用户名: 密码: 验证码:
全球火格局的时空变异及其机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球尺度上量化火的时空变异及其机理,对减轻人员财产损失,及指导合理的政策制定和资源配置具有重要意义。本研究通过全球中分辨率成像光谱仪(MODIS)的主动火数据计算的火指数,及自然(气候、植被、闪电、地形等)和人文因子(人口密度、经济状况、农业土地利用等),在全球尺度上,综合了火格局的多方面特征,量化了过火面积与火强及其空间分布,以及火的年间变异,并分析了火格局时空变异的机理,比较了不同生态区系之间火格局及其机理的差异。
     论文的主要研究工作和结论如下:
     1.结合火格局的两个重要特征:过火面积与火强,量化了全球火格局的空间变异,并结合自然人文因子分析其机理。以往的研究通常割裂考虑过火面积或火强,但相同的过火面积,可能伴随差异巨大的火强。本研究计算了两个基于卫星遥感的火格局指数:过火面积(BA)与火辐射强度(WAFI)以量化全球的过火面积与火强,并结合二者将全球火的空间格局分为四类:大过火面积高火强区(HH),大过火面积低火强区(HL),小过火面积高火强区(LH),小过火面积低火强区(LL)。通过适用于非正态分布数据的非参数分析方法,列联表分析,分析了火的空间差异与自然人文因子之间的关系。结果表明,HH火区主要分布在南美中部、澳大利亚北部、非洲同纬度的条带区域。该区平均火强大约在50MW,平均过火面积在象元面积的6%以上,人为活动强度低、干季长、地形平坦;HL火区主要分布在非洲的稀树大草原。该区平均过火面积在象元面积的6%以上,平均火强却较低;LH火区主要分布在西伯利亚和加拿大,以远离人类活动的泰加林为主。该区温度平均火强高于50MW,平均过火面积却小于象元面积的0.2%以上,温度低、闪电密度低;LL火区散布在各大洲,人口密度较高。本研究在全球尺度上分析了火的影响范围与程度的差异性,显示了未来结合二者进行研究的必要性。初步揭示了过火面积与火强间的相互关系,及二者对不同环境因子的敏感性差异。
     2.量化了全球各个生态区系过火面积的时间序列,分析了其与极端气候事件的关系,并以加拿大为例,探讨了火与长期气候变化之间的关系。量化了全球各个生态区系过去15年过火面积的时间序列,并通过该时间序列计算了过火面积的年间变异系数(Ⅳ)。结果表明,不同生态区系的过火面积的大小、火季长度及年间变异均有所不同,且与当地的气候条件及植被生长季长度有关。其中,热带稀树大草原的过火面积最大,火季(3-10月)持续时间较长,且每年的情况较为一致;在其他生态区系,无论月过火面积时间序列还是年过火面积均显著小于热带稀树大草原相应的过火面积。人类活动影响过火面积的年间变异,在受人类活动的影响较大区域,每年的火情更加一致。另外,通过互相关分析探讨了火与极端气候事件之间的关系。结果表明热带雨林在极端气候事件发生时的过火面积更大。与之相反,在干旱灌木地区,过火面积与极端气候事件之间呈负相关的关系,并且滞后于厄尔尼诺-南方涛动(ENSO)事件约10个月左右;以加拿大为例,通过40年的火管理记录数据,分析了火与气候变化之间的关系。结果表明加拿大的过火面积、火的数目与温度之间存在着显著的正相关关系,而且在不同生态区系,火对温度响应的敏感性不同。其中,泰加林及北方苔原带对气候变化的响应最为剧烈,由于该区是全球重要的碳汇,这提醒决策者应格外关注气候变化对这里的火格局的影响。
     3.通过随机森林回归树方法探讨了全球尺度上火与其影响因子间的响应阈值,及不同区域火格局的主要影响条件的差异。理论研究和小尺度实验指出,火与自然人文因子的关系不是简单的连续关系,而是呈现出阈值性,这对火建模及生物地球化学循环建模提出了更高的要求。在全球尺度上量化火与其影响因子间的阈值响应研究较少,可用于其他研究的具体阈值更是鲜见。本研究通过2001年1月至2007年7月的MODIS数据计算了一个火指数,年均火密度(Mean Annual Fire Density, MAFD),来代表全球火的格局。由于火及其影响因子间的关系是非连续的,而且影响因子的效应之间不可加,常规的线性拟合方法并不适应于该类建模。因此,我们采用了基于阈值的随机森林回归树的方法,在随机森林中构建了500棵回归树,分析了火与影响因子间的阈值关系。该方法较好地解释了观测到的全球火密度格局(方差解释率为78.33%)。结果表明,年平均温度是在全球尺度上影响火密度的主要因素,在温度高于19.3℃的区域,火密度才可能在其他条件适宜的情况下迅速增大。另外,前人的研究认为,火密度始终随温度的增加而增加,我们的研究表明这个结论只在一定程度上成立,而在温度已经足够高(年均温度高于19.3℃)的区域不适用,因为那里干季长度起主要限制作用,不同级别的降雨量对火活动格局有重要影响;最后,随机森林回归树模型识别出了全球火密度存在显著差异的三个区间,分别为:树木密度低于9%,在9%-53%之间,高于53%。当树木密度处在低或高的区间时,火密度被限制在一个较低的水平。只有在树木密度(9%-53%)中等的区域,火密度才可以超过7次每年每100平方千米。本研究采用基于阈值的随机森林和回归树模型,明确地将火与植被间的非连续响应关系集成进去,更真实地探索了火-植被-气候间的关系。研究中所检测到的类别及阈值,或可为下一代火建模及全球生物地球化学建模提供参考。
Quantifying the spatial and temporal patterns of fire and the mechanisms driving its variations at large scales are important to reduce the costs of human and economy, and guide the policy making and resource allocation. This study analyzed the spatial and temporal patterns of fire and the mechanisms driving its variations on the global scale, via the Moderate Resolution Imaging Spectroradiometer (MODIS), natural (climate, vegetation, lightning, and topographic roughness) and anthropogenic factors (population density, economy, and agricultural land use, etc.).
     The main results and conclusions are as follows:
     1. The spatial patterns of global fire were quantified and the mechanisms driving its global variations were analyzed, combining fire intensity and burnt area together. Two fire metrics were calculated to stand for global burnt area and fire intensity:BA and WAFI. A map of four categories of global fire patterns was then delineated:High burnt area and high fire intensity zone (HH), which was mainly distributed in the central South America, Northern Australia. This region was characterized by low human activity, long span of dry period and flat surface. The high burnt area and low fire intensity zone (HL), mainly concentrated in the African savannas. The low burnt area and high fire intensity zone (LH), mainly distributed in the remote boreal forests in Siberia and Canada. Finally, the low burnt area and low fire intensify zone (LL), scattered in almost every continent, and featured with high population density. Few studies have considered burnt area and fire intensity together, but similar burnt area often comes with startling different fire intensity, thus different impacts. This study quantified fire spatial patterns on the global scale and revealed preliminarily the interactions between burnt area and fire intensity.
     2. The temporal patterns of global fire were quantified, and the relationships between the temporal patterns and extreme climate events were analyzed. Also, the relationships between the temporal patterns and climate change were investigated in Canada as a case study. The time series of global burnt area in each biome in the last15years were analyzed, and the variation coefficient (Ⅳ) was calculated to represent the interannual variations. The results show that, the magnitude, length of fire season, and the interannual variation in different biomes were different, and related with the conditions of climate and vegetation. Among them, the burnt area in the tropical rainforests was the largest, and the fire season was the longest. Anthropogenic activities influencing the interannual variations of fire, which tended to smooth fire activities. In addition, the relationships between fire and the extreme climate events were investigated via the cross correlation analysis (CCF). The burnt area in the rainforests were large coincided with ENSO events, in contrast, there was a negative and lagged relationships (about10months) between peaks of burnt area and ENSO event in dry shrublands. The burnt areas in the tropical savannas were the largest, and were consistent among years. There were significant relationships between fire and temperature in Canada.
     3. Globally, the threshold relationships between fire and the influencing factors were investigated via the random forest and regression tree models. The recent theoretical analysis and small scale experiments pointed out the non-continuous relationships between fire and the influencing forces. Thresholds effects, rather than direct continuous relationships, exist, which challenge the related fire and earth system modeling. There are few studies quantified the thresholds between fire and the influencing forces. This study calculated a fire metric, Mean Annual Fire Density (MAFD) to quantify the global fire pattern. Next, the random forest and regression tree methods, which are based on threshold splitting were introduced to explore the non-continuous relationships. Also, the varying primary controlling conditions among different regions were quantified. The random forest model explained the observed global fire density patterns well (variance explained were78.33%). Previous studies suggested that fire activity would increase with temperature even when the precipitation increasing as well, but our result demonstrated that it is not applied for the regions with temperature higher than19.3℃. Finally, three intervals of tree density were identified with significantly different fire density:lower than9%,9%-53%, and higher than53%. Only within the intermediate intervals of tree density, can fire density exceed7counts per100km2per year.
引文
[1]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001;12(2):315-325.
    [2]骆介禹.燃烧能量学[M].哈尔滨:东北林业大学出版社,1991.
    [3]吕爱锋,田汉勤,刘永强.火干扰与生态系统的碳循环[J].生态学报,2005,25(10):2734-2743.
    [4]吕爱锋,田汉勤.气候变化、火干扰与生态系统生产力[J].植物生态学报,2007,31(2):242-251.
    [5]舒立福,田晓瑞,寇晓军.计划烧除的应用与研究[J].火灾科学,1998,7(3):61-67.
    [6]舒立福,田晓瑞.林火生态的研究与应用[J].林业科学研究,1999,12(4):422-427.
    [7]田晓瑞,舒立福,王明玉.林火与气候变化研究进展[J].世界林业研究,2006,19(5):38-42.
    [8]田晓瑞,舒立福,王明玉.林火增长模型及应用软件[J].世界林业研究,2012,25(1):25-29.
    [9]谢克勇,黄志辉,周勇平等.森林火灾与气象因子的相关分析[J].江西林业科技,2008,(5):53-55.
    [10]周道玮,张喜军,张宏.草地火生态学研究进展[M].长春:吉林科学技术出版社,1995.
    [11]Breiman L, Cutler A (2003) Setting up, using, and understanding Random Forests v4.0. Available:http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf.
    [12]Breiman L, Cutler A (2010) Comprehensive R Archive Network. randomForest version 4.6-2, port by Liaw A, Wiener M. Available: http://cran.r-project.org/web/packages/randomForest/.
    [13]Therneau TM, Atkinson BR (2009) Comprehensive R Archive Network, rpart: Recursive Partitioning. R package version 3.1-43, port by Ripley B. Available: http://cran.r-project.org/web/packages/rpart/index.html.
    [14]Aldersley A, Murray SJ, Cornell SE. Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment.2011,409:3472-81.
    [15]Amiro BD, Stocks BJ, Alexander ME, Flannigan MD, Wotton BM. Fire, climate change, carbon and fuel management in the Canadian boreal forest. International Journal of Wildland Fire.2001;10:405-13.
    [16]Archibald S, Roy DP, van Wilgen BW, Scholes RJ. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology. 2009;15:613-30.
    [17]Archibald S, Nickless A, Govender N, Scholes RJ, Lehsten V. Climate and the inter-annual variability of fire in southern Africa:a meta-analysis using long-term field data and satellite-derived burnt area data. Global Ecology and Biogeography. 2010;19:794-809.
    [18]Balch JK, Nepstad DC, Brando PM, Curran LM, Portela O, de Carvalho O, Jr., Lefebvre P. Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology.2008; 14:2276-87.
    [19]Bastos A, Gouveia CM, DaCamara CC, Trigo RM. Modelling post-fire vegetation recovery in Portugal. Biogeosciences.2011;8:3593-607.
    [20]Blanche KR, Andersen AN, Ludwig JA. Rainfall-contingent detection of fire impacts:Responses of beetles to experimental fire regimes. Ecological Applications. 2001;11:86-96.
    [21]Bond WJ, Dickinson KJM, Mark AF. What limits the spread of fire-dependent vegetation? Evidence from geographic variation of serotiny in a New Zealand shrub. Global Ecology and Biogeography.2004;13:115-27.
    [22]Bond WJ, Keeley JE. Fire as a global'herbivore':the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution.2005;20:387-94.
    [23]Bond WJ, Cook GD, Williams RJ. Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Austral Ecology. 2012;37:678-85.
    [24]Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D'Antonio CM, DeFries RS, Doyle JC, Harrison SP. Fire in the Earth system. Science. 2009;324:481-4.
    [25]Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D'Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW. The human dimension of fire regimes on Earth. Journal of Biogeography.2011;38:2223-36.
    [26]Bradstock RA, Kenny BJ. An application of plant functional types to fire management in a conservation reserve in southeastern Australia. Journal of Vegetation Science.2003;14:345-54.
    [27]Bradstock RA. Effects of large fires on biodiversity in south-eastern Australia: disaster or template for diversity? International Journal of Wildland Fire. 2008; 17:809-22.
    [28]Bradstock RA, Williams RJ. Can Australian fire regimes be managed for carbon benefits? New Phytologist.2009; 183:931-4.
    [29]Bradstock RA. A biogeographic model of fire regimes in Australia:current and future implications. Global Ecology and Biogeography.2010;19:145-58.
    [30]Bradstock RA, Boer MM, Cary GJ, Price OF, Williams RJ, Barrett D, Cook G, Gill AM, Hutley LBW, Keith H, Maier SW, Meyer M, Roxburgh SH, Russell-Smith J. Modelling the potential for prescribed burning to mitigate carbon emissions from wildfires in fire-prone forests of Australia. International Journal of Wildland Fire. 2012;21:629-39.
    [31]Breiman L. Random forests. Mach Learn.2001;45:5-32.
    [32]Buechling A, Baker WL. A fire history from tree rings in a high-elevation forest of Rocky Mountain National Park. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere.2004;34:1259-73.
    [33]Carcaillet C, Bergeron Y, Richard PJH, Frechette B, Gauthier S, Prairie YT. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? Journal of Ecology. 2001;89:930-46.
    [34]Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, Garcia-Alegre M, Antonovskiy M, Buchshtaber V, Pivovarov V. Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Global Change Biology. 2005;11:1537-55.
    [35]Carvalho EO, Kobziar LN, Putz FE. Fire ignition patterns affect production of charcoal in southern forests. International Journal of Wildland Fire.2011;20:474-7.
    [36]Chapin FS, Ⅲ, McGuire AD, Ruess RW, Hollingsworth TN, Mack MC, Johnstone JF, Kasischke ES, Euskirchen ES, Jones JB, Jorgenson MT, Kielland K, Kofinas GP, Turetsky MR, Yarie J, Lloyd AH, Taylor DL. Resilience of Alaska's boreal forest to climatic change. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere.2010;40:1360-70.
    [37]Chen Y, Randerson JT, Morton DC, DeFries RS, Collatz GJ, Kasibhatla PS, Giglio L, Jin Y, Marlier ME. Forecasting fire season severity in south America using sea surface temperature anomalies. Science.2011;334:787-91.
    [38]Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research-Atmospheres.2003; 108.
    [39]Chuvieco E. Satellite observation of Biomass burning-Implications in global change research2008.
    [40]Chuvieco E, Giglio L, Justice C. Global characterization of fire activity:toward defining fire regimes from Earth observation data. Global Change Biology. 2008;14:1488-502.
    [41]Cochrane MA. Fire science for rainforests. Nature.2003;421:913-9.
    [42]Cochrane MA, Barber CP. Climate change, human land use and future fires in the Amazon. Global Change Biology.2009; 15:601-12.
    [43]Crevoisier C, Shevliakova E, Gloor M, Wirth C, Pacala S. Drivers of fire in the boreal forests:Data constrained design of a prognostic model of burned area for use in dynamic global vegetation models. Journal of Geophysical Research-Atmospheres. 2007;112.
    [44]Csiszar I, Denis L, Giglio L, Justice CO, Hewson J. Global fire activity from two years of MODIS data. International Journal of Wildland Fire.2005;14:117-30.
    [45]Csiszar IA, Morisette JT, Giglio L. Validation of active fire detection from moderate-resolution satellite sensors:The MODIS example in northern Eurasia. Ieee Transactions on Geoscience and Remote Sensing.2006;44:1757-64.
    [46]Cumming SG. Forest type and wildfire in the alberta boreal mixedwood:What do fires burn? Ecological Applications.2001;11:97-110.
    [47]d'Oliveira MVN, Alvarado EC, Santos JC, Carvalho JA, Jr. Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management.2011;261:1490-8.
    [48]Danielson JJ. and Gesch, D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010):U.S. Geological Survey Open-File Report 2011-1073,26p. 2011.
    [49]De'ath G, Fabricius KE. Classification and regression trees:A powerful yet simple technique for ecological data analysis. Ecology.2000;81:3178-92.
    [50]DeFries RS, Morton DC, van der Werf GR, Giglio L, Collatz GJ, Randerson JT, Houghton RA, Kasibhatla PK, Shimabukuro Y. Fire-related carbon emissions from land use transitions in southern Amazonia. Geophysical Research Letters.2008;35.
    [51]Dwyer E, Pinnock S, Gregoire JM, Pereira JMC. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing.2000;21:1289-302.
    [52]Eichler A, Tinner W, Bruetsch S, Olivier S, Papina T, Schwikowski M. An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews.2011;30:1027-34.
    [53]Flannigan MD, Bergeron Y, Engelmark O, Wotton BM. Future wildfire in circumboreal forests in relation to global warming. Journal of Vegetation Science. 1998;9:469-76.
    [54]Flannigan MD, Stocks BJ, Wotton BM. Climate change and forest fires. Science of the Total Environment.2000;262:221-9.
    [55]Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ. Future area burned in Canada. Climatic Change.2005;72:1-16.
    [56]Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM. Implications of changing climate for global wildland fire. International Journal of Wildland Fire.2009;18:483-507.
    [57]French NHF, de Groot WJ, Jenkins LK, Rogers BM, Alvarado E, Amiro B, de Jong B, Goetz S, Hoy E, Hyer E, Keane R, Law BE, McKenzie D, McNulty SG, Ottmar R, Perez-Salicrup DR, Randerson J, Robertson KM, Turetsky M. Model comparisons for estimating carbon emissions from North American wildland fire. J Geophys Res-Biogeosci.2011;116.
    [58]Fuller DO, Murphy K. The ENSO-fire dynamic in insular Southeast Asia. Climatic Change.2006;74:435-55.
    [59]Giglio L, Descloitres J, Justice CO, Kaufman YJ. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment.2003;87:273-82.
    [60]Giglio L, Csiszar I, Justice CO. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res-Biogeosci.2006;111.
    [61]Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences.2010;7:1171-86.
    [62]Goetz SJ, Bond-Lamberty B, Law BE, Hicke JA, Huang C, Houghton RA, McNulty S, O'Halloran T, Harmon M, Meddens AJH, Pfeifer EM, Mildrexler D, Kasischke ES. Observations and assessment of forest carbon dynamics following disturbance in North America. J Geophys Res-Biogeosci.2012; 117.
    [63]Gosper CR, Yates CJ, Prober SM. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. Journal of Vegetation Science.2012;23:1071-81.
    [64]Grady JM, Hoffmann WA. Caught in a fire trap:Recurring fire creates stable size equilibria in woody resprouters. Ecology.2012;93:2052-60.
    [65]Greve M, Lykke AM, Blach-Overgaard A, Svenning JC. Environmental and anthropogenic determinants of vegetation distribution across Africa. Global Ecology and Biogeography.2011;20:661-74.
    [66]Guyette RP, Muzika RM, Dey DC. Dynamics of an anthropogenic fire regime. Ecosystems.2002;5:472-86.
    [67]Hansen MC, DeFries RS, Townshend JRG Carroll M, Dimiceli C, Sohlberg RA. Global percent tree cover at a spatial resolution of 500 meters:First results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interactions.2003;7.
    [68]Hirota M, Nobre C, Oyama MD, Bustamante MMC. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America. New Phytologist.2010;187:707-19.
    [69]Hirota M, Holmgren M, Van Nes EH, Scheffer M. Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science.2011;334:232-5.
    [70]Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC. Ecological thresholds at the savanna-forest boundary:how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters.2012;15:759-68.
    [71]Ichoku C, Giglio L, Wooster MJ, Remer LA. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment.2008;112:2950-62.
    [72]Ichoku C, Kahn R, Chin M. Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos Res.2012;111:1-28.
    [73]IPCC. Climate Change 2007:Impacts, Adaptation and Vulnerability, Contribution of Working Group 2 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press. 2007;Chapter 5.
    [74]Johnson NC, Wedin DA. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecological Applications. 1997;7:171-82.
    [75]Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y. The MODIS fire products. Remote Sensing of Environment.2002;83:244-62.
    [76]Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD. Topographic influences on wildfire consumption of soil organic carbon in interior Alaska:Implications for black carbon accumulation. J Geophys Res-Biogeosci. 2007;112.
    [77]Kasischke ES, Stocks BJ. Ecological Studies; Fire, climate change, and carbon cycling in the Boreal Forest. Ecological Studies; Fire, climate change, and carbon cycling in the Boreal Forest2000. p. i-xv,1-461.
    [78]Kasischke ES, Bruhwiler LP. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research-Atmospheres.2002; 108.
    [79]Kasischke ES, Hyer EJ, Novelli PC, Bruhwiler LP, French NHF, Sukhinin AI, Hewson JH, Stocks BJ. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Global Biogeochemical Cycles.2005; 19.
    [80]Kasischke ES, Bourgeau-Chavez LL, Johnstone JF. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery-Implications for post-fire tree recruitment. Remote Sensing of Environment.2007;108:42-58.
    [81]Kasischke ES, Loboda T, Giglio L, French NHF, Hoy EE, de Jong B, Riano D. Quantifying burned area for North American forests:Implications for direct reduction of carbon stocks. J Geophys Res-Biogeosci.2011; 116.
    [82]Kasischke ES, Hoy EE. Controls on carbon consumption during Alaskan wildland fires. Global Change Biology.2012;18:685-99.
    [83]Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW. Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research-Atmospheres.1998; 103:32215-38.
    [84]Keane RE, Cary GJ, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Li C, Rupp TS. A classification of landscape fire succession models:spatial simulations of fire and vegetation dynamics. Ecological Modelling.2004; 179:3-27.
    [85]King KJ, Cary GJ, Bradstock RA, Marsden-Smedley JB. Contrasting fire responses to climate and management:insights from two Australian ecosystems. Global Change Biology.2013;19:1223-35.
    [86]Kloster S, Mahowald NM, Randerson JT, Thornton PE, Hoffman FM, Levis S, Lawrence PJ, Feddema JJ, Oleson KW, Lawrence DM. Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences.2010;7:1877-902.
    [87]Krawchuk MA, Cumming SG, Flannigan MD, Wein RW. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology. 2006;87:458-68.
    [88]Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K. Global Pyrogeography:the Current and Future Distribution of Wildfire. Plos One.2009;4.
    [89]Krawchuk MA, Moritz MA. Constraints on global fire activity vary across a resource gradient. Ecology.2011;92:121-32.
    [90]Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M. Fire regime:history and definition of a key concept in disturbance ecology. Theor Biosci.2010; 129:53-69.
    [91]Le Page Y, Pereira JMC, Trigo R, da Camara C, Oom D, Mota B. Global fire activity patterns (1996-2006) and climatic influence:an analysis using the World Fire Atlas. Atmospheric Chemistry and Physics.2008;8:1911-24.
    [92]Le Page Y, van der Werf GR, Morton DC, Pereira JMC. Modeling fire-driven deforestation potential in Amazonia under current and projected climate conditions. J Geophys Res-Biogeosci.2010; 115.
    [93]Legates DR, Willmott CJ. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol.1990a; 10:111-27.
    [94]Legates DR, Willmott CJ. Mean seasonal and spatial variability in global surface air-temperature. Theor Appl Climatol.1990b;41:11-21.
    [95]Lehmann CER, Archibald SA, Hoffmann WA, Bond WJ. Deciphering the distribution of the savanna biome. New Phytologist.2011;191:197-209.
    [96]Loepfe L, Rodrigo A, Lloret F. Two thresholds determine climatic control of forest-fire size in Europe. Biogeosciences Discuss.2012;9:9065-89.
    [97]Lohman DJ, Bickford D, Sodhi NS. The burning issue. Science.2007;316:376-.
    [98]Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC. Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience.2008; 1:697-702.
    [99]McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs.2009;79:523-55.
    [100]Mebust AK, Russell AR, Hudman RC, Valin LC, Cohen RC. Characterization of wildfire NO(x) emissions using MODIS fire radiative power and OMI tropospheric NO(2) columns. Atmospheric Chemistry and Physics.2011; 11:5839-51.
    [101]Mermoz M, Kitzberger T, Veblen TT. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology.2005;86:2705-15.
    [102]Meyn A, White PS, Buhk C, Jentsch A. Environmental drivers of large, infrequent wildfires:the emerging conceptual model. Progress in Physical Geography. 2007;31:287-312.
    [103]Meyn A, Schmidtlein S, Taylor SW, Girardin MP, Thonicke K, Cramer W. Spatial variation of trends in wildfire and summer drought in British Columbia, Canada,1920-2000. International Journal of Wildland Fire.2010;19:272-83.
    [104]Miller AD, Roxburgh SH, Shea K. How frequency and intensity shape diversity-disturbance relationships. Proceedings of the National Academy of Sciences of the United States of America.2011;108:5643-8.
    [105]Moritz M, Parisien M-A, Batllori E, Krawchuk M, Van Dorn J, Ganz D, Hayhoe K. Climate change and disruptions to global fire activity. Ecosphere.2012;3:art49.
    [106]Moritz MA. Spatiotemporal analysis of controls on shrubland fire regimes:Age dependency and fire hazard. Ecology.2003;84:351-61.
    [107]Moritz MA, Moody TJ, Krawchuk MA, Hughes M, Hall A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters.2010;37.
    [108]Murphy BP, Williamson GJ, Bowman DMJS. Fire regimes:moving from a fuzzy concept to geographic entity. New Phytologist.2011;192:316-8.
    [109]Murphy BP, Bowman DMJS. What controls the distribution of tropical forest and savanna? Ecology Letters.2012; 15:748-58.
    [110]Nepstad D, Carvalho G, Barros AC, Alencar A, Capobianco JP, Bishop J, Moutinho P, Lefebvre P, Silva UL, Prins E. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management.2001;154:395-407.
    [111]Nepstad DC, Verissimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V. Large-scale impoverishment of Amazonian forests by logging and fire. Nature.1999;398:505-8.
    [112]Nieto H, Aguado I, Garcia M, Chuvieco E. Lightning-caused fires in Central Spain:Development of a probability model of occurrence for two Spanish regions. Agr Forest Meteorol.2012;162:35-43.
    [113]Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management.2012;275:117-29.
    [114]Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR. Terrestrial ecoregions of the worlds:A new map of life on Earth. Bioscience.2001;51:933-8.
    [115]Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 2002;420:61-5.
    [116]Parisien M-A, Moritz MA. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs.2009;79:127-54.
    [117]Parisien M-A, Parks SA, Krawchuk MA, Flannigan MD, Bowman LM, Moritz MA. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Ecological Applications.2011;21:789-805.
    [118]Parisien M-A, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, Moritz MA. Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire.2012;21:313-27.
    [119]Pausas JG, Bradstock RA. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography.2007; 16:330-40.
    [120]Pausas JG, Paula S. Fuel shapes the fire-climate relationship:evidence from Mediterranean ecosystems. Global Ecology and Biogeography.2012;21:1074-82.
    [121]Prasad VK, Badarinath KS, Eaturu A. Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. Journal of Environmental Management. 2008;86:1-13.
    [122]Preisler HK, Westerling AL. Statistical model for forecasting monthly large wildfire events in western United States. J Appl Meteorol Clim.2007;46:1020-30.
    [123]Preisler HK, Chen S-C, Fujioka F, Benoit JW, Westerling AL. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices. International Journal of Wildland Fire.2008;17:305-16.
    [124]Preisler HK, Ager AA, Hayes JL. Probabilistic Risk Models for Multiple Disturbances:An Example of Forest Insects and Wildfires. U S Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR.2010:371-9.
    [125]Preisler HK, Westerling AL, Gebert KM, Munoz-Arriola F, Holmes TP. Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire.2011;20:508-17.
    [126]Prentice IC, Kelley DI, Foster PN, Friedlingstein P, Harrison SP, Bartlein PJ. Modeling fire and the terrestrial carbon balance. Global Biogeochemical Cycles. 2011;25.
    [127]Price C, Rind D. Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research-Atmospheres.1994;99:10823-31.
    [128]Prober SM, Thiele KR, Lunt ID. Fire frequency regulates tussock grass composition, structure and resilience in endangered temperate woodlands. Austral Ecology.2007;32:808-24.
    [129]Prober SM, Lunt ID, Thiele KR. Effects of fire frequency and mowing on a temperate, derived grassland soil in south-eastern Australia. International Journal of Wildland Fire.2008; 17:586-94.
    [130]Pueyo S. Self-organised criticality and the response of wildland fires to climate change. Climatic Change.2007;82:131-61.
    [131]Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet:1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles.2008;22.
    [132]Randerson JT, van der Werf GR, Collatz GJ, Giglio L, Still CJ, Kasibhatla P, Miller JB, White JWC, DeFries RS, Kasischke ES. Fire emissions from C-3 and C-4 vegetation and their influence on interannual variability of atmospheric CO2 and delta(CO2)-C-13. Global Biogeochemical Cycles.2005;19.
    [133]Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS. The impact of boreal forest fire on climate warming. Science.2006;314:1130-2.
    [134]Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J Geophys Res-Biogeosci.2012; 117.
    [135]Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehmann CER, Anderson MT, Higgins SI, Sankaran M. When is a'forest'a savanna, and why does it matter? Global Ecology and Biogeography.2011;20:653-60.
    [136]Rejwan C, Collins NC, Brunner LJ, Shuter BJ, Ridgway MS. Tree regression analysis on the nesting habitat of smallmouth bass. Ecology.1999;80:341-8.
    [137]Riano D, Ruiz JAM, Isidoro D, Ustin SL. Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Pathfinder. Global Change Biology.2007; 13:40-50.
    [138]Richards AE, Cook GD, Lynch BT. Optimal Fire Regimes for Soil Carbon Storage in Tropical Savannas of Northern Australia. Ecosystems.2011;14:503-18.
    [139]Romme WH, Everham EH, Frelich LE, Moritz MA, Sparks RE. Are large, infrequent disturbances qualitatively different from small, frequent disturbances? Ecosystems.1998;1:524-34.
    [140]Ruokolainen L, Salo K. The effect of fire intensity on vegetation succession on a sub-xeric heath during ten years after wildfire. Annales Botanici Fennici. 2009;46:30-42.
    [141]Russell-Smith J, Price OF, Murphy BP. Managing the matrix:decadal responses of eucalypt-dominated savanna to ambient fire regimes. Ecological Applications. 2010;20:1615-32.
    [142]Ryan CM, Williams M. How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecological Applications.2011;21:48-60.
    [143]Scholze M, Knorr W, Arnell NW, Prentice IC. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences of the United States of America.2006;103:13116-20.
    [144]Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues H, Assuncao R. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications.2011;21:1573-90.
    [145]Simon M, Plummer S, Fierens F, Hoelzemann JJ, Arino O. Burnt area detection at global scale using ATSR-2:The GLOBSCAR products and their qualification. Journal of Geophysical Research-Atmospheres.2004; 109.
    [146]Slocum MG, Beckage B, Platt WJ, Orzell SL, Taylor W. Effect of Climate on Wildfire Size:A Cross-Scale Analysis. Ecosystems.2010;13:828-40.
    [147]Staver AC, Bond WJ, Stock WD, van Rensburg SJ, Waldram MS. Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications. 2009;19:1909-19.
    [148]Staver AC, Archibald S, Levin SA. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science.2011;334:230-2.
    [149]Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin JZ, Lawrence K, Hartley GR, Mason JA, McKenney DW. Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change.1998;38:1-13.
    [150]Stott P. Combustion in tropical biomass fires:a critical review. Progress in Physical Geography.2000;24:355-77.
    [151]Tansey K, Gregoire JM, Stroppiana D, Sousa A, Silva J, Pereira JMC, Boschetti L, Maggi M, Brivio PA, Fraser R, Flasse S, Ershov D, Binaghi E, Graetz D, Peduzzi P. Vegetation burning in the year 2000:Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research-Atmospheres.2004; 109.
    [152]Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions:results from a process-based model. Biogeosciences. 2010;7:1991-2011.
    [153]Timoney KP. The changing disturbance regime of the boreal forest of the Canadian Prairie Provinces. Forestry Chronicle.2003;79:502-16.
    [154]Turner MG, Romme WH. Landscape dynamics in crown fire ecosystems. Landscape Ecology.1994;9:59-77.
    [155]van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF, Olsen SC, Kasischke ES. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science.2004;303:73-6.
    [156]van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF, Jr. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics.2006;6:3423-41.
    [157]van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Gigliof L, Murdiyarso D, Peters W, Morton DC, Collatz GJ, Dolman AJ, DeFries RS. Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:20350-5.
    [158]van der Werf GR, Morton DC, DeFries RS, Giglio L, Randerson JT, Collate GJ, Kasibhatla PS. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences.2009;6:235-49.
    [159]van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics.2010;10:11707-35.
    [160]Vermote E, Ellicott E, Dubovik O, Lapyonok T, Chin M, Giglio L, Roberts GJ. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research-Atmospheres.2009; 114.
    [161]Warman L, Moles AT. Alternative stable states in Australia's Wet Tropics:a theoretical framework for the field data and a field-case for the theory. Landscape Ecology.2009;24:1-13.
    [162]Weng ES, Luo YQ, Wang W, Wang H, Hayes DJ, McGuire AD, Hastings A, Schimel DS. Ecosystem carbon storage capacity as affected by disturbance regimes:A general theoretical model. J Geophys Res-Biogeosci.2012:117.
    [163]Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase western US forest wildfire activity. Science.2006;313:940-3.
    [164]Westerling AL, Bryant BP. Climate change and wildfire in California. Climatic Change.2008;87:S231-S49.
    [165]Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America.2011; 108:13165-70.
    [166]Williams AAJ, Karoly DJ, Tapper N. The sensitivity of Australian fire danger to climate change. Climatic Change.2001;49:171-91.
    [167]Williams CA, Hanan NP, Neff JC, Scholes RJ, Berry JA, Denning AS, Baker DF. Africa and the global carbon cycle. Carbon balance and management.2007;2:3-.
    [168]Williams CA, Collatz GJ, Masek J, Goward SN. Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles.2012;26.
    [169]Williams RJ, Bradstock RA. Large fires and their ecological consequences: introduction to the special issue. International Journal of Wildland Fire. 2008;17:685-7.
    [170]Wooster MJ, Zhang YH. Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters.2004;31.
    [171]Wooster MJ, Roberts G, Perry GLW, Kaufman YJ. Retrieval of biomass combustion rates and totals from fire radiative power observations:FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research-Atmospheres.2005; 110.
    [172]Wooster MJ, Perry GLW, Zoumas A. Fire, drought and El Nino relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000). Biogeosciences. 2012;9:317-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700