量水平都是最高的,阳坡、半阳坡和半阴坡的碳储量分布类似。缓坡的碳储量分布比平坡多,但其平均碳储量水平比平坡低,斜坡的总碳储量和平均碳储量高于陡坡。
     比较这四种主要林分类型在不同海拔区间内的空间分布特征可知:白桦林主要分布在孙吴县和爱辉区的250-450m的垂直范围内,其碳储量值多数在29.09-34.80T/hm2区间。软阔混交林以孙吴县分布量最多,主要分布在201-400m的垂直空间里,其碳储量水平以29.09-34.80T/hm2居多,34.80-42.50T/hm2其次。硬阔混交林主要分布在孙吴县201-400m的垂直空间里,碳储量平均水平约为34.80T/hm2。柞树林的分布范围最广,主要分布在151-350m的垂直空间内,尤其是151-250m内的分布量最多,其碳储量水平多在34.80-52.89T/hm2区间内。
     4、结合黑河市国家森林资源连续清查样地二期复测数据(2005-2010)和生态公益林监测样地复测数据,统计估算了黑河市各林分类型各龄组的年均碳储量密度变化,并使用最优空间插值方法绘制其动态变化图,分析各林分类型碳储量动态变化的空间分布规律。
     中龄林的乔木层年均碳净增量较高,且多数分布在孙吴县中西部和逊克县北部边界,其他龄组的乔木层年均碳净增量较低。枯倒木年均碳储量分布最多的主要分布在爱辉区和嫩江县的西部。全市采伐木碳储量总体较低,大部分地区为零采伐,仅在爱辉区东部、孙吴县中部的近熟林、中龄林和成熟林内有少量采伐木碳储量。进界木年均碳储量分布最多的在逊克县东北部,幼龄林、近熟林和成熟林的进界木碳储量较高,过熟林的进界木碳储量最低。
     白桦林在逊克县的年均碳净增量和进界木碳储量最大,在爱辉区的年均碳净增量最小,枯倒木碳储量最大,采伐木碳储量最小。软阔混交林在逊克县的年均碳净增量最大,在孙吴县的枯倒木碳储量最小,采伐木碳储量最大,爱辉区的年均碳净增量最小,采伐木碳储量最小。硬阔混交林在逊克县的碳净增量和枯倒木碳储量比孙吴县大。柞树林在逊克县的年均碳净增量和进界木碳储量比孙吴县大。
     本文基于ArcGIS空间插值方法,对黑河市的固定样地碳储量及其动态变化的空间分布特征做了初步研究,希望对了解黑河市碳储量现状、动态变化方向及碳汇资源可持续利用等问题提供一定的理论参考。
Human being's activities of understanding, transform and use the nature have caused global warming and other series of ecological problems. How to make carbon sink play important role in reducing greenhouse effect deeply attracted worldwide attention. Carbon storage of forest ecological system is large. Researchers have paid more attention on accurate estimate forest ecological system carbon storage and distribution characteristics. This thesis studies on forest fields of Heihe City of Heilongjiang Province based on key forest types'compatibility bio mass model of fixed sample plots determination data, and estimate its biomass, carbon storage density and forest ecological system's carbon storage through carbon content. It also discusses the relationship between carbon storage and site factors from aspect, slope and altitude. And then use the function of spatial interpolation of ArcGIS software to analyze carbon storage and its dynamic change spatial distribution characteristics. These researches provide reasonable evidence for making scientific and efficient carbon sink policy.
     Main research achievements:
     1. Based on Carbon coefficient determination data of stem analysis of sample tree, biomass and Organs of trees in fixed sample plots of each counties and cities' ecological public welfare forest in research area in2009, it established compatibility biomass model of key forest types of Heihe. Meanwhile, through analyzing the carbon content of arborous layer, understory layer and soil layer, and researching the monitoring sample plots data of key ecological public welfare forest in2005and2006, it can estimate the biomass and carbon storage density of different forest types' parts and carbon storage of forest ecological system.
     2. Through analyzing the general distribution characteristics of arborous layer's carbon storage from aspect, slope, slope position and altitude, and carbon storage distribution of different forest types under different site factors, it shows that about35%carbon storage of arborous layer of Heihe's key ecological public welfare forest distribute at the shade slope, about52.27%carbon storage distribute at the gentle slope (5°≤slope<15°), flat slope(slope<5°)'s carbon storage accounts for39.69%. There are four main forest types in Heihe, including oak forest, soft and broad leaf mixed forest, hard and broad leaf mixed forest and birch forest. These main forest types are suitable to grow at the altitude between201to400meters, especially the max forest carbon storage distribute at the altitude between201to250meters. Using aspect and slope position as dummy variable and numeralization conversion separately, this thesis tries to build multiple linear regression equation of carbon storage and four site factors. But it shows that it is difficult to actual describe the change rule of carbon storage through there site factors. If it also use average diameter at breast height and average height as independent variable, the multiple linear regression constructed by forest and site factors will obtain good effect.
     3. This paper uses the six hundred fixed sample plots of Heihe's key ecological public welfare forest as the data source and selects four interpolation methods of GIS geostatistical analysis, including Inverse Distance Weighted, spline functions method, ordinary Kriging and Co-Kriging. These four interpolation methods have been used to study on forest ecological system carbon storage and compare the interpolation result. Through above researches and cross validation, it can select optimal spatial interpolation method of carbon storage and draw the carbon storage distribution map of Heihe's key ecological public welfare forest based on ArcGIS9.3software..
     In order to test sample plots accuracy of interpolation surface, it needs to divide sample plots into two parts and use training subset sample plots as spatial interpolation. Cross validation and compare of interpolation accuracy show that tension spline functions method is the best suitable description of interpolation method of carbon storage spatial distribution in research areas.
     Spatial interpolation distribution map of carbon storage compared spatial distribution position of sample plots in different age groups and showed that number of young growth and its average carbon storage is lower than other forests. Number of half mature forest is larger than near mature forest, but average carbon storage of near mature forest is higher than half mature forest. Number of mature forest and over mature forest is less than others, but its average carbon storage is higher. These results have verified the forest growth rule of forest ecological system from the aspect of spatial distribution characteristics. The contrast of carbon storage distribution characteristics on different aspects and slopes discovered that most carbon storage of sample plots on different aspects and slopes mainly distribute at29.09-34.80T/hm2and34.80-42.50T/hm2. Number of sample plot, total carbon storage and average carbon storage are highest on the shade slope. Carbon storage distribution is similar on sunny slope, semi-sunny slope, and semi-cloudy slope. Carbon storage of gentle slope is larger than flat slope and its average carbon storage is lower than flat slope. Total carbon storage and average carbon storage of slope are higher than abrupt slope.
     This thesis has compared four main forest types'spatial distribution characteristics in different altitude. Birch forest mainly distributes in Sunwu County and Aihui District at the vertical range of250meters to450meters; its carbon storage value is between29.09T/hm2and34.80T/hm2. Soft and broad leaf mixed forest is mainly distributed in Sunwu County at the vertical range of the201-400m. Most of its carbon storage is between29.09and34.80T/hm2. Hard and broad leaf mixed forest mainly distributes in Sunwu County at the vertical ragne of201-400m; its average carbon storage is34.80T/hm2. Oak forest distributes broadly and mainly distribute at the vertical range of151-350m; especially at the range of151-250m Its carbon storage is at the range of34.80-52.89T/hm2.
     4. In combination with second repeated measurement data of consecutive inventory of national forest resources in Heihe (2005-2010) and repeated measurement data of ecological public welfare forest monitoring sample plots, it estimated the annual average carbon storage density change of Heihe's different forest types in each age group and drew its dynamic variation diagram by optimal spatial interpolation method. It also analyzed the spatial distribution rule of carbon storage dynamic change in different forest types.
     Arborous layer of half mature has higher annual average net carbon storage and mainly distributed in mid-west of Sunwu County and north of Xunke County. Annual average net carbon storage of arborous layer of other age group is lower. Most of annual average carbon storage of fallen dead wood mainly distributed at Aihui District and west of Nenjiang County. Carbon storage of felled tree is lower in Heihe, because only less carbon storage stores among near mature forest, half mature forest and over mature forest in middle of Sunwu County. Annual average carbon storage of inside boundary timbers mainly distributed in northeast of Sunke County. Carbon storage of inside boundary timber among young growth forest, near mature forest and over mature forest is higher, and it is lowest in over mature forest.
     Birch forest's annual average carbon net increase and carbon storage of inside boundary forest is largest in Sunke County. In Aihui District, its annual average carbon storage net increase and carbon storage of felled tree is smallest, but fallen dead wood has the largest carbon storage. In the aspect of soft and broad leaf mixed forest, its annual average carbon net increase is largest in Xunke County and is smallest in Aihui District; its carbon storage of felled tree is largest in Sunwu County and smallest in Aihui District. Carbon storage of fallen dead wood in Sunwu County is smallest. Carbon net increase and carbon storage of fallen dead wood of hard and broad leaf mixed forest in Xunke County is larger than Sunwu County. Annual average carbon net increase and carbon storage of inside boundary timber of oak forest in Xunke County is larger than Sunwu County.
     This thesis made a plot study on fixed sample plots'carbon storage and its spatial distribution characteristics of dynamic change in Heihe City based on ArcGIS spatial interpolation method. The purpose of this thesis is to provide theory reference for understanding current situation of carbon storage in Heihe, dynamic change direction and sustainable use of storage sink resource.
引文
[1]Ebermayer, E. Die gesammte Lehre des Waldstreus mit Rucksicht auf die chemische Statik des Waldbaues,1876, SS300:116
    [2]Burger H Holz, Blattmenge Zuwachs.12 Fichten im Plenterwald Mitteil, Schweiz, Anst. Forttl. Versuchsw,1952,28:109-156
    [3]Kittredge J. Estimation of the Amount of Foliage of Tree and Stand. J.Forest,1994,42:905-912
    [4]Satoo T. Physical Basis of Growth of Forest Trees. Recent Advance in Silvicultural Sciences.1995:116-141.Tokyo:Asakura
    [5]Remezon N P. Method Studying the Biological Cycles of Elements in Forest. Soviet soil Sciences.1959,1:59-67
    [6]Rennie P. J. The Uptake of Nutrients by Mature Forest Growth. Plant and Soil.1955,7:49-95
    [7]Ovington J D. The Weight and Productivity of Trees Species Grown in Close Stands. New Phytol.1956,55:289-304
    [8]Reichle D. E, J. F. France in and D. E. Woodwell(ed). Productivity of World Econsystem[J]. National Academy of Science, Washington D. C.1975
    [9]木村允,姜恕等译.陆地植物群落生物量的测定法[M].北京:科学出版社,1981:59-105
    [10]佐藤大七郎.陆地植物群落的物质生产[M].北京:科学出版社,1986:1-18
    [11]Whittaker, R.H., and G M. Liken. Carbon in the Biota [A]. In:G M. Woodwell and E. V. Pecaned. Carbon and the Biosphere. National Technical Information Service, CONF-720510, Sprindfeild, VA,1975
    [12]Ganell, M.G R.World Forest Biomass and Primary Production Data. Academic Pre, London, New York.1982
    [13]Giese L A B, et al. Biomass and Carbon Pools of Disturbed Riparian Forests [J]. Forest Ecology and Management,2003,180:493-508
    [14]Kauffinan J B, et al. Biomass Dynamics Associated with Deforestation Fire, and Conversion to Cattle Pasture in a Mexican Tropical Dry Forest[J]. Forest Ecology and Management,2003,176:1-12
    [15]Dong J,et al. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks[J]. Remote Sensing of Environment,2003,84:393-410
    [16]Suganuma H, Abe Y, Taniguchi M, et al. Stand Biomass Estimation Method by Canopy Coverage for Application to Remotesensing in an Arid Area of Western Australia. Forest Ecology and Management,2006,222:75-87
    [17]Lucas R M, et al. Empirical Relationships Between AIRSAR Backscatter and LiDAR-derived Forest Biomass, Queensland, Australia[J]. Remote Sensing of Environment,2006, 100:407-425
    [18]Hide P, et al. Exploring LiDAR-RaDAR Synergy-predicting Aboveground Biomass in a Southwestern Ponderosa Pine Forest Using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment,2007,106:28-38
    [19]潘维俦,李利村,高正衡.12个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979,(4):1-14
    [20]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134
    [21]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981:34-50
    [22]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46
    [23]陈灵芝,任继凯,鲍显诚.北京西山人工白桦林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173-181
    [24]党承林,吴兆录.季风长绿阔叶林短刺拷群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107
    [25]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[J].北京:科学出版社,1999
    [26]马钦彦.油松林生物量—密度管理图[J].北京林业大学学报,1988,(3):67-76
    [27]程云霄,李忠孝.兴安落叶松三个主要林型森林生物量的初步研究.内蒙古林业调查设计,1989,7(4):29-39
    [28]陈林娜,肖扬,盖强等.庞泉沟自然保护区华北落叶松森林群落生物量的初步研究[J].山西农业大学学报,1991,11(3):240-247
    [29]刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生产力的研究[J].植物生态学报,1994,(4):328-337
    [30]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,(5):497-508
    [31]顾亚东.华北落叶松人工林生物量和生产力的研究:[学位论文].北京:北京林业大学图书馆,2000
    [32]艾训儒,沈作奎.中亚热带日本落叶松生物量、生长量研究[J].湖北民族学院学报(自然科学版),2001(2):20-22
    [33]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002(11):1832-1839+2022.
    [34]宋相禄.不同营林措施对日本落叶松生物量的影响[J].林业科技,2003,(2):4-6
    [35]程堂仁.甘肃小陇山森林生物量及碳储量研究:[学位论文].北京:北京林业大学图书馆,2007
    [36]孙玉军,张俊,韩爱惠,王雪军,王新杰.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2007,(5):1756-1762
    [37]孟宪宇主编.测树学.北京市:中国林业出版社,2006.04.
    [38]Bormann BT, Bormann F H, William B, Robert S, Hamburg S P, Wang DS, Miehael C, Li CY, Rick C. Rapid N2 Fixation in Pines, Alder, and Locust:Evidence from the Sandbox Ecosystems Study. Ecology,1993,74(3):583-598.
    [39]杨宗武,谭芳林,肖祥希等.福建柏人工林生物量的研究[J].林业科学,2000,36(专刊1):120-124
    [40]洪伟,郑郁善,陈礼光.毛竹枝、叶生物量模型研究[J].林业科学,1998,34(1):11-15
    [41]杨存建等.不同树种组的热带森林植被生物量与遥感地学数据之间的相关性分析[J].遥感技术与应用,2004,19(4):232-235
    [42]徐志高.基于GIS的秦岭火地塘森林景观生物量变化趋势分析[J].中南林业调查规划,2003,22(4):13-17
    [43]杨金明,范文义,李明泽等.长白山林区森林生物量变化定量驱动分析[J].应用生态学报,2011,11(1):47-52
    [44]胥辉,张会儒等.林木生物量模型研究.昆明市:云南科学技术出版社,2002
    [45]Parresol, B. R. Additivity of Nonlinear Biomass Equations. Canadian Journal of Forest Research.2001,31:865-878
    [46]Bi H, Turner J, Lambert M J. Additive Biomass Equations for Native Eucalypt Forest Trees of Temperate Australia[J]. Trees,2004,18:467-479
    [47]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-27
    [48]胥辉,刘伟平.相容性生物量模型研究[J].福建林学院学报,2001,21(1):18-23
    [49]张会儒,赵有贤,王学力等.应用线性联立方程组方法建立相容性生物量模型研究[J],林业资源管理.1999,6:93-96
    [50]邢艳秋,王立海.基于森林生物量相容性模型长白山天然林生物量估测[J],森林工程,2008(2):1-4
    [51]Berrien M, & Braswell B. H. The Metabolism of the Earth:Understand the Carbon cycle[J]. AMBIO.1994,23:4-12
    [52]Keeling C D, Whorf T P, Wahlen M, Van der Plicht J. Interannual Extremes in the Rate of Atmospheric Carbon Dioxide since 1980[J]. Nature,1995,375:666-670
    [53]] Keeling R F, Piper S C, Heimann M. Global and Hemispheric CO2 Sinks Deduced from Changes in 56 Kolchugina, Vinson. Comparison of Two Methods to Assess the Carbon Budget of Forest Biome in the Former Soviet Union[J]. Water, Air and Soil Pollution, 1993,70:207-221
    [54]陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学,2003
    [55]Houghton R A, The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use1850-1990. Tellus.1999,5OB:298-313
    [56]马钦彦,陈遐林,王娟等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100
    [57]刘国华,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    [58]周玉荣,于振良,赵士洞.中国主要森林生态系统的碳储量和碳平衡[J].植物生态学报,2000,24:518
    [59]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究团.应用生态学报,2001,12(1):13-16
    [60]Birdsey R A. Carbon Storage and Accumulation in United States Forest Ecosystems. United States Department of Agriculture Forest Service, General Technical Report WO-59 August 1992
    [61]Shvidenko A Z, Nilsson S, Rojikov V A and Strakhov V V. Carbon Budget of the Russian Boreal Forests:a Systems Analysis Approach to Uncertainty. In:Apps M J, Price D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle. BerlinHeidelberg: Springer-verlag,1996:145-162
    [62]陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学,2003
    [63]李铭红,于明坚,陈启嫦等.青冈常绿阔叶绿的碳素动态,生态学报,1996,16(6):645-651
    [64]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究.广西植物.2002,22(4):305-310
    [65]闰平,冯晓川.原始阔叶红松林碳素储量及空间分布.东北林业大学学报,2006,31(5):23-25
    [66]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量.中南林学院学报,2004,24(2):1-5
    [67]康冰,刘世荣,张广军等.广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征.生态学报,2006,26(5):1320-1329
    [68]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布.林业科学,2004,40(6):20-24
    [69]赵鹏祥,李卫忠.GIS与GPS导论[M].杨凌:西北农林科技大学出版社,2004
    [70]李芝喜,孙保平.21世纪课程教材---林业GIS地理信息系统技术在林业中的应用.北京市:中国林业出版社,2000
    [71]万鲁河,刘万宇,臧淑英.森林防火辅助决策支持系统的设计与实现[J].管理学,2003,16(3):21-24
    [72]廖顺宝.资源环境科学多维信息平台研究[J].地球科学进展,2002,17(4):502-507
    [73]李芝喜.西双版纳动养保护区热带林保护GIS研究[J].云南地理环境研究,1999,11(2):60-67
    [74]Boyd D. S., Foody G. M. An Overview of Recent Remote Sensing and GIS Based Research in Ecological Informatics. Ecological Informatics,2011,6(01):25-36
    [75]Holben Brent N. Characteristics of Maximum-value Composite Images from Temporal AVHRR Data. International Journal of Remote Sensing,1986,7(11):1417-1434
    [76]Kasischke Eric S, Melack John M, Craig Dobson M. The Use of Imaging Radars for Ecological Applications —A review. Remote Sensing of Environment,1997,59(02):141-156
    [77]Wilson Emily Hoffhine, Sader Steven A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sensing of Environment,2002,80(03):385-396
    [78]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Li ski Jari,Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass:Carbon Pools, Sources, and Sinks. Remote Sensing of Environment,2003,84(03):393-410
    [79]Thenkabail P,Enclona E,Ashton M,Legg C,De Dieu M.Hyperion,IKONOS,ALI,and ETM+sensors in the Study of African Rainforests. Remote Sensing of Environment.2004, 90(01):23-43
    [80]王正兴,索玉霞,林昕,石瑞香.AVHRR全球时间序列研究进展:PAL-GIMMS-LTDR.资源科学,2008,30(08):1252-1260
    [81]Cohen W B, Maiersperger T K,Yang Zhiqiang, Gower S T et al. Comparisons of Land Cover and LAI Estimates Derived from ETM+and MODIS for Four Sites in North America:a Quality Assessment of 2000/2001 Provisional MODIS Products. Remote Sensing of Environment,2003,88(03):233-255
    [82]Wang Shaoqing, Tian Hanqin, Lou Jiyuan, Zhuang Dafang, Zhang Shuwen, Hu Wenyan. Chracterization of Changes in Land Cover and Carbon Storate in Northeastern China:An Analysis Based on Landsat TM Data. Science in China (Series C),2002,45(supp.):40-47
    [83]Knom Jan, Rabe Andreas, Radeloff Volker C., Kuemmerle Tobias, Kozak Jacek, Hostert Patrick. Land Covermapping of Large Areas Using Chain Classification of Neighboring Landsat Satellite Images. Remote Sensing of Environment,2009, 113(05):957-964
    [84]Eklundh Lars, Harrie Lars, Kuusk Andres. Investigating Relationships between Landsat ETM+sensor Data and Leaf Area Index in a Boreal Conifer Forest. Remote Sensing of Environment,2001,78(03):239-251
    [85]Broadbent Eben N., Asner Gregory P., Pena-CIaros Marielos, Palace Michael, Soriano Marlene. Spatial Partitioning of Biomass and Diversity in a Lowland Bolivian Forest: Linking Field and Remote Sensing Measurements. Forest Ecology and Management, 2008,255(07):2602-2616
    [86]冯益明,李增元,张旭.基于高空间分辩率影像的林分冠幅估计.林业科学,2006,42(05):110-113
    [87]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.北京:科学出版社.2006
    [88]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展.世界林业研究,2007,20(04):30-34
    [89]Ouma Yashon O., Tateishi R. Urban-trees Extraction from Quickbird Imagery Using Multiscalespectex-filtering and Non-parametric Classification. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(03):333-351
    [90]Song Conghe, Dickinson Matthew B., Su Lihong, Zhang Su, Daniel Yaussey. Estimating Average Tree Crownsize Using Spatial Information from Ikonos and QuickBird Images: Across-sensor and Across-site Comparisons. Remote Sensing of Environment,2010, 114(05):1099-1107
    [91]Robinson DJ., Redding NJ., Crisp D.J. Implementation of a Fast Algorithm for Segmenting SAR Imagery.2002; Available from:http://hdl.handle.net/1947/4162
    [92]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692
    [93]黄从德,张健,杨万勤,唐宵,赵安攻.四川省及重庆地区森林植被碳储量动态.生态学报,2008,28(03):966-975
    [94]黄从德,张健,杨万勤,张国庆,王永军.四川森林土壤有机碳储量的空间分布特征.生态学报,2009,29(03):1217-1225
    [95]邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.应用生态学报,2007,18(01):1-8
    [96]李海涛,王姗娜,高鲁鹏,于贵瑞.赣中亚热带森林植被碳储量.生态学报,2007,27(02):693-704
    [97]程堂仁,马铁彦,冯仲科,罗旭.甘肃小陇山森林生物量研究.北京林业大学学报,2007,9(01):31-36
    [98]曾立雄,王鹏程,肖文发,万黄志霖,潘嘉.三峡库区楦被生物量和生产力的估算及分布格局.生态学报,2008,28(08):3808-3816
    [99]张骏,袁位高,葛淫,江波,朱锦前,沈爱华,常杰.浙江省生态公益林碳储量和固碳现状及潜力.生态学报,2010,30(14):3839-3848
    [100]光增云.河南森林生物量与生产力研究.河南农业大学学报,2006,40(05):493497
    [101]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究.生态环境,2007,16(01):108-111
    [102]李研,李海涛,金冬梅,孙书存.WBE模型及其在生态学中的应用:研究概述.生态学报,2007,27(07):3018-3031
    [103]徐天蜀,张王菲,岳彩荣.基于PCA的森林生物量遥感信息模型研究.生态环境,2007,16(06):1759-1762
    [104]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001:126-129
    [105]ZEIDE B. Analysis Growth Equations. Forestry Sciences.1993
    [106]曾伟生,唐守正.国外立木生物量模型研究现状与展望[J].世界林业研究,2010(04)
    [107]李永慈,唐守正.度量误差对全林整体模型的影响研究[J].林业科学,2005(06)
    [108]Borders B E, Patterson W D. Projecting Stand Tables:A Comparison of the Weibull Diameter Distribution Method, a Percentile-based Projection Method, and a Basal Area Growth Projection Method. Forestry Sciences.1990
    [109]杜纪山.用二类调查样地建立落叶松单木直径生长模型[J].林业科学研究.1999,12(2):160-164.
    [110]汪媛媛等.土壤碳储量计算中不同插值方法对比研究——以吉林省大安市为例[J].中国岩溶.2011(4):479-486
    [111]Collins F C.A Comparison of Spatial Interpolation Techniques in Temperature Estimation.http://www.ncgia.ucsb.edu/conf/santafecd-rom/sfpapers/collinsfred/collins.html,1999.
    [112]Myers R H. Classical and Modern Regression with Applications. PWS-Kent Publishing, Boston, MA,1990.488-495
    [113]朱会义,刘述林,贾绍凤.自然地理要素空间插值的几个问题[J].地理研究.2004,(04):425-432.
    [114]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展.2000,(03):260-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700