用户名: 密码: 验证码:
菊花黄绿叶突变体黄叶与绿叶组织形成的生理与分子机制比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Chrysanthemum×morifolium (Ramat.) Kitamura)原产我国,是我国十大传统名花与世界四大切花之一,具有很高的观赏与应用价值,在花卉生产中占有十分重要的地位。目前,由于菊花以观花为主,研究应用主要集中在花型花色上,叶色研究较少。本研究通过对菊花黄绿叶突变体的形态解剖结构进行对比研究,对类囊体蛋白含量与光谱、叶绿素荧光特性进行分析,及构建黄绿叶突变体叶片中的黄叶组织与绿叶组织抑制差减杂交文库,通过对差减杂交文库分析筛选与黄绿叶突变性状相关的叶色突变基因,并对筛选到的两个基因进行了克隆与表达分析,相关研究对揭示菊花叶色形成机理及遗传改良有积极意义。主要结果如下:
     1.以菊花黄绿叶突变体'NAU04-1-31'为试验材料,分别测定了菊花黄绿叶突变体叶片中黄叶与绿叶组织的叶绿素含量与类胡萝卜素含量,并比较了两种不同类型叶片组织的显微、超微解剖结构及类囊体膜蛋白的含量。叶绿素含量测定表明:黄叶组织中叶绿素a、叶绿素b和类胡萝卜素含量显著低于绿叶组织,而黄叶组织与绿叶组织叶绿素a/b的比值则没有显著的差异。叶绿体显微与超微结构观察发现:黄叶组织中细胞内叶绿体形状不规则,缺乏正常的叶绿体膜结构,无类裘体,无淀粉粒,嗜锇颗粒较多且积聚成簇状;而绿叶组织细胞内叶绿体较多,形状规则,基粒片层清晰,其内淀粉粒结构清晰且体积较大,嗜锇颗粒较少且分散,说明黄绿叶突变体中黄叶与绿叶组织的颜色差异主要是由于叶绿素含量显著减少所致。类囊体蛋白电泳结果表明:绿叶组织中最少可以分离出15条类囊体膜多肽,而黄叶组织中则仅可分离出4条类囊体多肽,特别是黄叶组织中的光系统Ⅱ的多肽与绿叶相比下降明显。类囊体膜的吸收光谱、荧光发射光谱及激发光谱明显下降,而且峰位发生红移与蓝移,说明突变体类囊体膜的结构可能受到了破坏,黄叶组织对光能的捕获效率下降,且较依赖于Chla捕光并将光能激发传递给PSⅡ反应中心。
     叶绿素荧光特性表明:菊花突变体黄叶组织与绿叶组织相比,其荧光参数F0较高,而Fv/Fm、Fv'/Fm'、ΦOPSⅡ等参数较低,说明黄叶组织的光合机构可能受到破坏,光化学能力下降;黄叶组织用于光化学反应的光能远小于绿叶组织,而用于热耗散的光能则大大增加。黄叶组织中与光抑制有关的NPQ成分qI增加,说明其更容易受到光抑制的破坏。黄叶组织光系统间的电子传递受阻,放氧复合体受到破坏,单位面积反应中心数目较少,光合性能指数(PIABS)低于绿叶组织。与绿叶组织相比,黄叶组织PS II光化学性能的下降,黄叶组织对光抑制比较敏感,通过提高热耗散能力,来减少过剩光能对黄叶组织光合机构的破坏。
     2.为了验证黄叶组织与绿叶组织基因表达的差异,将黄绿叶突变体中绿叶组织与黄叶组织通过抑制差减杂交技术构建了抑制差减杂交文库。通过斑点杂交确定为阳性克隆并测序获得339个ESTs序列。其中从黄叶组织中分离到157个ESTs,绿叶组织中分离到182个ESTs,根据测序文件去除低质量序列后,最终获得293个ESTs。利用DNAStar软件对293条ESTs分别进行聚类,共获得150个unigenes,包括93个singletons,57个contigs。所有的ESTs经BlastX比对和功能注释发现在所有的Unigene中,107个unigene与已知基因具有类似功能,占71.3%;27个unigene与已知基因未有显著的同源性或仅具有推定功能,占18%;16个unigene在数据库中未搜索到同源序列,可能为新基因,占10.6%。根据COG分类,可把所有的unigene划分为16类:第一大类为能量生成与代谢,占16%;翻译、核糖体结构与合成为第二大类,占14%;碳转运与代谢及次生物质合成、转运与代谢各占7.3‰细胞骨架、信号转导等其它各类所占比例较少。其中在菊花黄叶中上调表达的镁螯合酶(GUN5)大亚基和ATP依赖的金属蛋白酶(VAR1)有可能参与到与花叶有关的表型形成。
     3.通过RACE技术,获得了4451bp全长的菊花镁螯合酶大亚基(CmChlH) cDNA序列。序列分析表明:该序列包含4149bp的开放阅读框(ORF),编码一条1383个氨基酸的蛋白。推测的蛋白大小与理论等电点分别为154kDa和5.95。根据ORF序列,在5’端有一段51个氨基酸的叶绿体转运肽。菊花镁螯合酶大亚基与拟南芥、水稻、念珠藻、嗜中温螺旋杆茵分别有85%、82%、67%和43%的同源性,与同为双子叶的拟南芥同源性最高,并具有保守的三个组氨酸残基(H666,H670and H815,)。系统进化树分析表明:菊花与拟南芥、金鱼草及烟草的ChlH有比较近的亲缘关系,属于一类。这些结果表明:菊花ChlH编码镁螯合酶大亚基。
     通过相同方法获得了2272bp全长的菊花FtsH cDNA序列,命名为CmFtsH。序列分析表明:该序列包含2094bp的开放阅读框(ORF),编码一条698个氨基酸的蛋白质。推测的蛋白大小与理论等电点分别为74.67kDa和5.99,在其5’端有一段长度57个氨基酸的叶绿体转运肽。多序列比对表明:CmFtsH具有保守的两个ATP结合位点(Walker-A, Walker-B),以及推测AAA特征模块——第二同源区(SRH),其C端包括了一个推测的Zn2+结合结构域HEXGH(X代表非保守氨基酸)。菊花CmFtsH与拟南芥12成员中可以引起黄叶突变的最为重要的两个成员AtFtsHl和AtFtsH5亲缘关系最近,分别具有82%与84%的同源性。这些结果表明:菊花FtsH编码FtsH蛋白酶基因。
     4.组织特异性表达表明,CmChlH与CmFtsH在根、茎、叶和花中均有表达,其中在叶片中表达量最高,在茎中其次,在根与花中表达较低。光抑制实验表明,给予一个较高光强的强光后,其绿叶组织的Fv/Fm减少了0.11,而黄叶组织的Fv/Fm减少了0.45;在其后的微光恢复过程中,绿叶组织可以恢复到接近原来的初始水平,而黄叶组织则无法恢复到原来的水平,甚至降低到一个较低的荧光值。在不同的光强处理下,在绿叶组织中,CmChlH的转录在10μmol/m2/s到450μmol/m2/s时不断上升,在600μmol/m2/s光强下受到抑制,但在黄叶组织中,CmChlH的转录则持续不断上升,在600μmol/m2/s光强下则未受到抑制。当置于黑暗中时,与光下对照相比,CmChlH在两种类型叶片中的表达在早期均下调到一个较低的水平,然后保持在该水平,表明CmChlH受光诱导调节。
     在绿叶组织中,CmFtsH的mRNA水平从10μmol/m2/s到450μmol/m2/s时稳步上升,在450μmol/m2/s光强下达到顶峰,然后在600μmol/m2/s光强下受到光抑制。在黄叶组织中,CmFtsH的mRNA从10到450μmol/m2/s时也稳步上升,在600μmol/m2/s光强下达到顶点。但在450μmol/m2/s与600μmol/m2/s光强下黄叶组织的转录水平大约是绿叶组织相应光强下的1.4与3.1倍。在黑暗条件下,CmFtsH的转录水平随着时间延长而减少,黑暗处理5h时,两种类型叶片CmFtsH的mRNA水平降至光下对照的一半,在处理12h到48h过程则不断减少。
Chrysanthemum(Chrysanthemum x morifolium (Ramat.) Kitamura), has a long history in China, and is one of the ten most famous flowers in China, which is used as the potted flower, cut flower, and applied as the ground-cover plant. Chrysanthemum is valuable for its ornamental character, and is very important for the flower production. Nowdays the study on chrysanthemum is mostly focused on its colors and types of flowers, but little study on its leaf color. So the study on leaf color will help to increase its ornamental value. In this study, chloroplast microstructure and ultrastructure> SDS-PAGE and spectra anlysis of thylakoid membrane protein^chlorophyll fluorescence characteristics of green leaf tissue and yellow leaf tissue in yellow-green mutant of chrysanthemum were studied. Then suppression subtractive hybridization (SSH) technique was used to identify different genes between the green leaf and yellow leaf tissue of the mutant, the two genes related to the mutation of the leaf color were screened, the expression of the two genes and the physiological difference in the green leaf tissue and yellow leaf tissue were also studied, all these research is signifcant to reveal the mechanism of the formation of leaf color and genetic improvement. The main results are as follows:
     1. The contents of chlorophyll, carotenoid, anatomic structures of green leaf tissue and yellow leaf tissue of chrysanthemum yellow-green leaf mutant 'NAU04-1-31' were studied by optical and electron microscopy. The results showed that chlorophyll and carotenoid contents in the yellow leaf tissue were lower than that in green leaf tissue. The ratio of chlorophyll a and chlorophyll b in yellow leaves was equivalent to that in green leaf tissue. In the yellow leaf tissue, there were some abnormal chloroplasts, in which vacuolated structures, a clustered plastoglobuli and no clear starch grains could be observed in the disrupted chloroplasts. In the green leaf tissue, chloroplasts in the green leaf tissue looked normal in their formation of thylakoids and granal stacks, many plump starch grains could be clearly observed, just few disperse plastoglobuli were contained in the green leaf tissue. The analysis of thylakoid membrane protein gel:at least15polypeptides could be isolated from the green leaf tissue, just4polypeptides could be isolated from the yellow leaf tissue. Especially, the polypeptides of PS II in yellow leaf tissue decreased greatly than that in green leaf tissue. The thylakoid membranes of the green and yellow leaf tissue were used to study on their room temperature absorption spectra, chlorophyll emission and excitation fluorescence spectra. Compared to the green leaf tissue, the absorption spectra and fluorescence spectra of the yellow leaf tissue decreased significantly, the peak position red-shifted and blue-shifted, the structure of thylakoid might be destroyed, the efficiency of light harvest decreased, Chla rather than Chlb in the yellow leaf tissue is responsible for harvesting light and being excited by light.
     Chlorophyll fluorescence characteristics showed:compared to green leaf tissue in the mutant, the yellow leaf tissue had higher Fo, but lower Fv/Fm、Fv'/Fm'、Φ PS Ⅱ、 and so on, which indicated the structure of photosystem might be destroyed; the yellow leaf tissue decreased greatly in photochemical reaction, but greatly increased in heat excitation. The ql component of NPQ in the yellow leaf tissue is higher than in green leaf tissue of the mutant, which indicated the yellow leaf tissue is sensitive to photoinhibition. Chlorophyll fluorescence kinetic parameters indicated PS II electron transport was apparently blocked and oxygen-evolving complex was destroyed, density of reaction centers decreased in yellow leaf tissue, which caused lower performance index on absorption. Compared to the green leaf tissue, the photochemical efficiency of the yellow leaf tissue decreased, the yellow leaf tissue was sensitive to photoinhibition, which increased the heat dissipation to prevent the damage from overmuch energy.
     2. In order to identify the expression differences between the green leaf tissue and the yellow leaf tissue, SSH was used to reveal the differentially expressed genes. A total of339(positive) cDNA clones (44.1%) were selected with the dot blot hybridization technology,157clones were isolated from yellow leaf tissue,182clones were isolated from green leaf tissue. After the removal of vector sequences and poor quality sequences,293ESTs of high quality sequences were consequently obtained. Of the293clones,93clones (62%) were singletons and the remaining200ESTs were clustered into57(38%) contigs with occurrence of the common gene ranging from2to23times, and a total of150unigenes were ultimately obtained. Classification of gene function for the150unigenes using a BlastX homology search revealed that107unigenes (71.3%) could be identified or assigned to the putative functions of known genes,27unigenes (18%) were classified to be no significant homology or unknown function, and16unigenes (10.6%) had no matches in public databases. All the unigenes were classified into16primary functional categories, according to the putative function of their homologous genes in the databases. The largest group of genes (16%) was assigned to energy production and conversion. Genes involved in translation, ribosomal structure and biogenesis formed the second (14%), carbohydrate transport and metabolism and secondary metabolites biosynthesis, transport and catabolism together formed the third (7.3%) largest group, respectively. While other categories were composed of a small number of expressed sequence tags (ESTs), especially the cytoskeleton category, signal transduction mechanisms category, and coenzyme transport and metabolism were exiguous. The genes of CmChlH and CmFtsH were screened for further study due to its possiblity involved in the formation of the mutation.
     3. A full-length CmChlH cDNA (chrysanthemum large subunit of Mg-chelatase, AB543917) contains4,451bp with an open reading frame of4,149bp encoding1,383amino acids. The predicted isoelectric point (pI) and molecular weight (MW) of ChlH is5.95and154kDa, respectively. Chrysanthemum CmChlH has a pre-sequence of51N-terminal amino acids and was predicated to be targeted to the chloroplast. The deduced amino acid sequence of CmChlH shared85%,82%,67%and43%of amino acid residues with protein from AtChlH, Arabidopsis thaliana (NP_196867); OsChlH, Oryza sativa (ABF95686), NpChlH, Nostoc punctiforme (YP_001866414), HmChlH, Heliobacterium modesticaldum Icel (YP_001679881). It is highly homologous to AtChlH (GUN5), the large subunit of Mg-chelatase. Three conserved histidine residues (H666, H670and H815) are also contained in chrysanthemum putative amino acids of ChlH. These results indicated that CmChlH cDNA represents the large subunit of Mg-chelatase in higher plants.
     A full-length CmFtsH cDNA (Chrysanthemum, ATP-metalloprotease, AB542716) contains2,272bp with an open reading frame of2,094bp encoding698amino acids. The predicted isoelectric point (pI) and molecular weight(MW) of CmFtsH are5.99and74.67kDa, respectively. CmFtsH has a pre-sequence of57N-terminal amino acids and was predicated to be targeted to the chloroplast. Multiple sequence alignments revealed that consensus regions exist among FtsH homologs from chrysanthemum, Arabidopsis thaliana, Nicotiana tabacum and E.coli. The sequence of CmFtsH Protein contains conserved motifs for a Walker-type ATPase and metalloprotease, such as motifs A and B(Ⅰ, Ⅱ), the second region of homology (SRH, Ⅲ), and a zinc-binding domain (Ⅳ). The deduced amino acid sequence of CmFtsH displayed84%,82%,53%and50%similarity with AtFtsH5(Arabidopsis, NP_568604); AtFtsH1(Arabidopsis, NP_564563); NtFtsH (Nicotiana tabacum, AAD17230); EcFtsH (E.coli, P28691).
     A phylogenetic analysis shows CmFtsH is highly homologous to AtFtsHl, AtFtsH5in Arabidopsis thaliana. Moreover sequence comparison showed that deduced amino acid sequence of CmFtsH was most homologous to AtFtsH5(VAR1). Taken together, these results suggested that CmFtsH cDNA identified herein encoded a FtsH protease.
     4. Tissue specific expression of the two genes indicated:the expression of CmChlH in leaves was the highest, and the next was in stems, only weak expression in roots and flowers. Similarly, we found the expression of CmFtsH was the highest in leaves compared to the green leaf tissue, the expression of CmFtsH in stems was just inferior to that in leaves. Only low abundance mRNA of CmFtsH could be detected in roots and flowers. Following strong light irradiation, Fv/Fm in leaf recovered under dim light was detected. Fv/Fm declined slightly by0.11in the green leaf tissue of the mutant. But the value of Fv/Fm decreased greatly by0.45in the yellow leaf tissue of the mutant, which indicated that the yellow leaf tissue were highly sensitive to photoinhibition in PSII. Recovery of the photoinhibition in the green leaf tissue of the mutant was faster than that in the yellow leaf tissue of the mutant. Fv/Fm in the green leaf tissue of the mutant completely recovered after an overnight adaptation under dim light, While Fv/Fm in the yellow leaf tissue of the mutant did not show a recovery to static levels. Furthermore, their Fv/Fm decreased quickly to a lower value from3to20h. These results clearly indicated that the yellow leaf tissue of the mutant is very sensitive to photoinhibition in PSII, and that the damage caused at the given light intensity is irreversible.
     The expression of CmChlH to various light intensities was investigated using the green leaf tissue and the yellow leaf tissue in the mutant. In green leaf tissue, the abundance of CmChlH transcript increased steadily from10to150μmol/m2/s light exposure, then increased quickly from150to350μmol/m2/s light exposure, and peaked at450μmol/m2/s light exposure, but suppressed at600μmol/m2/s light exposure. In yellow leaf tissue, the transcript of CmChlH increased steadily from10to450μmol/m2/s, moreover, the transcript of CmChlH kept on increasing from450to600μmol/m2/s. Though there was a higher expression level of CmChlH in the light (0hours), when placed in the dark, the expression of CmChlH in two types of leaf tissue were both down regulated to a low level, then maintained this level without great change from5to48hours in the dark, whose transcript level were great lower than the control in the light. These results indicated that the expression of CmChlH was induced by light.
     In the light treatment, we exposed the green leaf tissue and yellow leaf tissue to various light intensities for12h. The results showed that, in green leaf tissue, CmFtsH mRNAs increased slowly from10to450μmol/m2/s, peaked at450μmol/m2/s, then suppressed at600μmol/m2/s. In yellow leaf tissue, CmFtsH mRNAs kept on increasing from10to450μmol/m2/s and peaked at600μmol/m2/s.
     Similar to the light dependent expression, we found that CmFtsH transcript levels were decreased with the time in the dark. The results indicated that CmFtsH mRNA levels decreased about half of the control after5h in dark in two leaf types, and decreased quickly from12to48hours. Only trace mRNA expression of CmFtsH could be detected after48h in the dark. These results validated that CmFtsH expression is regulated by light condition at the transcript level,too.
引文
Allen KD, Duysen ME, Staehelin LA. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat[J]. Journal of Cell Biology,1988,107(3):907-919.
    Anderson JM. Photoregulation of the composition, function, and structure of thylakoid membranes[J]. Annual Review of Plant Physiology,1986,37(1):93-136.
    Apchelimov AA, Soldatova OP, Ezhova TA, et al. The analysis of the Chll 1 and Chll 2 genes using acifluorfen-resistant mutant of Arabidopsis thaliana[J]. Planta,2007,225(4):935-943.
    Apel K, Kloppstech K. The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein[J]. Planta,1980,150(5):426-430.
    Awan MA, Konzak CF, Rutger JN, et al. Mutagenic effects of sodium azide in rice[J]. Crop Science, 1980,20(5):663-668.
    Bailey S, Walters RG, Jansson S, et al. Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses[J]. Planta,2001,213(5):794-801.
    Barak S, Heimer Y, Nejidat A, et al. The peroxisomal glycolate oxidase gene is differentially expressed in yellow and white sectors of the DPI variegated tobacco mutant[J]. Physiologia Plantarum, 2000,110(1):120-126.
    Beale SI. Green genes gleaned[J]. Trends in plant science,2005,10(7):309-312.
    Bellemare G, Bartlett SG, Chua NH. Bioynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley[J]. J Biol Chem,1982,257(13):7762-7767.
    Bollivar DW, Suzuki JY, Beatty JT, et al. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus[J]. Journal of molecular biology,1994,237(5): 622-640.
    Bollivar DW, Wang S, Allen JP, et al. Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis:characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a[J]. Biochemistry,1994,33(43):12763-12768.
    Boyer PD. The ATP synthase-a splendid molecular machine[J]. Annual Review of Biochemistry,1997, 66(1):717-749.
    Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression [J]. Photosynthesis Research,2002,71(3):185-194.
    Campoli C, Caffarri S, Svensson JT, et al. Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism[J]. Plant Mol Biol,2009,71(1):173-191.
    Chekounova E, Voronetskaya V, Papenbrock J, et al. Characterization of Chlamydomonas mutants defective in the H subunit of Mg-chelatase[J]. Mol Genet Genomics,2001,266(3):363-373.
    Chen G, Bi YR,Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development[J]. Plant Journal,2005,41(3):364-375.
    Chen M, Choi YD, Voytas DF, et al. Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease[J]. Plant J,2000,22(4):303-313.
    Choquet Y, Vallon O. Synthesis, assembly and degradation of thylakoid membrane proteins[J]. Biochimie,2000,82(6-7):615-634.
    Chory J. Light signals in leaf and chloroplast development:photoreceptors and downstream responses in search of a transduction pathway[J]. The New Biologist,1991,3(6):538-548.
    Cornah JE, Terry MJ, Smith AG. Green or red:what stops the traffic in the tetrapyrrole pathway?[J]. Trends in plant science,2003,8(5):224-230.
    Coschigano KT, Melo-Oliveira R, Lim J, et al. Arabidopsis gls Mutants and Distinct Fd-GOGAT Genes: Implications for Photorespiration and Primary Nitrogen Assimilation[J]. The Plant Cell,1998, 10(5):741-752.
    Crofts AR, Baroli I, Kramer D, et al. Kinetics of electron transfer between QA and QB in wild type and herbicide-resistant mutants of Chlamydomonas reinhardtii[J]. Z. Naturforsch,1993,48: 259-266.
    Dailey HA. Enzymes of heme biosynthesis[J]. Journal of Biological Inorganic Chemistry,1997,2(4): 411-417.
    Davis SJ, Kurepa J, Vierstra RD. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases[J]. Proc Natl Acad Sci USA.1999,96(11):6541-6546.
    Demmig-Adams B, Adams III WW, Barker DH, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum,1996,98(2):253-264.
    Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J], Proc Natl Acad Sci,1996,93(12):6025-6030.
    Dunkley PR, Anderson JM. The light-harvesting chlorophyll a/b-protein complex from barley thylakoid membranes. Polypeptide composition and characterization of an oligomer[J]. Biochim Biophys Acta,1979,545(1):174-187.
    Falbel, T, Staehelin L. Partial blocks in the early steps of the chlorophyll synthesis pathway:A common feature of chlorophyll b-deficient mutants[J]. Physiologia Plantarum,1996,97(2):311-320.
    Falbel TG, Staehelin LA. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis[J]. Plant physiology,1994,104(2):639-648.
    Friso G, Giacomelli L, Ytterberg AJ, et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts:new proteins, new functions, and a plastid proteome database[J]. The Plant Cell,2004,16(2):478-499.
    Gadjieva R, Axelsson E, Olsson U, et al. Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants[J]. Plant Physiology et Biochemistry, 2005,43(10-11):901-908.
    Gao P, Wang GY, Zhao HJ, et al. Isolation and identification of submergence-induced genes in maize (Zea mays) seedlings by suppression subtractive hybridization[J]. ACTA BOTANICA SINICA, 2003.45(4):479-483.
    Genty B, Briantais JM.Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta 1989, 990(1):87-92.
    Ghanotakis DF, Yocum CF. Photosystem Ⅱ and the oxygen-evolving complex[J]. Annual Review of Plant Biology,1990,41(1):255-276.
    Gibson LC, Willows RD, Kannangara CG, et al. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides:reconstitution of activity by combining the products of the bchH,-I, and-D genes expressed in Escherichia coli[J]. Proc Natl Acad Sci USA,1995,92(6):1941-1944.
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]]. Science,2002,296(5565):92-100.
    Guo L, Wang ZY, Lin H, et al. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family[J]. Cell Research,2006,16(3):277-286.
    Gustafsson A. The mutation system of the chlorophyll apparatus[J]. Lunds Univer Arsskr,1940,36: 1-40.
    Hamel P, Olive J, Pierre Y, et al. A New Subunit of Cytochrome b6f Complex Undergoes Reversible Phosphorylation upon State Transition[J]. Journal of Biological Chemistry.2000,275(22): 17072-17079.
    Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science,1999,286(5441):950-952.
    Heim MA, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Molecular biology and evolution,2003,20(5):735-747.
    Henningsen KW, Boynton JE, Wettstein D. Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.)[J]. Royal Dan.Acad Sci Lett Biologiske Skrifter, 1993,42(1-349).
    Hermans C, Smeyers M, Rodriguez RM, et al. Quality assessment of urban trees:A comparative study of physiological characterization, airborne imaging and on site fluorescence monitoring by the OJIP-test[J]. Journal of Plant Physiology,2003,160:81-90.
    Hernandez-Terrones MG, Aguilar MI, King-Diaz B. Lotina Hennsen B.Inhibition of photosystem Ⅱ in spinach chloroplasts by trachyloban-19-oic acid[J]. Pesticide Biochemistry Physiology,2003,77: 12-17.
    Herrin DL, Battey JF, Greer K, et al. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll[J]. Journal of Biological Chemistry,1992, 267(12):8260-8296.
    Horton P, Hague A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. Ⅳ.Resolution of non-photochemical quenching[J]. Biochimica et Biophysica Acta,1988,932: 107-115.
    Hudson A, Carpenter R, Doyle S, et al. Olive:a key gene required for chlorophyll biosynthesis in Antirrhinum majus[J]. EMBO J,1993,12(10):3711-3719.
    Hung CY, Sun YH, Chen JJ, et al. Identification of a Mg-protoporphyrin Ⅸ monomethyl ester cyclase homologue, EaZIP, involved in leaf-variegation of Epipremnum aureum'Golden Pothos' is achieved through a unique method of comparative study using tissue cultu[J]. Journal of Experimental Botany,2010,61(5):1483-1493.
    Ihnatowicz A. Functional Analysis of the D-and E-subunits of photosystem Ⅰ in Arabidopsis thaliana[D]. 2005, Universitat zu Koln.
    Ii JA, Webber AN. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number[J]. Photosynthesis Research,2005,85(3):373-384.
    Jarvis P, Chen LJ, Li H, et al. An Arabidopsis mutant defective in the plastid general protein import apparatus[J]. Science,1998,282(5386):100-103.
    Jensen PE, Petersen BL, Stummann BM, et al. Structural genes for Mg-chelatase subunits in barley: Xantha-f,-g and-h[J]. Mol Gen Genet,1996,250(4):383-394.
    Jordi W, Schapendonk A, Davelaar E, et al. Increased cytokinin levels in transgenic PSAG 12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning[J]. Plant Cell and Environment,2000,23(3):279-289.
    Jung KH, Hur J, Ryu CH, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiol,2003,44(5):463-472.
    Kashino Y, Lauber WM, Carroll JA, et al. Proteomic Analysis of a Highly Active Photosystem Ⅱ Preparation from the Cyanobacterium Synechocystis sp. PCC 6803 Reveals the Presence of Novel Polypeptides[J]. Biochemistry,2002,41(25):8004-8012.
    Kloos DU, Oltmanns H, Dock C, et al. Isolation and molecular analysis of six taproot expressed genes from sugar beet[J]. Journal of experimental botany,2002,53(373):1533-1534.
    Kohchi T, Mukougawa K, Frankenberg N, et al. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase[J]. The Plant Cell,2001,13(2):425-436.
    Kruger GHJ, Tsimilli-Michael M, Strasser RJ. Light stress provokes plastic and elastic modifications in structure and function of photosystem Ⅱ in camellia leaves[J]. Physiologia Plantarum,1997, 101(2):265-277.
    Kruse E, Mock HP, Grimm B. Isolation and characterisation of tobacco(Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin Ⅸ[J]. Plant molecular biology,1997,35(6):1053-1056.
    Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional mutagen in Arabidopsis[J]. The Plant Cell, 1999,11(12):2283-2290.
    Kumar AM, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis[J]. Plant physiology,2000,122(1):49-55.
    Kurth J, Varotto C, Pesaresi P, et al. Gene-sequence-tag expression analyses of 1,800 genes related to chloroplast functions[J]. Planta,2002,215(1):101-109.
    Kushnir S, Babiychuk E, Storozhenko S, et al. A mutation of the mitochondrial ABC transporter Stal leads to dwarfism and chlorosis in the Arabidopsis mutant starik[J]. The Plant Cell,2001,13(1): 89-100.
    Kusumi K, Yara A, Mitsui N, et al. Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp[J]. Plant and cell physiology,2004,45(9):1194-1201.
    Larkin RM, Alonso JM, Ecker JR, et al. GUN4, a regulator of chlorophyll synthesis and intracellular signaling[J]. Science,2003,299(5608):902-906.
    Leister D. Chloroplast research in the genomic age[J]. Trends Genet,2003,19(1):47-56.
    Liang P, Pardee AB. Differential Display of Eukaryotic Messenger RNA by Means of the Polymerase Chain Reaction[J]. Science,1992,257(8):967-971.
    Lin ZF, Peng CL, Lin GZ, et al. Photosynthetic characteristics of two new chlorophyll b-less rice mutants[J]. Photosynthetica,2003,41(1):61-67.
    Lindahl M, Spetea C, Hundal T, et al. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem Ⅱ D1 protein[J]. The Plant Cell,2000,12(3):419-431.
    Lucinski R, Jackowski G. The structure, functions and degradation of pigment-binding proteins of photosystem Ⅱ[J]. Acta Biochimica Polonica,2006,53(4):693-708.
    Maloney MA, Hoober JK, Marks DB. Kinetics of Chlorophyll Accumulation and Formation of Chlorophyll-Protein Complexes during Greening of Chlamydomonas reinhardtii y-1 at 38℃[J]. Plant physiology,1989,91(3):1100-1106.
    Markwell J, Osterman JC. Occurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thaliana[J].Plant physiology,1992,98(1): 392-394.
    Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi[J]. Cell,2002,110(5):563-574.
    Meskauskiene R, Nater M, Goslings D, et al. FLU:A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana[J].Proc.Natl.Acad.Sci.USA,2001,98(22):12826-12831.
    Metz JG, Krueger RW, Miles D. Chlorophyll-Protein Complexes of a Photosystem II Mutant of Maize: Evidence that Chlorophyll-Protein a-2 and a Chlorophyll-Protein Complex Derived from a Photosystem I Antennae System Comigrate on Polyacrylamide Gels[J]. Plant physiology,1984, 75(1):238-241.
    Miles D. The use of mutations to probe photosynthesis in higher plants. Amsterdam,,1982, Elsevier Biomedical Press.
    Mochizuki N, Brusslan JA, Larkin R. et al. Arabidopsis genomes uncoupled 5 (GUNS) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction[J]. Proc. Natl Acad. Sci. USA 2001,98(4):2053-2058.
    Molik S, Karnauchov Ⅰ, Weidlich C, et al. The rieske Fe/S protein of the cytochromeb 6/f complex in chloroplasts[J]. J Biol Chem,2001,276(46):42761-42766.
    Moller MG, Petersen BL, Kannangara CG, et al. Chlorophyll Biosynthetic Enzymes and Plastid Membrane Structures in Mutants of Barley (Hordeum vulgare L.)[J]. Hereditas,1997,127(3): 181-191.
    Monde RA, Zito F, Olive J, et al. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex[J]. The Plant Journal,2000,21(1):61-72.
    Muller HJ. Types of visible variations induced by X-rays in Drosophila[J]. Journal of Genetics,1930, 22(3):299-334.
    Muller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy[J]. Plant physiology,2001,125(4):1558-1566.
    Mullet JE. Dynamic regulation of chloroplast transcription[J]. Plant physiology,1993,103(2):309-313.
    Mullet JE, Burke JJ, Arntzen CJ. A developmental study of photosystem I peripheral chlorophyll proteins[J]. Plant physiology,1980,65(5):823-827.
    Murray DL, Kohorn BD. Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCP11 and have stacked thylakoids[J]. Plant Mol Biol,1991,16(1): 71-79.
    Nagata N, Tanaka R, Satoh S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. Plant Cell,2005,17(1):233-240.
    Ni M, Tepperman JM, Quail PH. PIF3, a Phytochrome-Interacting Factor Necessary for Normal Photoinduced Signal Transduction. Is a Novel Basic Helix-Loop-Helix Protein[J]. CELL,1998, 95:657-668.
    Nott A. Jung HS, Koussevitzky S, et al. Plastid-to-nucleus retrograde signaling[J]. Annu. Rev. Plant Biol., 2006,57:739-759.
    Ogren E. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components[J]. Planta,1991,184(4):538-544.
    Oh SA, Park JH, Lee GI, et al. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana[J]. Plant Journal,1997,12(3):527-536.
    Okabe K, Schmid GH,Straub J. Genetic characterization and high efficiency photosynthesis of an aurea mutant of tobacco[J]. Plant physiology,1977,60(1):150-156.
    Oki S, Gu X, Kofoid KD, et al. A light-intensity sensitive chlorophyll mutant in sorghum[J]. Hereditas, 1997,126(3):239-245.
    Ort DR, Yocum CF (1996). Electron transfer and energy transduction in photosynthesis:an overview. Dordrecht, Kluwer Academic.
    Outchkourov NS, Peters J, De Jong J, et al. The promoter-terminator of chrysanthemum rbcSl directs very high expression levels in plants[J]. Planta,2003,216(6):1003-1012.
    Pesaresi P, Masiero S, Eubel H, et al. Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria[J]. Plant Cell,2006, 18(4):970-991.
    Pesaresi P, Varotto C, Meurer J, et al. Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis [J]. Plant J,2001,27(3):179-189.
    Peschke VM, Phillips RL. Genetic implications of somaclonal variation in plants[J]. Adv. Genet,1992, 30:41-75.
    Petersen BL, Moller MG, Jensen PE, et al. Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f,-g and-h in mutant and wild type barley (Hordeum vulgare L)[J]. Hereditas,1999,131(2):165-170.
    Pfannschmidt T. Chloroplast redox signals:how photosynthesis controls its own genes[J]. Trends Plant Sci,2003,8(1):33-41.
    Phillips RL, Kaeppler SM, Olhoft P. Genetic instability of plant tissue cultures:breakdown of normal controls[J]. Proceedings of the National Academy of Sciences,1994,91(12):5222-5226.
    Prasil O, Adir N, Ohad I. Dynamics of photosystem II:mechanism of photoinhibition and recovery process. The photosystems:structure, function and molecular biology. J. Barber. Amsterdam. 1992,11:295-348.
    Reyes-Arribas T, Barrett JE, Huber DJ, et al. Leaf senescence in a non-yellowing cultivar of chrysanthemum(Dendranthema grandiflora)[J]. Physiol Plant,2001,111:540-544.
    Rissler HM, Collakova E, DellaPenna D, et al. Chlorophyll biosynthesis. Expression of a second Chl 1 gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant physiology,2002,128(2):770-779.
    Robertson EJ, Rutherford SM, Leech RM. Characterization of chloroplast division using the Arabidopsis mutant arc5[J]. Plant physiology,1996,112(1):149-159.
    Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing[J]. The Plant Cell,1998,10(6):937-946.
    Sakamoto W, Tamura T, Hanba-Tomita Y, et al. The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles[J]. Genes to Cells,2002,7(8): 769-780.
    Sakamoto W, Zaltsman A, Adam Z, et al. Coordinated regulation and complex formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem Ⅱ in Arabidopsis thylakoid membranes[J]. Plant Cell,2003, 15(12):2843-2855.
    Schultes NP, Sawers RJH, Brutnell TP, et al. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17[J]. The Plant Journal,2000,21(4):317-327.
    Shen YY, Wang XF, Wu FQ, et al.The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature, 2006,443(7113):823-826.
    Shikanai T. Cyclic electron transport around photosystem I:genetic approaches[J]. Annu Rev Plant Biol, 2007,58:199-217.
    Silva P, Thompson E, Bailey S, et al. FtsH is involved in the early stages of repair of photosystem Ⅱ in Synechocystis sp PCC 6803[J]. The Plant Cell,2003,15(9):2152-2164.
    Sirijovski N, Olsson U, Lundqvist J, et al. ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact[J]. Biochem. J,2006,400: 477-484.
    Soitamo AJ, Piippo M, Allahverdiyeva Y, et al. Light has a specific role in modulating Arabidopsis gene expression at low temperature[J]. BMC Plant Biol,2008,8(1):1-20.
    Somerville CR. Analysis of photosynthesis with mutants of higher plants and algae[J]. Annual Review of Plant Physiology,1986,37(1):467-506.
    Stern DB, Hanson MR, Barkan A. Genetics and genomics of chloroplast biogenesis:maize as a model system[J]. Trends plant sci,2004,9(6):293-301.
    Stockinger EJ,Walling LL. A chlorophyll a/b-binding protein gene from soybean (Glycine max [L.] Merr.)[J]. Plant physiology,1994,104(4):1475-1476.
    Strand A, Asami T, Alonso J, et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX[J]. Nature,2003,421(6918):79-83.
    Strasser BJ. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research,1997,52:147-155.
    Strasser RJ, Srivastava A,Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochem Photobiol,1995,61:32-42.
    Sugimoto H, Kusumi K, Tozawa Y, et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation[J]. Plant and cell physiology,2004,45(8):985-996.
    Surpin M, Larkin RM, Chory J. Signal Transduction between the Chloroplast and the Nucleus[J]. The Plant Cell,2002,14:S327-S338.
    Susek RE, Ausubel FM, Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development[J]. Cell,1993,74(5):787-799.
    Suzuki JY, Bollivar DW, Bauer CE. Genetic analysis of chlorophyll biosynthesis[J]. Annual review of genetics,1997,31(1):61-89.
    Takechi K, Sodmergen, Murata M, et al. The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis[J]. Plant Cell Physiol,2000, 41(12):1334-1346.
    Tanaka R, Koshino Y, Sawa S, et al. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana[J]. The Plant Journal,2002,26(4): 365-373.
    Taylor WC, Barkan A, Martienssen RA. Use of nuclear mutants in the analysis of chloroplast development[J]. Dev Genet,1987,8(5-6):305-320.
    Terao T, Yamashita A, Katoh S. Chlorophyll b-Deficient Mutants of Rice:I. Absorption and Fluorescence Spectra and Chlorophyll a/b Ratios[J]. Plant and cell physiology,1985,26(7): 1361-1367.
    Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient avrea and yellow-green-2 mutants of tomato[J]. Plant physiology,1999, 119:143-152.
    Thornber JP. Biochemical characterization and structure of pigment-proteins of photosynthetic organisms. New York, Springer Verlag,1986.
    Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes[J]. Nucleic acids research,1997,25(13):2598-2602.
    Von Wettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis[J]. Plant Cell,1995,7(7): 1039-1057.
    Walker CJ, Willows RD. Mechanism and regulation of Mg-chelatase[J]. Biochemical Journal,1997,327: 321-333.
    Walles B. The homozygous and heterozygous effects of an aurea mutation on plastid development in spruse (Picea abies(L.)Karst)[J]. Stud. For. Suec,1967,60:1-20.
    Wang HY, Hu YH, Liu Y, et al. Suppression subtractive hybridization identifies differentially expressed genes in Brassica napus chlorophyll-reduced mutant[J]. Biol Plantarum,2008,52(3):486-492.
    Wang X, Wu P, Xia M, et al. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment[J]. Gene,2002,297(1-2):93-102.
    Wei JC, Yang CP, Wang C, et al. Construction and analysis of a subtracted cDNA library of Betula platyphylla female inflorescence[J]. Journal of Forestry Research,2005,16(2):97-100.
    Willows RD. Biosynthesis of chlorophylls from protoporphyrin IX[J]. Natural Product Reports,2003, 20(3):327-341.
    Wollman FA, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes[J]. Biochim. Biophys. Acta,1999,1411:21-85.
    Wu ZM, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiol,2007,145:29-40.
    Yamasato A, Nagata N, Tanaka R, et al. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis[J]. The Plant Cell, 2005,17(5):1585-1597.
    Yang CM, Osterman JC, Markwell J. Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba)[J]. Biochemical genetics,1990, 28(1):31-40.
    Yang DH, Yun PY, Park SY, et al. Cloning, characterization and expression of a Lateral suppressor-like gene from chrysanthemum(Dendranthema grandiflorum Kitamura)[J]. Plant Physiol Biochem, 2005,43(12):1044-1051.
    Yaronskaya E, Ziemann V, Walter G, et al. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians[J]. The Plant Journal,2003,35(4): 512-522.
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002,296(5565):79-92.
    Zaltsman A, Ori N, Adam Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem Ⅱ repair in Arabidopsis[J]. The Plant Cell,2005,17(10):2782-2790.
    Zhang HT, Li JJ, Yoo JH, et al. Rice Chlorina-1 and Chlorina-9 encode ChID and Chll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant molecular biology,2006,62(3):325-337.
    Zhang NH, Du LF, Zhao Y, et al. Study on the polypeptide composition and content of LHC Ⅱ and the cab gene transcription in chlorophyll-reduced mutant of oilseed rape seedlings[J]. Acta Bot Boreal-Occident Sin,2004,24(3):484-487.
    Zhang Q, Zhang ZW, Xin DQ, et al. Suppression subtractive hybridization for identifying differentially expressed genes in renal cell carcinoma[J]. Chinese Medical Journal,2001,114(8):807-812.
    哀建国,杨勇.RNA介导的植物基因沉默作用及其应用[J].浙江林学院学报,2005,22(1):123-128.
    曹莉,王辉,孙道杰,等.小麦黄化突变体光合作用及叶绿素荧光特性研究[J].西北植物学报,2006,26(10):2083-2087.
    曹莉,王辉,孙道杰,等.小麦黄化突变体叶绿体超微结构研究[J].西北植物学报,2006,26(11):2227-2230.
    苍晶,于龙凤,王豫颖,等.大豆叶绿素缺失突变体HS 821的农艺性状和生化特性[J].核农学报,2007,21(1):9-12.
    陈熙,崔香菊,XIN ZHAO Y,等.低叶绿素b水稻突变体类囊体膜的比较蛋白质组学[J].生物化学与生物物理进展,2006,33(7):653-659.
    成浩,陈明,虞富莲,等.茶叶片阶段性返白过程中色素蛋白复合体的变化[J].植物生理学通讯,2000,36(4):300-304.
    崔海瑞,夏英武.温度对水稻突变体W1叶色及叶绿素生物合成的影响[J].核农学报,2001,15(5):269-273.
    郭晶晶,龚丽丽,韩涛,等.叶绿素缺乏对大豆光系统II和光能分配的影响[J].大豆科学,2009,28(4):605-610.
    龚红兵,陈亮明,刁立平,等.水稻叶绿素b减少突变体的遗传分析及其相关特性[J].中国农业科学,2001,34(6):686-689.
    何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯,2006,42(1):1-9.
    姜述君,强胜.马唐生防菌画眉草弯孢霉毒素α,β-dehydrocurvularin对马唐叶片PSⅡ功能的影 响[J].中国农业科学,2005,38(7):1373-1378.
    缴丽莉,路丙社,周如久,等.遮光对青榨槭光合速率及叶绿素荧光参数的影响[J].园艺学报,2007,34(1):173-178.
    雷红梅,刘仁祥,聂琼,等.一份烤烟烟叶突变材料的叶色遗传规律[J].贵州农业科学,2009,37(8):19-21.
    来乐春,富吴伟,徐建良,等.粳稻6108白叶突变性状的遗传分析及农艺性状表现[J].作物研究,2003,17(1):10-12.
    李正理.植物组织切片学[J].1996:130-139.
    李玉湘,李继耕.玉米叶绿体突变系中叶绿素蛋白质复合体的研究[J].遗传学报,1982,9(5):344-349.
    李星,于秀梅,李亚宁,等.叶锈菌诱导的小麦叶片抑制差减杂交文库构建及其分析[J].中国农业科学,2008,41(12):4069-4076.
    李桐柱.突变体大麦Mb1832C的叶绿素蛋白复合体[J].云南植物研究,1998,20(4):453-458.
    李素芳,晏静.安吉白茶阶段性返白过程中氨基酸的变化[J].茶叶科学,1996,16(2):153-154.
    李会勇,黄素华,赵久然,等.应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因[J].中国农业科学,2007,40(5):882-888.
    李玮,于澄宇,胡胜武.芥菜型油菜叶片黄化突变体的初步研究[J].西北农林科技大学学报,2007,35(9):79-82.
    李鹏民,高辉远,Strasser R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
    林宏辉,何军贤,梁厚果,等.叶绿素缺乏大麦突变体光系统Ⅱ色素蛋白复合物的研究[J].生物化学与生物物理学报:英文版,1998,30(5):530-532.
    林宏辉,杜林方,贾勇炯,等.野生和黄化大麦类囊体膜色素蛋白的分离和比较[J].西北植物学报,1997,17(1):34-38.
    林钰琼,刘松,傅亚萍,等T-DNA插入水稻突变体库的叶绿素和净光合速率变化[J].中国水稻科学,2003,17(4):369-372.
    刘慧丽,李玲.光合放氧系统的结构(综述)[J].亚热带植物通讯,2000,29(2):53-57.
    刘军,袁自强,刘建东,等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因[J].科学通报,2000,45(13):1392-1397.
    刘国民,高必军,文绍山.带有黄绿叶色标记的香型籼稻不育系形态特征及开花习性[J].分子植物育种,2009,7(5):916-921.
    吕典华,宗学凤,王三根,等.两个水稻叶色突变体的光合特性研究[J].作物学报,2009,35(12):2304-2308.
    骆蒙,孔秀英,刘越,等.小麦抗病基因表达谱中的文库构建与筛选方法研究[J].遗传学报,2002,29(9):814-819.
    马志虎,颜素芳,罗秀龙,等.辣椒黄绿苗突变体对良种繁育及纯度鉴定作用[J].北方园艺,2001,(03):13-14.
    马华升,姚艳玲,钱丽华,等.组培获得大花蕙兰叶色突变体的RAPID分析[J].杭州农业科技,2007,(3):11-13.
    马国荣,刘佑斌.大豆细胞质遗传芽黄突变体的发现[J].作物学报,1994,20(3):334-338.
    马国荣,刘佑斌,盖钧镒.大豆细胞质遗传芽黄突变体的发现[J].作物学报,1994,20(3):334-338.
    彭浩,林文芳,朱学艺.叶绿体蛋白质组研究进展[J].西北植物学报,2008,28(1):194-203.
    潘瑞炽,董愚得(1995).植物生理学.北京,高等教育出版社.
    邵继荣.水稻温敏失绿突变体冷激应答的细胞与分子机理研究[D].2004,四川农业大学
    邵继荣,周仕春,黄明远,等.水稻温敏突变系1103s叶绿素间断失绿性状表达特性的研究[J].四川大学学报:自然科学版,1997,34(5):688-692.
    邵继荣,谢戎,唐梅.水稻温敏突变系1103s叶绿体间断失绿期叶片蛋白质变化与叶绿素含量的关系[J].西南农业学报,1998,11(3):14-19.
    孙捷音,张年辉,杜林方.油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J].西北植 物学报,2007,27(10):1962-1966.
    孙国波,董飚.基因芯片技术研究进展及其应用[J].上海畜牧兽医通讯,2009,(6):27-29.
    孙钦秒,冷静,李良璧,等.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展[J].植物学通报,2000,17(4):289-301.
    汤照云,万国强,刘彤,等.北疆棉花不同品种叶绿素荧光特性的研究[J].棉花学报,2004,16(3):166-169.
    谈建中,刘美娟,张国英,等.桑树叶色突变体类型与特性的初步研究[J].蚕业科学,2003,29(3):286-290.
    谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996,22(1):51-57.
    谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体PSⅡ光化学效率较高的原因[J].植物生理学报,1997,23(3):251-256.
    万群,张兴国,宋明.果实特异性RNAi介导的Lcy基因沉默来增加番茄中番茄红素的含量[J].生物工程学报,2007,23(3):429-433.
    王军,王宝和,周丽慧,等.一个水稻新黄绿叶突变体基因的分子定位[J].中国水稻科学,2006,20(5):455-459.
    王聪田,匡晓东.一份新的水稻淡黄叶色突变体的叶色表现及叶片结构的观察[J].江西农业学报,2008,20(10):14-15.
    武立权,沈圣泉,王荣富,等.水稻黄叶突变体光合特性的日变化[J].核农学报,2007,21(5):425-429.
    魏玉波,梁乃亭,布哈丽且木,等.-(60)Co γ射线辐照诱发水稻茎叶超绿突变体[J].核农学报,2003,17(06):409-411.
    吴关庭,王贤裕,金卫.水稻温敏型紫叶突变体PLM12及其遗传研究[J].核农学报,2001,15(2):70-74.
    肖松华,张天真,潘家驹.陆地棉芽黄突变体的遗传及在杂种优势上的利用[J].南京农业大学学报,1995,18(3):28-33.
    许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    徐培洲,李云,袁澍,等.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究[J].中国农业科学,2006,39(7):1299-1305.
    徐彬,辛伟杰,王广东,等.花烛离体培养叶色变异株系的相关性状[J].植物学通报,2006,23(6):698-702.
    徐启江,关录飞,吴笑女,等.利用抑制性差减杂交技术筛选草原龙胆花器官发育特性基因[J].生物技术通讯,2007,18(3):401-404.
    谢吉容,梁国鲁,唐开学,等.月季突变体抑制差减杂交cDNA文库构建及分析[J].园艺学报,2007,34(3):688-694.
    袁澍.水分胁迫对黄化大麦光系统Ⅱ的影响及黄化大麦突变机理的研究[D].2002,四川大学
    于海莉,孙志强.一个新的大豆细胞质黄化突变体的初步研究[J].大豆科学,1992,11(2):120-126.
    张力科,李志彬,刘海燕,等.两个新的水稻叶色突变体形态结构与遗传定位研究[J].中国农业科学,2010,43(2):223-229.
    张向前,刘芳,朱海涛,等.水稻Ds插入淡绿叶突变体的鉴定和遗传分析[J]HEREDITAS,2009, 31(9):947-952.
    张年辉,杜林方,赵云,等.叶绿素缺乏油菜突变体的LHCⅡ多肽组成蛋白含量与cab基因转录研究[J].西北植物学报,2004,24(3):484-487.
    张建文,王跃进,朱白果,等.中国野生华东葡萄抗霜霉病抑制消减文库构建及初步分析[J].中国农业科学,2009,42(3):960-966.
    张雷,杨志攀,刘一鸣,等cDNA文库的差异筛选与抑制性减数杂交相结合分离胡萝卜体细胞胚根发育相关基因[J].自然科学进展,2002,12(3):261-265.
    张晓晖cDNA代表性差异分析:方法及其应用[J_].国外医学:生理病理科学与临床分册,2002,22(6):628-630.
    张鲁军,焦浈,史艳芹,等.小麦高分子量麦谷蛋白基因沉默研究进展[J].麦类作物学报,2009,29(6):1129-1133.
    赵云,杜林方,杨胜洪,等.缺乏叶绿素的油菜突变休的叶绿体组成和结构变化[J].植物学报:英文版,2001,43(8):877-880.
    赵海军,吴殿星,舒庆尧,等.携带白化转绿型叶色标记光温敏核不育系玉兔S的选育及其特征特性[J].中国水稻科学,2004,18(006):515-521.
    赵琦,唐崇钦,匡廷云.玉米突变体(zb/zb)的叶绿体光合特性[J].植物学报,1997,39:1082-1084.
    赵会杰,邹琦.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    赵鹏,向珣朝,姚嫣萍,等.水稻紫叶突变体PLM的表型与遗传研究[J].中国种业,2009,4:38-40.
    朱靖,杜立新.反转录差异显示技术及其方法的改进[J].动物医学进展,2005,26(1):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700