用户名: 密码: 验证码:
模拟酸雨对墨西哥柏幼苗光合生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
墨西哥柏(Cupressus lusitanica Mill.)具有耐干旱瘠薄、耐寒和病虫害少等优良特性,并且对石灰岩山地适应性强,可作为我国低、中海拔地区石灰岩山地困难立地造林先锋树种,是石漠化治理的主要树种之一。目前已有大量研究表明酸雨对不同种类植物生理学特性的影响具有复杂性和差异性,而有关酸雨对引种植物墨西哥柏生理学特性影响的研究尚未见报道。本研究拟通过分析模拟酸雨对墨西哥柏幼苗光合生理特性的影响,以期为研究外来植物在我国南方酸雨胁迫区的引种推广提供理论依据。主要研究结果如下:
     (1)pH3.0、pH4.0和pH5.0三种不同强度模拟酸雨处理均抑制了墨西哥柏幼苗的光合速率,且模拟酸雨的pH值越低,其对墨西哥柏幼苗光合速率的抑制作用也越强。墨西哥柏幼苗的净光合速率(Pn)与大气温度(AT)、气孔导度(Gs)、胞间CO_2浓度(Ci)、蒸腾速率(Tr)、叶面饱和水汽压亏缺(Vpdl)、太阳辐射强度(PAR)和水分利用效率(WUE)均呈显著线性相关关系(P<0.05),说明墨西哥柏幼苗Pn的日进程与Gs、Ci、Tr、Vpdl、PAR、WUE等指标关系密切。
     (2)三种不同强度模拟酸雨处理均导致墨西哥柏幼苗光补偿点(LCP)升高,并且暗呼吸速率增大,表明酸雨胁迫增加了墨西哥柏幼苗对光合产物的消耗,降低了其对弱光的利用能力。
     (3)三种不同强度模拟酸雨处理对墨西哥柏幼苗光饱和点(LSP)和表观光量子效率(AQE)没有显著性影响,但其最大净光合速率显著下降,表明酸雨胁迫能够降低墨西哥柏幼苗对强光的利用能力。
     (4)三种不同强度模拟酸雨处理后,墨西哥柏幼苗由Rubisco限制的潜在CO_2同化速率(Wc)、由RuBP限制的潜在CO_2同化速率(Wj)及由TPU限制的潜在CO_2同化速率(Wp)均有不同程度的下降,同时三种模拟酸雨处理均显著降低了墨西哥柏幼苗的Vcmax、Jmax和TPU,表明模拟酸雨处理对墨西哥柏幼苗的光合-CO_2响应产生了一定的抑制。
     (5)三种不同强度模拟酸雨处理后,墨西哥柏幼苗的表观羧化效率(CE)显著降低,表明酸雨胁迫显著降低了墨西哥柏幼苗对CO_2的利用能力,且pH值越低其抑制作用越强。
     (6)三种不同强度模拟酸雨处理均未对墨西哥柏幼苗的CO_2补偿点和光呼吸速率产生显著影响,一定程度上反映出墨西哥柏幼苗对酸雨胁迫具有一定的适应性。
     (7)三种不同强度模拟酸雨处理后,墨西哥柏幼苗的蒸腾速率变化趋势一致表现为:pH5.0>CK>pH4.0>pH3.0,说明轻度酸雨胁迫促进了墨西哥柏幼苗蒸腾速率的提高,而中度和重度酸雨胁迫会抑制墨西哥柏幼苗的蒸腾速率。
     (8)三种不同强度模拟酸雨处理后,墨西哥柏幼苗的Fv/Fm值存在着明显的季节变化,与对照处理相比,模拟酸雨处理后墨西哥柏幼苗的最大光化学量子效率(Fv/Fm)表现出一致的下降趋势,表明酸雨胁迫对墨西哥柏幼苗PSⅡ最大光量子产量具有一定的抑制作用。
     (9)三种不同强度模拟酸雨处理后,墨西哥柏幼苗的F_v'/F_m'均表现出增大趋势,表明酸雨促进了光下开放的PSII反应中心激发能捕获效率的提升。同时模拟酸雨处理后墨西哥柏幼苗ΦPSII、ETR、qP、NPQ的变化并无一致规律性,表明墨西哥柏幼苗对酸雨胁迫可能具有一定的生理适应能力和自我保护能力。
     综上所述,模拟酸雨对墨西哥柏幼苗的光合生理特性产生了较为复杂的影响,总体上表现了对光合作用的抑制,可能会影响引种植物墨西哥柏在酸雨胁迫区域生产潜力的下降,但同时也反映了墨西哥柏在酸雨胁迫区域具有一定的生理适应能力。我们的研究可为墨西哥柏在我国南方酸雨沉降区的引种栽培提供一定理论参考。
Mexican cypress (Cupressus lusitanica Mill.) has excellent characteristics such as cansurvive in dry and barren soil conditions or in cold region with adequate adaptability andresistance, and rare injured by pests or diseases. So it can be selected as pioneer species whenafforested in the limestone soil conditions or in rocky desertification controlling for its strongadaptability. There are lots of studies have shown the impacts of acid rain on plantphysiological characteristics, and the results are very different due to the different species andenvironmental conditions, but the effects of acid rain on the physiological characteristics ofMexican cypress has not been reported. In this study, the effects of simulated acid rain on thephotosynthetic physiological characteristics of Mexican cypress seedlings were investigated, inorder to provide a theoretical basis for the introduction of exotic plant of Mexican cypress in theacid rain stress area in southern China. The main findings are as follows:
     (1) Three different simulated acid rain treatments with pH3.0, pH4.0and pH5.0decreasedthe photosynthetic rates of Mexican cypress seedlings, the lower pH value of simulated acid rain,and the stronger restraint of photosynthetic rates of Mexican cypress seedlings. The netphotosynthetic rate(Pn) of Mexican cypress seedlings significantly linear correlated to airtemperature (AT), stomatal conductance (Gs), intercellular CO_2concentration (Ci), transpirationrate(Tr), leaf saturation vapor pressure deficit(Vpdl), sun radiation intensity(PAR) and water useefficiency(WUE)(P <0.05), showing that the diurnal Pn of Mexican cypress seedlings areclosely regulated by the changes of Gs, Ci, Tr, Vpdl, PAR, WUE and other indicators in thedaytime.
     (2) Three different simulated acid rain treatments all led to the elevation of the lightcompensation point (LCP) of Mexican cypress seedlings, and increased the dark respiration rates,indicating that the acid rain stress on Mexican cypress seedlings increase the consumption ofphotosynthetic products and thus reduce its ability to utilize low intensity light.
     (3) Three different simulated acid rain treatments did not significantly affect the lightsaturation point (LSP) and apparent quantum efficiency (AQE) of Mexican cypress seedlings, butits maximum net photosynthetic rate was significantly decreased, show that acid rain stress canreduce the ability of Mexican cypress seedlings to use high intensity light.
     (4) Three different simulated acid rain treatments all led to the decrease of the potential CO_2assimilation rates of WC, WJ, WPof Mexican cypress seedlings with a vary degree, which arelimited by Rubisco, RuBP, TPU respectively. And the Vcmax, Jmax and TPU of the threesimulated acid rain treatments were significantly lower than the control treatment of the Mexicancypress seedlings, showing that simulated acid rain has a restraint on the photosynthesis-CO_2response of Mexican cypress seedlings.
     (5) Three different simulated acid rain treatments all led to the significant decrease ofapparent carboxylation efficiency (CE) of the Mexican cypress seedlings, indicating that acid rainstress can significantly reduce the ability of Mexican cypress seedlings to use of CO_2, and there isa stronger inhibition under a lower pH value treatment.
     (6) Three different simulated acid rain treatments did not significantly affect the CO_2compensation point and photorespiration rate of the Mexican cypress seedlings, indicating thedefinite adaptation of Mexican cypress seedlings to the acid rain stress.
     (7) The transpiration rates of Mexican cypress seedlings has a consistent trends as: pH5.0>CK> pH4.0> pH3.0, which showed that mildly acid rain stress can increase the transpirationrates of Mexican cypress seedlings, while the moderate and severe acid rain stress can suppressthe transpiration rates of Mexican cypress seedlings.
     (8) There are significant seasonal variations of Fv/Fm values of Mexican cypress seedlings.Three different simulated acid rain treatments all decreased the maximum photochemicalefficiency (Fv/Fm) of Mexican cypress seedlings when compared with the control treatment,showing that the definite inhibition of acid rain stress on the maximum quantum yield in PS II ofMexican cypress seedlings.
     (9) Three different simulated acid rain treatments all increased the F_v'/F_m' values ofMexican cypress seedlings, showing that acid rain stress can promote the capture efficiency oflight excitation energy in the open PSII reaction centers.
     At the same time, changes of ΦPSII, ETR, qP, NPQ had no consistent regularity under thethree different simulated acid rain treatments, indicating that Mexican cypress seedlings mayhave some physiological adaptability and ability to protect themselves under the acid rain stress.
     In summary, simulated acid rain produced very complex effects on the photosyntheticphysiological characteristics of the Mexican cypress seedlings, it totally inhibited thephotosynthesis of Mexican cypress seedlings, thus might decreased the potential productivity ofMexican cypress seedlings when afforested in an acid rain stress area, but there also were thephysiological adaptability of Mexican cypress seedlings to the acid rain stress. Our research canprovide theoretical basis for the introduction of Mexican cypress seedlings and afforested in theacid rain region in southern China.
引文
[1]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,2(9):5-11.
    [2]孙崇基.酸雨[M].北京:中国环境科学出版社,2001.
    [3]Menz F C, Seip H M. Acid rain in Europe and the United States: an update[J]. Environmental Science&Policy,2004,7(4):253-265.
    [4]冯宗炜.酸雨对生态系统的影响[M].北京:中国科学技术出版社,1993.
    [5]Hruka J, Cudln P, Krm P. Relationship between Norway spruce status and soil water basecations/aluminum ratios in the Czech Republic[J]. Water, Air&Soil Pollution,2001,130(1):983-988.
    [6]石弘之,张坤民,周北海(译).酸雨[M].中国环境科学出版社,1997,10.
    [7]Feder W A. Plants as bioassay systems for monitoring atmospheric pollutants[J]. Environmental HealthPerspectives,1978,27-39.
    [8]Winner W E. Mechanistic analysis of plant responses to air pollution[J]. Ecological Applications,1994,4(4):651-661.
    [9]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社,1994.
    [10]冯宗炜,曹洪法,周修萍.酸沉降对生态环境的影响及其生态恢复[M].北京:中国环境科学出版社,1999.
    [11]Kohno Y, Matsumura H, Kobayashi T. Effect of simulated acid rain on the growth of Japanese conifersgrown with or without fertilizer[J]. Water, Air&Soil Pollution,1995,85(3):1305-1310.
    [12]Dasilva L C, Oliva M A, Azevedo A A, et al. Micromorphological and anatomical alterations caused bysimulated acid rain in restinga plants: Eugenia uniflora and Clusia hilariana[J]. Water, Air&Soil Pollution,2005,168(1):129-143.
    [13]Lee Y, Park J, Im K, et al. Arabidopsis leaf necrosis caused by simulated acid rain is related to thesalicylic acid signaling pathway[J]. Plant Physiology and Biochemistry,2006,44(1):38-42.
    [14]王玮.模拟酸雨对青菜叶片超显微结构和生理变化影响的初步研究[J].上海农学院学报,1986,5(4):267-272.
    [15]文宗振,钟荣亮.酸雨对萝卜叶超微结构的危害初报[J].广西农业大学学报,1992,11(004):85-87.
    [16]Shan Y, Feng Z, Izuta T, et al. The individual and combined effects of ozone and simulated acid rain ongrowth, gas exchange rate and water-use efficiency of Pinus armandi Franch[J]. Environmental Pollution,1996,91(3):355-361.
    [17]Izuta T, Yamaoka T, Nakaji T, et al. Growth, net Photosynthetic rate, nutrient status and secondary xylemanatomical characteristics of Fagus Crenata seedlings grown in brown forest soil acidified with H2SO4solution[J]. Water, Air&Soil Pollution,2001,130(1):1007-1012.
    [18]Jing-Quan YU, Su-Feng YE, Li-Feng H. Effeets of simulated acid prceipitation on photosynthesis,chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L.[J]. Photosynthetica,2002,40(3):331-335.
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [20]肖艳,黄建昌,刘少娴,等.模拟酸雨对12种园林植物的伤害及敏感性反应[J].西南农业大学学报(自然科学版),2004,26(3):270-273.
    [21]黄建昌,吴贤彬,何仕友.模拟酸雨对黄皮生长发育影响的模拟试验[J].中国南方果树,2005,34(4):35-37.
    [22]李志国,姜卫兵,翁忙玲.6个常绿阔叶园林树种(品种)对酸雨抗性的研究[J].浙江林学院学报,2008,25(1):123-129.
    [23]Anthony J W, Christa C R. Light curves: A new fluorescence method to asses the state of thephotosynthetic apparatus[J]. Photosynthesis Research,1999,59:63-72.
    [24]Shan Y, Feng Z, Izuta T. The individual and combined effects of ozone and simulated acid rain onchloropHyll contents, carbon allocation and biomass accumulation of armand pine seedlings[J]. Water, Air&Soil Pollution,1995,85(3):1399-1404.
    [25]刘建栋,周秀骥.中国黄淮海地区冬小麦光合作用特征参数[J].应用气象学报,2003,14(3):257-265.
    [26]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,21(3):191-195.
    [27]齐泽民,钟章成.模拟酸雨对杜仲光合生理及生长的影响[J].西南师范大学学报(自然科学版),2006,31(2):151-156.
    [28]付晓萍,田大伦,闫文德.模拟酸雨对樟树光合日变化的影响[J].中南林学院学报,2006,26(6):38-43.
    [29]Rochefort L, Vitt D H. Effects of Simulated Acid Rain on Tomenthypnum Nitens and ScorpidiumScorpioides in a Rich Fen[J]. Bryologist,1988,91(2):121-129.
    [30]陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86.
    [31]徐克章,史跃林,许贵民.保护地黄瓜叶片的光合作用温度特性的研究[J].园艺学报,1993,20(1):51-55.
    [32]Shakey T D, Seemann J R, Berry J A. Regulation of ribulose-l,5-bisphosphate carboxylase activity inresponse to changing partial pressure of CO2and light in Phasellus vulgaris[J]. Plant physiol,1986,81:788-791.
    [33]李德成,徐彬彬,石晓日.模拟酸雨对水稻叶片荧光光谱特性的影响[J].中国环境科学,1998,18(6):498-500.
    [34]邱栋梁,刘星辉.模拟酸雨对龙眼叶片叶绿素a荧光特性的影响[J].园艺学报,2000,27(3):177-181.
    [35]刘昊,余树全,江洪,等.模拟酸雨对山核桃叶绿素荧光参数、叶绿素和生长的影响[J].浙江林学院学报,2009,26(1):32-37.
    [36]殷秀敏,余树全,江洪,等.模拟酸雨对两种针叶植物气体交换参数和叶绿素荧光特性的影响[J].浙江林业科技2009,29(5):13-18.
    [37]李佳,江洪,余树全,等.模拟酸雨胁迫对青冈幼苗光合特性和叶绿素荧光参数的影响[J].应用生态学报,2009,20(9):2092-2096.
    [38]苏行,胡迪琴,林植芳,等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报,2002,26(5):599-604.
    [39]黎明,马焕成,李复秀,等.城市大气污染对云南拟单性木兰苗期气体交换及叶绿素荧光的影响[J].西北林学院学报,2005,20(2):46-50.
    [40]马树华,王庆成,李亚藏.汽车尾气对四种北方阔叶树叶绿素荧光特性的影响[J].生态学杂志,2005,24(1):15-20.
    [41]彭长连,林植芳,林桂珠,等.旅游和工业化对亚热带森林地区大气环境质量及两种木本植物叶绿素荧光特性的影响[J].植物学报,1998,40(3):270-276.
    [42]李合生,孟庆伟,夏凯.现代植物生理学[M].北京:高等教育出版社,2002.
    [43]齐泽民,王玄德,宋光煜.酸雨对植物影响的研究进展[J].世界科技研究与发展,2004,26(2):36-41.
    [44]陈美华,欧世金,蒋德书.模拟酸雨对芒果生长及土壤的影响[J].广西农业大学报,1995,14(4):300-304.
    [45]周青,黄晓华.稀土元素La对酸雨损伤腊梅的影响[J].生态学杂志,1997,16(6):59-61.
    [46]唐鸿寿.模拟酸雨对油菜生长的影响[J].农业环境保护,1996,15(6):261-263.
    [47]单运峰,冯宗炜.模拟酸雨对马尾松和杉木幼树的影响[J].环境科学学报,1988,8(3):307-315.
    [48]Ferenbaugh R W. Effects of simulated acid rain on Phaseolus Vulgaris L.(Fabaceae)[J]. Ameriean Journalof Botany,1976,63(3):283-288.
    [49]Lee W S, Chevone B L, Seiler J R. Growth and gas Exchange of Loblolly Pine Seedlings as Influenced byDrought and Air Pollutants[J]. Water Air Soil Pollution,1990,51(l-2):10-106.
    [50]谢田,李庆新.酸雨致使菠菜光合作用下降机理初探[J].环保科技,1994,16(1):9-11.
    [51]鲁美娟,江洪,余树全,等.模拟酸雨对山核桃和杨梅光合生理特征的影响[J].生态学杂志,2009b,28(8):1476-1481.
    [52]蒋馥蔚,江洪,李巍,等.不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J].植物生态学报,2009,33(1):125-133.
    [53]金清,江洪,余树全,等.酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响[J].生态学报,2009,29(6):3322-3327.
    [54]李万超,江洪,曾波,等.模拟酸雨对青冈和木荷幼苗光合响应特性的影响[J].西南大学学报(自然科学版),2008,30(7):98-103.
    [55]姚兆斌,江洪,余树全,等.模拟酸雨胁迫对杨梅幼苗水分生理特性的影响[J].应用生态学报,2011,22(8):1967-1974.
    [56]齐泽民,钟章成,邓君.模拟酸雨对杜仲叶氮代谢的影响[J].植物生态学报,2001,25(5):544-548.
    [57]Solomonson L P&Spehar A M. Model fox regulation of nitrate assimilation[J]. Nature,1977,266:373-379.
    [58]陈玉谷,何宗英,万秀林,等.模拟酸雨对蕃茄生长影响的试验[J].环境科学,1989,10(2):24-29.
    [59]吕振武,王建林.模拟酸雨对不同植物叶片核酸代谢影响的研究[J].西北农业学报,1998,7(3):100-101.
    [60]时启龙,江洪,陈健.亚热带典型树种对模拟酸雨胁迫的高光谱响应[J].生态学报,2012,32(18):5621-5629.
    [61]迟光宇,刘新会,刘素红,等.环境污染监测中的植物光谱效应研究[J].环境科学与技术.2005,28(B06):16-19.
    [62]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [63]谢小赞.亚热带典型植物对酸雨和氮沉降胁迫的高光谱响应研究[D].浙江农林大学,2010.
    [64]郭德惠,张延毅.人工酸雨喷雾对小麦生长的影响[J].环境科学,1986,7(3):13-17.
    [65]吕均良,李三玉,黄寿波,等.模拟酸雨对葡萄叶片和花粉的影响[J].应用与环境生物学报,1999,5(5):459-463.
    [66]Forsline P L, Towill L E, Waddell J W, et al. Recovery and longevity of cryopreserved dormant applebuds[J]. American Society for Horticultural Science(USA),1998.
    [67]Bellani L M, Rinallo C, Muccifora S, et al. Effects of simulated acid rain on pollen physiology andultrastructure in the apple[J]. Environmental Pollution,1997,95(3):357-362.
    [68]李永裕,潘腾飞,康开权,等.镧、铈对酸雨胁迫下龙眼花粉萌发和坐果的影响[J].中国稀土学报,2006,1.
    [69]王力军.模拟酸雨致酸土壤对葛芭某些生理性状的影响[J].植物生理学通讯,1991,27(l):32-34.
    [70]许泽宏,罗英,王煌,等.模拟酸雨对蚕豆植物生长的影响[J].中国微生态学杂志,2001,13(l):26-29.
    [71]聂呈荣,陈思果,温玉辉,等.模拟酸雨对花生种子萌芽及幼苗生长的影响[J].中国油料作物学报,2003,25(l):34-36.
    [72]樊后保,臧润国.女贞种子和幼苗对模拟酸雨的反应[J].环境科学研究,2000,36(6):90-94.
    [73]Momen B, Anderson P D, Houpis J L J, et al. Growth of ponderosa pine seedlings as affected by airpollution[J]. Atmospheric Environment,2002,36(11):1875-1882.
    [74]Lee J J, De Weher. The effect of simulated acid rain on seedling emergence and growth of eleven woodyspecies[J]. Forest Science,1979,25(3):393-39.
    [75]蔡如,黄建昌,肖艳.模拟酸雨对6种园林植物生长和生理反应的影响[J].仲恺农业技术学院学报,2002,15(3):25-32.
    [76]单运峰,冯宗炜,陈楚莹.模拟酸雨对七种森林植物生物量的影响[J].生态学报,1989,9(3):274-276.
    [77]赵国泰,郭润新,朱周庆,等.模拟酸雨对小麦生长影响研究初报[J].农业环境科学学,报,1985,(6):32-33.
    [78]邱栋梁,刘星辉.模拟酸雨对龙眼落果及果实品质的影响研究[J].中国生态农业学报,2004,12(4):68-69.
    [79]颜戊利,陈志澄,杨冰仪,等.广东微量元素科学.2004,11(9):61-64.
    [80]许宁,庞叔薇.酸雨对茶树中铝的形态分布及生态化学影响[J].环境科学学报,1990,10(6):424-433.
    [89]吴杏春,林文雄,洪清培,等.模拟酸雨对草坪草若干生理指标的影响[J].草业科学,2004,21(8):88-92.
    [81]Draaijers G P, Risman T E, Lccuwen T W. Canopy change processes at the Spculder Forest Report NO.722108004National Institute of Public Health and Environmental Protection Bilthoven theNetherlands[M].1994,172-235.
    [82]黄开志.模拟酸雨对蔬菜细胞透性和营养及卫生品质的影响[J].生物学通报,2000,35(2):34
    [83]Smith W H. Air pollution and forests: interactions between air contaminants and forest ecosystems[M].Springer,1981.
    [84]Makarov M I, Kiseleva V V. Acidification and nutrient imbalance in forest soils subjected to nitrogendeposition[J]. Water Air soil Poll., l995,85:1137-1142.
    [85]Huntington T G, Hooper R P, Johnson C E, et al. Calcium depletion in a southeastern United States forestecosystem[J]. Soil Sci. Soc. Amer. J.,2000,64:1845-1858.
    [86]Janzen H H, Chang C. Cation nutrition of barley as influenced by soil solution composition in a salinesoil[J]. Can.J Soil Sci.,1987,67:619-629.
    [87]孔繁翔,刘营,王连生,等.酸沉降对马尾松菌根共生蛋白及营养关系影响[J].环境科学,1999,20(6):l-6.
    [88]Stoyanova D, Velikova V. Effeets of simulated Acid Rain on Chloroplast Ultrasttucture of PrimaryLeaves of Phaseolus Vulgaris. Biologia Plantarum,1997,40(4):589-595.
    [89]Watmough S A, Hutchinson T C, Sager E P S. The impact of Simulated Acid Rain on soil Leachate andXylem Chemistry in a Jack Pine (Pinus Banksiana Lamb.)Stand in Northern Ontario, Canada. Water, Air&soil pollution,1999,111(l):89-108.
    [90]马连祥,周定国,徐魁梧.酸雨对杨树生长和木材化学性质的影响.林业科学,2000,36(6):95-99.
    [90]张崇礼.模拟酸雨对豌豆和蚕豆萌芽期过氧化物酶同工酶的影响[J].重庆师范学院学报,1993,10(2):55-59.
    [91]马连祥,周定国,徐魁梧.酸雨对树木生长和木材材性的影响.世界林业研究,2000,13(l):27-31.
    [92]刘厚田,杜晓明,张维平.重庆南山酸雨与马尾松衰退的关系.环境科学学报,1988,8(3):331-338.
    [93]Likens G E, Driscoll C T, Buso D C. Long-term effects of acid rain: response and recovery of a forestecosystem[J]. Science(Washington),1996,272(5259):244-244.
    [94]Adams C M, Hutchinson T C. Comparative abilities of leaf surfaces to neutralize acidic raindrops.II. Theinfluence of leaf wettability, leaf age and rain duration on changes in droplet pH and chemistry on leafsurfaces[J]. New Phytologist,1987,106(3):437-456.
    [95]Dehayes D H, Schaberg P G, Hawley G J, et al. Acid rain impacts on calcium nutrition and foresthealth[J]. BioScience,1999,49(10):789-800.
    [96]Svein S, Kjetil T. Crown condition of Norway spruce in relation to sulphur and nitrogen deposition and soilproperties in southeast Norway[J]. Environ. Poll.,1997,96(1):19-27.
    [97]赵栋,潘远智,邓仕槐,等.模拟酸雨对茶梅生理生态特性的影响[J].中国农业科学,2010,43(15):3191-3198.
    [98]刘源月,江洪,李雅红,等.模拟酸雨对亚热带阔叶树苗土壤呼吸的影响[J].土壤学报,2011,48(3):563-569.
    [99]蒋馥蔚,江洪,李巍,等.酸雨胁迫下黑壳楠Lindera megaphylla Hemsl.幼苗在夏季和秋季的生理生态特性[J].生态环境,2008,17(6):2374-2380.
    [100]Neuvonen S, Suomela J. The effect of simulated acid rain on pine needle and birch leaf litterdecomposition[J]. Journal of Applied Ecology,1990,27(3):857-872.
    [101]黄益宗,李志先,黎向东,等.酸沉降和大气污染对华南典型森林生态系统生物量的影响[J].生态环境.2007,16:60-65.
    [102]Pichtel J, Sawyerr H T, Krystyna C. Spatial and temporal distribution of metals in soils in warsaw,Poland[J]. Environ. Poll.,1997,98(2):169-174.
    [103]Das P, Samantaray S, Rout G R. StudiesoneadmiumtoxieityinPlants: a review[J]. Environ. Poll.,1997,98(1):29-36.
    [104]John D, Anttr J L. Effeets of heavy metal contamination on macronutrient availability and acidificationParameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SWF inland[J]. Environ. Poll.,1998,99:225-232.
    [105]Michopoulos P. Lead migration in some acid forest soils under Beech in Greece[J]. J. Envron. Qual.,1999,27:1705-1708.
    [106]陶宝先,张金池.南京地区主要森林类型空气负离子变化特征[J].南京林业大学学报:自然科学版,2012,36(2):147-150.
    [107]Moreno-Sotomayor A, Weiss A, Paparozzi ET, et al. Stability of leaf anatomy and light response curves offield grown maize as a function of age and nitrogen status[J]. Journal of Plant Physiology,2002,159,819-826.
    [108]Awada T, Radoglou K, Fotelli M N, et al. Ecophysiology of seedlings of three Mediterranean pine speciesin contrasting light regimes[J].Tree Physiology,2003,23,33-41.
    [109]Damesin C. Respiration and photosynthesis characteristics of current2year stems of Fagus sylvatica:fromthe seasonal pattern to an annual balance[J]. New Phytologist,2003,158,465-475.
    [110]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [111]潘志刚.墨西哥柏引种初报[J].林业实用技术,1984,12:1-4.
    [112]刘小艳,蒋倡.墨西哥柏、藏柏引种苗期试验初报[J].广西林业科学,1994,23(4):197-199.
    [113]陆斌,甘家生,杨卫明,等.墨西哥柏壮苗培育技术的初步探讨[J].云南林业科技,1996,1:14-18.
    [114]黄森木.墨西哥柏引种栽培初报[J].四川林业科技,1987,55-58.
    [115]李运兴,唐行.柏类引种试验研究[J].林业科学研究,1999,12(3):304-309.
    [116]李品荣,陈强,周洪昌,等.墨西哥柏育苗试验结果分析[J].云南林业科技,1999,4:12-19.
    [117]史富强,袁连珍,许林红.半干热石质山地墨西哥柏伴生树种选择研究[J].林业调查规划,2009,34(5):139-142.
    [118]顾汤华.墨西哥柏引种适应性及耐盐性研究[D].南京林业大学硕士学位论文,2011.
    [119]娄晓瑞,万福绪,孙波.水分胁迫对10种墨西哥柏生长及生理生化指标的影响[J].安徽农业科学,2012,40(7):4072-4075.
    [120]付晓萍.模拟酸雨对6种城市绿化植物生理生态学特性的影响[D].中南林业科技大学博士学位论文,2007.[122]董志新,韩清芳,贾志宽,等.不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征[J].生态学报,2007,27(6):2272-2278.
    [121]鲁美娟,江洪,李巍,等.模拟酸雨对刨花楠幼苗生长和光合生理的影响[J].生态学报,2009a,29(11):5986-5994.
    [122]董志新,韩清芳,贾志宽,等.不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征[J].生态学报,2007,27(6):2272-2278.
    [123]焦裕媚,韦小丽.两种光响应及CO2响应模型在喀斯特树种中的应用[J].贵州农业科学,2010,38(4):162-167.
    [124]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报,2008,32,1356-1361.
    [125]陈根云,俞冠路,陈悦,等.光合作用对光和二氧化碳响应的观测方法讨论[J].植物生理与分子生物学学报,2006,32(6):691-696.
    [126]Brook S A,Farquhar G D.Effect of temperature on the CO2/O2specificity of ribulose-1.5bisphosphatecarboxylase/oxygenase and the rate of respiration in light,Estimates from gas exchange measurement onspinach[J]. Planta,1985,165:397-406.
    [127]Olsson T, Leverenz J W. Non-uniform stomatal closure and the apparent convexity of the photosyntheticphoto flux density response curve [J]. Plant Cell Environ,1994,17:701-710.
    [128]孙谷畴,赵平,曾小平,等.倍增CO2分压对水稻和矶子草冠层光合潜力的影响[J].生态学杂志,2003,22(4):1-5.
    [129]高峻,孟平,吴斌,等.杏-丹参林药复合系统中丹参光合和蒸腾特性的研究[J].北京林业大学学报,2006,28:64-67.
    [130]吴吉林,李永华,叶庆生.美丽异木棉光合特性的研究[J].园艺学报,2005,32(6):1061-1064.
    [131]付为国,李萍萍,卞新民,等.镇江北固山湿地芦苇光合日变化的研究[J].西北植物学报,2006,26:496-501.
    [132]黄鹃,夏汉平,蔡锡安.遮光处理对三种钝叶草的生长习性与光合特性的影响[J].生态学杂志,2006,25(7):759-764.
    [133]梁军生,陈晓鸣,杨子祥,等.云南松与华山松人工混交林针叶光合速率对光及CO2浓度的响应特征[J].林业科学研究,2009,22(1):21-25.
    [134]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    [135]林金科.茶树叶片净光合速率对生态因子的响应[J].生态学报,2000,20(3):404-408.
    [136]鲁美娟.模拟酸雨对浙江省3种重要树种幼苗生长与光合生理的影响[D].西南大学硕士学位论文,2010.
    [137]张劲松,孟平,高峻.板蓝根光合及水分生理生态特性[J].东北林业大学学报,2004,32(3):26-28.
    [138]Baly E C. The kinetics of photosynthesis. Proceedings of the Royal Society of London SeriesB(Biological Sciences),1935,117,218-239.
    [139]Bassman J, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids andPopulus trichocarpa×P.deltoids clone[J]. Tree Physiology,1991,8,145-159.
    [140]Prado C H B A, Moraes J A P V. Photosynthetic capacity and specific leaf mass in twenty woody speciesof Cerrado vegetation under field condition[J]. Photosynthetica,1997,33,103-112.
    [141]Ye Z P. A new model for relationship between light intensity and the rate of photosynthesis in Oryzasativa[J]. Photosynthetica,2007,45,637-640.
    [142]蹇洪英,邹寿青.地毯草的光合特性研究[J].广西植物,2003,23(2):181-184.
    [143]张弥,吴家兵,关德新,等.长白山阔叶红松林主要树种光合作用的光响应曲线应用[J].生态学报,2006,17(9):1575-1578.
    [144]杨兴洪,邹琦,赵世杰.遮荫和全光生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,2005,29(1):8-15.
    [145]Schimel D S, House J I, Hibbard KA, et al. Recent patterns and mechanisms of carbon exchange byterrestrial ecosystems[J]. Nature,2001,414(6860):169-172.
    [146]姚素梅,康跃虎,刘海军,等.喷灌与地面灌溉条件下冬小麦光合作用的日变化研究[J].农业工程学报,2005,21(11):16-19.
    [147]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226-2233.
    [148]梁开明,曹洪麟,徐志防,等.台湾青枣及野生种的光合作用日变化及光响应特征[J].园艺学报,2008,35(6):793-798.
    [149]Gomes F P, Oliva M A, Mielke M S, et al. Photosynthetic limitations in leaves of young Brazilian GreenDwarf coconut (Cocos nucifera L. nana) palm under well-watered conditions or recovering from droughtstress[J]. Environmental and Experimental Botany,2008,62(3):195-204.
    [150]姚渝丽,刘实,李爱民,等.北五味子光合日变化特性的研究[J].华南农业大学学报,2010,31(2):54-58.
    [151]任三学,赵花荣,姜朝阳,等.土壤水分胁迫对冬小麦旗叶光合特性的影响[J].气象科技,2010,38(1):114-119.[152]云菲,刘国顺,史宏志,等.光氮互作对烤烟光合作用及叶绿素荧光特性的影响[J].中国农业科学,2010,43(5):932-941.
    [152]云菲,刘国顺,史宏志,等.光氮互作对烤烟光合作用及叶绿素荧光特性的影响[J].中国农业科学,2010,43(5):932-941.
    [153]郑秋玲,谭伟,马宁,等.钙对高温下巨峰葡萄叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2010,43(9):1963-1968.
    [154]Huang J, Wang S H, Lu Y N, et al. Plant photosynthesis and its influence on removal efficiencies inconstructed wetlands[J]. Ecological Engineering,2010,36(8):1037-1043.
    [155]Dai Q J,Peng S,Coronel A Q. Intraspecific response of rice cultivars to enhanced UV-B radition[J].Environmental and Experimental Botany,1994,34:433-442.
    [156]Hogan G D. Physiological effects of direct impact of acidic deposition on foliage[J]. AgricultureEcosystems&Environment,1992,42:307-319.
    [157]Bames J D, Brown K A. The influence of ozone, acid mist and soil nutrient status on morway SprucePicea bies L.·Karst. J. II. Photisynthesis, Dark Respiration and Soluble Carbohydrates of Trees DuringLate Autumn [J]. New Phytologist,1990,115:145-156.
    [158]Wooddrow I E, Murphy D J, Latako E. Regulation of stromal sedoheptulose1,7-bisphosphatase activityby pH and Mg2+Concentration[J]. The Journal of Biological Chemistry,1984,259:3791-3795.
    [159]Siefermann H D. The yellowing of spruce in polluted atmospheres[J]. Photosynthetica,1992,27:323-341.
    [160]Okada M, Kitajima M, Butler W L. Inhabition of photosystem I and II in chloroplasts by UV radition[J].Plant Cell Physiology,1976,17(1):35-43.
    [161]孟繁静.植物生理学基础[M].北京:农业出版社,1987,53-55.
    [162]陈兆波,张翼,王沛,等.香紫苏开花期蒸腾和光合作用日变化特征及其影响因子研究[J].西北植物学报,2007,27(6):1202-1208.
    [163]李倩,谭雪莲.旱地植物蒸腾作用研究进展[J].甘肃农业科技,2006,10:18-20.
    [164]刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,52(4):366-373.
    [165]段爱国,张建国,张守攻,等.干热河谷主要植被恢复树种蒸腾作用[J].生态学报,2009,29(2):6691-6701.
    [166]于贵瑞,王秋凤,于振良.陆地生态系统水—碳耦合循环与过程管理研究[J].地球科学进展,19,831-839.
    [167]武康生.植物水分关系和抗旱性[J].北京林业大学学报,1988,10(2):80-90.
    [168]赵会杰,邹奇,余振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    [169]冯建灿,胡秀丽,王训申.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [170]陈兰周,刘永定,李敦海.盐胁迫对爪哇伪枝藻生理生化特性的影响[J].中国沙漠,2003,23(3):285-288.
    [171]欧阳叶新,施定基,黄开耀,等.鱼腥藻7120响应NaCl胁迫的光合特性[J].水生生物学报,2003,27(1):74-77.
    [172]Lazar D, Ilik P. High-temperature induced chlorophyll fluorescence changes in barley leaves comparisonof the critical temperatures determined from fluorescence induction and from fluorescence temperaturecurve[J]. Plant Sci,1997,124(2):159-164.
    [173]Annick M, Elisabeth P, Gerard T. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of abexaploid triticale and its parental species under salt stress[J]. J Plant Physiol,2004,1619(1):25-33.
    [174]Bhargava S, Paranjpe S. Genotypic variation in the photosynthetic competence of Sorghum bicolorseedlings subjected to polyethylene glycol-mediated drought stress[J]. J Plant Physiol,2004,161(1):125-129.
    [175]刘家尧,衣艳君,张承德等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报,1997,23(4):80-83.
    [176]黄仿,武宝玕.热胁对球等鞭金藻作用机制的叶绿素荧光的研究[J].广西师范大学学报(自然科学版),1995,13(2):72-76.
    [177]Carrasco R M, Rodriguez J S, Perez P. Changes in chlorophy Ⅱfluorescence during the course ofPhotoperiod and in respons to drought in Casuarina Equisetifolia forest[J]. Photosynthetica,2002,40:363-368.
    [178]张其德,蒋高明,朱新广,等.12个不同基因型冬小麦的光合能力[J].植物生态学报,2001,25(5):532-536.
    [179]刘昊.模拟酸雨对12种常绿阔叶树幼苗叶绿素荧光特性的影响[D].浙江林学院硕士学位论文,2008.
    [180]邱栋梁,刘星辉.模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响[J].园艺学报,2000,26(4):441-446.
    [181]马博英,徐礼根,蒋德安.模拟酸雨对假俭草叶绿素荧光特性的影响[J].林业科学,2006,11(11):8-11.
    [182]刘建福.模拟酸雨对杨梅生理生化特征的影响[J].中国农学通报,2007,23(10):110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700