用户名: 密码: 验证码:
结球甘蓝高密度遗传连锁图谱的构建与主要农艺性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝(Brassica oleracea L. var. capitata),别名圆白菜、卷心菜、包菜等,属十字花科(Brassiceae)芸薹属(Brassica)的一年生或二年生草本植物。结球甘蓝具有品质好、适应性强、产量高、耐储运等特点,已成为国内外普遍栽培的一种重要蔬菜作物,在我国蔬菜的周年供应中起到重要作用。
     本研究基于结球甘蓝全基因组测序项目,利用全基因组de novo和重测序数据开发出SSR、SNP和InDel标记;利用不同生态型的结球甘蓝高代纯合自交系01-88和02-12杂交获得F1,通过游离小孢子培养获得DH群体,利用该DH群体构建甘蓝高密度遗传连锁图谱,该图谱作为参考图谱服务于基因组的组装,同时为功能基因克隆及基因组比较研究提供技术支持,并在探寻十字花科芸薹属作物的起源,特别是在通过比较图谱阐述基因组组成和进化关系中起到重要作用;针对未锚定到基因组且片段较大的Scaffolds设计InDel标记,并将其补充组装到甘蓝基因组上,进一步充实甘蓝基因组信息;通过对甘蓝主要农艺性状进行遗传和相关性分析以及基因定位,结合转录组测序信息对控制相关性状的基因进行预测,获得更多重要农艺性状完整的遗传信息,为结球甘蓝分子标记辅助育种及相关基因的克隆打下理论基础;筛选与甘蓝显性雄性核不育基因紧密连锁的分子标记,建立一种高效甘蓝显性雄性不育基因的鉴定方法;本研究对提高结球甘蓝的育种水平,提高选择效率具有重要的理论意义和实用价值。
     本研究获得的主要成果如下:
     (1)选用不同生态型的结球甘蓝高代纯合自交系01-88与02-12杂交获得F1,通过游离小孢子培养技术构建了含有189个基因型的DH群体。
     (2)甘蓝基因组中共检测到233844个SSR位点,共包含6种类型的重复单元,其中单核苷酸重复单元MNRs(163621,69.97%)数目最多,最少为六核苷酸重复单元HNRs(311,0.13%)。利用这些位点信息通过Primer3.0软件共设计并合成SSR引物3378对;通过比对de novo测序及重测序数据,共检测到SNP位点1026766个,针对含有单碱基变异位点的序列,应用SNAPER软件共设计并合成SNP引物2200对。
     (3)利用双亲01-88和02-12对8479对引物进行筛选,最终筛选出有多态性的引物1274对,多态性比例为14.99%;将有多态性的引物用于DH群体检验,利用Joinmap4.0软件构建一张包含1227对分子标记(602SSRs;625SNPs)、覆盖基因组总长度为1197.9cM,平均遗传距离和物理距离分别为0.98cM和503.3Kb的结球甘蓝高密度遗传连锁图谱。该图谱是目前最饱和的甘蓝类作物参考遗传图谱。
     (4)针对71个未锚定到基因组上,且长度大于200kb的Scaffolds设计了172对InDel标记,通过双亲筛选有84对InDel标记具有多态性。利用该84对多态性标记补充锚定了43个Scaffolds,物理长度总计为22.6Mb。结合补充锚定的Scaffolds,目前甘蓝全基因组组装已达到562.6Mb,组装比率从原来的85.0%上升到89.3%。
     (5)采用植物数量性状主基因+多基因混合遗传模型对5个与甘蓝叶球相关(叶球重、叶球纵径、中心柱长、叶球颜色、外短缩茎长)和6个与植株相关(外叶数、开展度、株高、外叶长、外叶宽、外叶颜色)的农艺性状进行遗传和相关性分析。DH群体分析结果表明,11个主要农艺性状均为数量性状,除外叶宽和外叶颜色性状为多基因控制外,其余9个农艺性状均由2对主基因+多基因控制。主基因遗传率范围为19.56%(开展度)~79.45%(叶球重)。
     (6)应用IBM SPSS Statistics19软件偏相关分析的Pearson方法,对甘蓝11个主要农艺性状相关性进行分析。结果表明叶球颜色与外叶颜色,叶球纵径与中心柱长等成对性状呈显著正相关;叶球重与外短缩茎长,叶球纵径与外叶数等成对性状呈显著负相关;叶球纵径与外叶长,外短缩茎长与开展度等成对性状呈不显著相关。
     (7)应用MapQTL4.0软件,采用IM和MQM作图法,根据甘蓝高密度遗传连锁图谱和DH群体农艺性状表型数据,共定位了控制甘蓝11个主要农艺性状的39个QTLs。其中,叶球纵径、外短缩茎长、外叶数和开展度性状定位的QTL数量最多为5个;中心柱长、叶球颜色和外叶宽性状定位的QTL数量最少为2个。定位的39个QTLs在9条连锁群上均有分布,其中有些QTLs呈现重合和连锁分布。
     (8)采用BSA方法,从含有425个单株的育性分离群体中随机挑选20株可育株和不育株的DNA组建2对可育池和不育池。利用分子标记技术,在2对育性池中共筛选得到3对与不育基因CDMs399-3连锁的SSR分子标记。其中最近的双侧翼标记为scaffold38115和scaffold13994的遗传距离分别为8.3和15.3cM。
     (9)通过对构建甘蓝DH群体的双亲进行转录组分析,将得到的差异表达基因与主要农艺性状的QTLs相比较分析,共筛选得到控制8个主要农艺性状的10个候选基因,其中有8个候选基因与生长素和细胞分裂素合成、代谢和运输相关,2个候选基因与叶绿素和类胡萝卜素合成、代谢相关。
Cabbage (Brassica oleracea L. var. capitata) is a major crop with the characteristics of high quality,high yield and resistance storage, which is widely cultivated in the world. It plays an important role invegetables all-year supply in China.
     This study is based on the B. oleracea Genome Sequence Project which was launched in2009,using next generation sequencing technology. A number of SSR, SNP and InDel markers are developedby using the data from the de novo sequence and re-sequence. A DH population derives from F1crossbetween two advanced homozygous inbred lines,01-88and02-12, by microspore culture. Then asaturated genetic map of B. oleracea genome is constructed. This genetic map could be used to orientatesequence Scaffolds from the B. oleracea genome assembly. Some InDel markers are developed by usingthe information of the Scaffolds with long fragments, which are not anchored to the genome. This studyis aim to the supplement assembly of the genome. Combined with the transcriptome sequence, the geneswhich control the main agronomic traits could be predicted, through the genetic, correlative and QTLanalysis. So this study provides the whole genetic information of these traits. The markers are screenedto identify which linked to the male sterile gene, with the purpose of development an efficient malesterile gene identified method. In summary, this study is facilitated to enhance the breeding technologyand selection efficiency.
     The main conclusions of this study are as listed follows:
     (1) Two diverse advanced homozygous inbred lines of cabbage,01-88and02-18, were used as theparents to develop a doubled haploid (DH) mapping population containing189lines. The DHpopulation was derived from F1by microspore culture and contained lines with a wide variety ofmorphological traits.
     (2) A total of233844putative SSR sequences were identified from the cabbage assembled Scaffoldsequences. Six different SSR repeat types were identified, and of these the HNRs (163621,69.97%)were the most abundant and the MNRs were the least abundant (311,0.13%).3378SSR primerpairs were designed using the Primer3.0program. A total of1026766SNPs were detected between01-88and02-12.2200SNP markers were developed by SNAPER program.
     (3) To construct the map, a total of8497markers were screened with the DNA from the01-88and02-12parental lines.1274markers (14.99%) were polymorphic. The B. oleracea high-densitygenetic linkage map that was constructed includes1227markers in nine linkage groups spanning1197.9cM with an average of0.98cM and503.3kb between two loci. This genetic map is themost saturated in B. oleracea crops.
     (4) A total of172InDel markers were developed, using the information of long Scaffolds which werenot anchored to the genome.84InDel markers showed the polymorphism. Using thesepolymorphic markers,43Scaffolds with22.6Mb were supplemented anchored to the genome.Now, the size of assembled B. oleracea genome is562.6Mb. And the assembly rate is from85.0% up to89.3%.
     (5) Using mixed major gene plus inheritance model,5traits related to leaf head (head weight, lengthof stem in head, vertical diameter of head, primary color of head, length of shortening stem) and6traits related to plants (number of outer leaf, plant breadth, plant height, length of outer leaf, widthof outer leaf, primary color of outer leaf) were investigated. All the11main agronomic traits werequantitative. Except the Wol and Pcl traits, the other9traits inheritances showed the models of twomajor genes plus polygenes. The heritability range was from19.56%(Pb) to79.45%(Hw).
     (6) Using IBM SPSS Statistics19program Pearson method in partial correlation analysis,11mainagronomic traits were analysed. Pch-Pcl and Vdh-Lsh, etc paired traits were significant positivecorrelation. Hw-Ls and Vdh-Nol, etc were significant negative correlation. Vdh-Lol and Ls-Pb, etcwere with no correlation.
     (7) MapQTL4.0software and IM&MQM methods were employed in QTL mapping. As a result, atotal39QTLs were mapped for11main agronomic traits in B. oleracea. Among them, Vdh, Ls,Nol and Pb traits mapped the most QTLs (5). Lsh, Pch and Wol traits were the least with2QTLs.All the QTLs distributed on all the9linkage groups. Some QTLs showed coincidence and linkagephenomenons.
     (8) Using BSA method,2male sterile and fertile bulks were construed. A total of3SSR markers wereidentified and linked with CDMS-399-3gene. Respectively, scaffold38115and scaffold13994wereflanking markers with genetic distances of8.3cM and15.3cM.
     (9) Two parental lines of DH population were analysied by RNA-seq technology. Combined with theQTLs and differentially expressed genes from transcriptomic results. A total10genes wereidentified as candidate genes. Of these genes,8genes were related to the processes of anabolismand transport in auxin and cytokinin. The other2genes were related to the processes of anabolismin chlorophyll and carotenoid.
引文
[1]包和平,王晓丽,李春成,杨光,杨丽萍.玉米抗螟性主基因+多基因混合遗传分析.吉林农业大学学报,2007,29(3):253-255
    [2]陈琛,庄木,程斐,刘玉梅,杨丽梅,张扬勇,方智远.甘蓝EST-SSR标记的建立.园艺学报2009,36(增刊):1968
    [3]陈琛,庄木,李康宁,刘玉梅,杨丽梅,张扬勇,程斐,孙培田,方智远.甘蓝EST-SSR标记的开发与应用.园艺学报,2010,37(2):221-228
    [4]陈全求,詹先进,蓝家样,黄云. EST分子标记开发研究进展.中国农学通报,2008,(09):72-77
    [5]陈书霞,王晓武,方智远,程智慧,孙培田.芥蓝×甘蓝的F2群体抽薹期性状QTLs的RAPD标记.园艺学报,2003,30(4):421-426
    [6]陈烨丽,薄天岳,陈学好,陈锦秀,缪体云.球茎甘蓝雄性不育相关基因的SSR分子标记筛选.园艺学报,2010,37(增刊):2127
    [7]陈云鹏,曹家树,缪颖,叶纨芝.芸薹类蔬菜基因组DNA遗传多样性的RAPD分析.浙江大学学报,2000,26(2):131-136
    [8]崔法.高密度小麦遗传连锁图谱构建及产量相关性状QTL定位[博士学位论文].泰安:山东农业大学,2011
    [9]邓岩,王兴华,杨淑华,左建儒.细胞分裂素:代谢、信号转到、交叉反应与农艺性状改良.植物学通报,2006,23(5):478-498
    [10]番存红,王子赋,马玉银,殷跃军,张亚芳,左示敏,陈宗祥,潘学彪. InDel和SNP标记在水稻图位克隆中的应用.中国水稻科学,2007,21(5):477-453
    [11]方宣钧,吴为人,唐纪良.作物DNA分子标记辅助育种.北京:科学出版社,2001
    [12]方智远,孙培田.甘蓝几个数量性状遗传力初报.中国蔬菜,1981,1:23-25
    [13]盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社,2003
    [14]盖钧镒.试验设计方法.北京:中国农业出版社,2000
    [15]高金平,王超,刘英.结球甘蓝抗TuMV基因的RAPD和SCAR标记研究.植物病理学报,2008,38(5):549-552
    [16]高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    [17]宫永超.渗入到陆地棉(Gossypium Hirsutum L.)基因组中的海岛棉(G. Barbadense L.)优异纤维基因的QTL定位[硕士学位论文].济南:山东师范大学,2009
    [18]韩建明,侯喜林,史公军,陈沁滨.不结球白菜株高性状主基因+多基因遗传分析.南京农业大学学报,2008,31(1):23-26
    [19]黄和艳,张延国,邓波,娄平,王晓武.利用AFLP标记辅助甘蓝显性雄性不育高代回交系选择.园艺学报,2006,33(3):539-543
    [20]胡晓宁.22个紫花苜蓿品种遗传关系分析及杂交后代鉴定[硕士学位论文].杨陵:西北农林科技大学,2008
    [21]胡学军,邹国林.甘蓝分子连锁图的构建与品质性状的QTL定位.武汉植物学研究,2004,22(6):482-462
    [22]姜长鉴,莫惠栋.质量-数量性状的遗传分析IV-极大似然法的应用.作物学报,1995,21(6):641-648
    [23]荆赞革,唐征,罗天宽,张小玲等.甘蓝SSR标记在近缘种青花菜的通用性及应用.基因组学与应用生物学,2012,29(4):685-690
    [24]康俊根,翟依人.甘蓝耐热性遗传效应分析.华北农学报,2003,18(3):93-95
    [25]李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918-931
    [26]李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因+多基因混合遗传分析.遗传,2006,28(4):458-462
    [27]李景涛.结球甘蓝无蜡粉亮绿性状遗传分析及分子标记研究[硕士学位论文].北京,中国农业科学院,2012
    [28]李梅.结球甘蓝抽薹开花性状的遗传、QTL定位及生理研究[博士学位论文].北京:中国农业科学院,2009
    [29]李锡香,方智远.结球甘蓝种质资源描述规范和数据标准.北京:中国农业出版社,2007
    [30]李小白,崔海瑞,张明龙. EST分子标记开发及在比较基因组学中的应用.生物多样性,2006,14(6):541-547
    [31]李小白,张明龙,崔海瑞.油菜EST-SSR标记的建立.分子细胞生物学报,2007(40):137-143
    [32]李小雷.几种披碱草种间杂种F1遗传特性及冰草分子图谱构建研究[博士学位论文].呼和浩特:内蒙古农业大学,2008
    [33]李亚男,冯霞,陈大清. ARF、Aux/IAA和生长素受体对基因表达的调控.安徽农学通报,2008,14(7):36-39
    [34]李余生,朱镇,张亚东,赵凌,王才林.水稻稻曲病抗性的主基因+多基因混合遗传模型分析.作物学报,2008,34(10):1728-1733
    [35]李占省.青花菜中莱菔硫烷含量遗传分析、QTL定位及调控机理研究[博士学位论文].北京:中国农业科学院,2012
    [36]刘二艳,刘玉梅,方智远,杨丽梅,庄木,张扬勇,袁素霞,孙继峰,李占省,孙培田.青花菜花球荚叶性状主基因+多基因遗传分析.园艺学报,2009,36(11):1611-1618
    [37]刘二艳.青花菜花球外观品质性状的遗传分析及分子标记研究[硕士学位论文].北京,中国农业科学院,2009
    [38]刘华.栽培花生产量和品质相关性状遗传分析与QTL定位研究[硕士学位论文].郑州:河南农业大学,2011
    [39]刘玉梅,方智远,Michael D McMullen,庄木,杨丽梅,王晓武,张扬勇,孙培田.一个与甘蓝显性雄性不育基因连锁的RFLP标记.园艺学报,2003,30(5):549-553
    [40]路绪强.控制甜瓜雄花分化基因的遗传分析及初步定位[硕士学位论文].哈尔滨:东北农业大学,2009
    [41]缪体云,刘玉梅等.一个结球甘蓝DH群体主要农艺性状的遗传效应分析.园艺学报,2008,35(1):59-64
    [42]缪体云.结球甘蓝遗传图谱的构建及主要农艺性状的QTL定位[硕士学位论文].北京,中国农业科学院,2007
    [43]南海洋,李英惠,常汝镇,邱丽娟.基于大豆包囊线虫病抗性候选基因rgh1的InDel标记开发与鉴定.作物学报,2009,35(7):1236-1243
    [44]倪小文.小麦品种鲁麦21慢白粉抗性遗传及QTL分析[硕士学位论文].北京:中国农业科学院,2008
    [45]乔军.茄子果实性状遗传研究及果形QTL定位[硕士学位论文].北京,中国农业科学院,2011
    [46]曲英萍.水稻耐盐碱性QTLs分析[硕士学位论文].北京:中国农业科学院,2007
    [47]宋顺华,郑晓鹰.甘蓝品种的AFLP指纹鉴别图谱分析.分子植物育种,2006,4(3):51-54
    [48]苏东.四倍体苜蓿家系建立及QTL定位初步研究[硕士学位论文].呼和浩特:内蒙古大学硕士论文,2011
    [49]苏彦斌.结球甘蓝耐裂球性状遗传效应分析及QTL定位[硕士学位论文].北京,中国农业科学院,2012
    [50]孙丰.蓝果忍冬(LONICERAL.SUBSECT.CAERULEAE)SRAP反应体系的建立及遗传多样性分析[硕士学位论文].哈尔滨:东北农业大学,2011
    [51]孙美玉.甘蓝型油菜含油量QTLs定位及候选基因筛选[博士学位论文].北京:中国农业科学院,2012
    [52]王冬梅.甘蓝类作物亲缘关系SSR分析[硕士学位论文].北京,中国农业科学院,2011
    [53]王刚.棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析与验证[硕士学位论文].泰安:山东农业大学,2011
    [54]王辉,孙日飞,邓杰,武剑,王晓武.控制白菜3-丁烯基硫代葡萄糖苷积累的QTL定位及分析.园艺学报,2011,38(7):1283-1290
    [55]王建康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239-245
    [56]王建康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[博士学位论文].南京:南京农业大学,1996
    [57]王丽鸳.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究[博士学位论文].北京,中国农业科学院,2011
    [58]王晓武,方智远,孙培田,刘玉梅,杨丽梅.甘蓝显形雄性不育基因的连锁的RAPD标记.园艺学报,1998,25(2):197-198
    [59]王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报,2000,27(2):143-144
    [60]王雪.结球甘蓝抗TuMV基因的AFLP标记研究[硕士学位论文].武汉:华中农业大学,2004
    [61]王羽,樊庆琦,张利,隋新霞,李根英,楚秀生,张宪省,黄承彦.小麦K35早熟特性的遗传分析.麦类作物学报,2007,27(6):957-960
    [62]巍婷.新疆南疆七个地方绵羊品种遗传多样性的微卫星分析[硕士学位论文].乌鲁木齐:新疆农业大学,2009
    [63]魏昕,李丽华,王娟,樊庆琦,兰海,吴元齐,荣延昭,潘光堂.玉米丝裂病发生的数量遗传分析.中国农业科学,2008,41(8):2235-2240
    [64]吴新儒.小麦重要农艺性状单片段代换系的选育与抽穗期主效QTLs的精细定位[硕士学位论文].泰安:山东农业大学,2007
    [65]严慧玲,方智远,刘玉梅,王永健,杨丽梅,庄木,张扬勇,孙培田.甘蓝显性雄性不育材料DGMS79-399-3不育性的遗传效应分析.园艺学报,2007,34(1):93-98
    [66]杨丽梅,方智远,刘玉梅,庄木,张扬勇,孙培田.“十一五”我国甘蓝遗传育种研究进展.中国蔬菜,2011,(2):1-10
    [67]杨文利.小麦株高与产量性状分子标记的研究[硕士学位论文].保定:河北农业大学,2002
    [68]姚坚强.中国糯玉米穗部发育相关基因的转录组测序与功能分析[硕士学位论文].武汉,华中农业大学,2011
    [69]袁素霞.结球甘蓝和青花菜游离小孢子培养及早期胚胎发生机理的研究[博士学位论文].北京:中国农业科学院,2009
    [70]张恩惠,孙振久,鲁玉妙,王鸣.甘蓝几个性状的配合力和遗传分析.西北农业生物学报,1998,18(2):90-94
    [71]张建中.手持式智能色度色差仪的设计.自动化仪表,2010,31(2):66-68
    [72]张娟.生长素信号转导途径及参与的生物学功能研究进展.生命科学研究,2009,13(3):272-277
    [73]张秋.普通小麦遗传图谱构建及重要农艺性状的QTL定位[硕士学位论文].泰安:山东农业大学,2012
    [74]张树根,蒋钟仁,邢永萍,李春玲.一个辣椒杂交种的加倍单倍体(DH)群体果实性状的遗传分析.园艺学报,2008,32(17):1011-1017
    [75]张新梅,武剑,郭蔼光,张慧,方智远,王晓武.甘蓝显性雄性不育基因CDMS-399-3紧密连锁的分子标记.中国农业科学,2009,42(11):3980-3986
    [76]张新友.栽培花生产量、品质和抗病性的遗传分析与QTL定位研究[博士学位论文].杭州:浙江大学,2010
    [77]昭日格.应用RAPD技术进行白榆种群遗传多样性研究[硕士学位论文].呼和浩特:内蒙古农业大学,2011
    [78]周宝良,朱协飞,郭旺珍,张天真.异常棉渐渗的陆地棉高品质种质系纤维特性遗传.棉花学报,2006,18(1):60-62
    [79]朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
    [80]庄木,王晓武,杨丽梅,刘玉梅,孙培田,方智远.利用RAPD方法鉴定两个春甘蓝品种的纯度.中国蔬菜,1999,(5):8-9
    [81] Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, WuA, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and humangenome project. Science1991,252:1651-1656
    [82] Al-Shehbaz. The tribes of cruciferae (Brassicaceae) in the southeastern United States.1984,65:343-373
    [83] Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plantmolecular biology reporter1991,9:208-218
    [84] Bana AK, abuz J, Sztatelman O, Gabry H, Fiedor L. Expression of Enzymes Involved inChlorophyll Catabolism in Arabidopsis Is Light Controlled. Plant physiology2011,157:1497-1504
    [85] Beavis WD. QTL analyses: power, precision, and accuracy. Molecular dissection of complex traits.1998,145-162
    [86] Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B,Feldmann KA. Arabidopsis AUX1gene: a permease-like regulator of root gravitropism. Science1996,273:948-950
    [87] Bing Z, Qi-Ming D, Qi-Jun Z, Jie-Qin L, Shao-Ping Y, Yong-Shu L, Yong P, Ping L. Analysis ofsegregation distortion of molecular markers in F2population of rice. Acta Genetica Sinica2006,33:449-457
    [88] Bohuon E, Keith D, Parkin I, Sharpe A, Lydiate D. Alignment of the conserved C genomes ofBrassica oleracea and Brassica napus. TAG Theoretical and Applied Genetics1996,93:833-839
    [89] B rne A, Schumann E, Fürste A, C sterr H, Leithold B. Mapping of quantitative trait locidetermining agronomic important characters in hexaploid wheat (Triticum aestivum L.).Theoretical and Applied Genetics.2002,105:921-936
    [90] Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms. American journal of human genetics1980,32:314
    [91] Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S,Garcia A, Glaubitz JC. The genetic architecture of maize flowering time. Science2009,325:714-718
    [92] Camargo L, Savides L, Jung G, Nienhuis J, Osborn T. Location of the self-incompatibility locus inan RFLP and RAPD map of Brassica oleracea. Journal of Heredity1997,88:57
    [93] Camargo L, Williams P, Osborn T. Mapping of quantitative trait loci controlling resistance ofBrassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse.Phytopathology1995,85:1296-1300
    [94] Camargo LEA. Mapping RFLP and quantitative trait loci in Brassica oleracea. University ofWisconsin Madison1994
    [95] Chen S, Wang X. Construction a RAPDs linkage map between Chinese kale and cabbage. ActaHorticulturae Sinica2002,29:229-232
    [96] Chen X, Hedley PE, Morris J, Liu H, Niks RE, Waugh R. Combining genetical genomics andbulked segregant analysis-based differential expression: an approach to gene localization.Theoretical and Applied Genetics2011,122:1375-1383
    [97] Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development andgenetic mapping of microsatellite markers from genome survey sequences in Brassica napus.TAG Theoretical and applied genetics Theoretische und angewandte Genetik2009,118:1121-1131
    [98] Cheung W, Champagne G, Hubert N, Landry B. Comparison of the genetic maps of Brassicanapus and Brassica oleracea. TAG Theoretical and Applied Genetics1997,94:569-582
    [99] Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ. SNPfrequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMCgenetics2002,3:19
    [100] Cloutier S, Cappadocia M, Landry B. Study of microspore-culture responsiveness in oilseed rape(Brassica napus L.) by comparative mapping of a F2population and two microspore-derivedpopulations. TAG Theoretical and Applied Genetics1995,91:841-847
    [101] Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure inthe human genome. Nature genetics2001,29:229-232
    [102] Darvasi A, Soller M. Selective DNA pooling for determination of linkage between a molecularmarker and a quantitative trait locus. Genetics1994,138:1365-1373
    [103] Doyle J, Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochemical bulletin1987,19:11-15
    [104] Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ,Davis RW, Ausubel FM. A simple procedure for the analysis of single nucleotide polymorphismsfacilitates map-based cloning in Arabidopsis. Plant physiology2000,124:1483
    [105] Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interactionon quantitative traits. TAG Theoretical and Applied Genetics1986,72:377-383
    [106] Elston RC, Stewart J. The analysis of quantitative traits for simple genetic models from parental,F1and backcross data. Genetics1973,73:695-711
    [107] Fahey JW, Talalay P. The role of crucifers in cancer chemoprotection. American Society of PlantPhysiologists1995,87-93
    [108] Fang Z Y, Sun P T, Liu Y M, Wang X W, Hou A F, Bian C S. A male sterile line with dominantgene (Ms) in cabbage (Brassica oleracea var. capitata) and its utilization for hybrid seedproduction. Euphytica1997,97:265-268
    [109] Farinho M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitao J. Mapping of a locus for adultplant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). TAG Theoreticaland Applied Genetics2004,109:1392-1398
    [110] Faure S, Noyer J, Horry J, Bakry F, Lanaud C. A molecular marker-based linkage map of diploidbananas (Musa acuminata). TAG Theoretical and Applied Genetics1993,87:517-526
    [111] Feltus F A, Wan J, Schulze S R, Estill J, Jiang N, Paterson A H. An SNP resource for rice geneticsand breeding based on subspecies Indica and Japonica genome alignments. Genome Research2004,14:1812-1819
    [112] Feng C, Chen M, Xu C, Bai L, Yin X, Li X, Allan AC, Ferguson IB, Chen K. Transcriptomicanalysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq.BMC Genomics2012,13:19
    [113] Fernandez-Lopez JA, Almela L, Almansa MS, Lopez-Roca JM. Partial purification and propertiesof chlorophyllase from chloroticCitrus limonleaves. Phytochemistry31:447-449
    [114] Ferreira M, Williams P, Osborn T. RFLP mapping of Brassica napus using doubled haploid lines.TAG Theoretical and Applied Genetics1994,89:615-621
    [115] Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C. High-density Brassica oleracea linkage map:identification of useful new linkages. TAG Theoretical and Applied Genetics2007,115:277-287
    [116] Grodzicker T, Anderson C, Sharp PA, Sambrook J. Conditional Lethal Mutants of Adenovirus2-Simian Virus40Hybrids I. Host Range Mutants of Ad2+ND1. Journal of virology1974,13:1237-1244
    [117] Gu Y, Zhao QC, Sun DL, Song WQ. Construction of genetic linkage map and localization ofNBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis). YiChuan2007,29:751-7
    [118] Guilfoyle T J, Hagem G. Auxin response factors. Pant Growth Regul2001,20(2):281-291
    [119] Haanstra J, Wye C, Verbakel H, Meijer-Dekens F, Van den Berg P, Odinot P, Van Heusden A,Tanksley S, Lindhout P, Peleman J. An integrated high-density RFLP-AFLP map of tomato basedon two Lycopersicon esculentum×L. pennellii F2populations. TAG Theoretical and AppliedGenetics1999,99:254-271
    [120] Hou B, Lim E-K, Higgins GS, Bowles DJ. N-glucosylation of cytokinins by glycosyltransferasesof Arabidopsis thaliana. Journal of Biological Chemistry2004,279:47822-47832
    [121] Hu J, Quiros CF. Identification of broccoli and cauliflower cultivars with RAPD markers. Plantcell reports1991,10:505-511
    [122] Hu J, Sadowski J, Osborn TC, Landry BS, Quiros CF. Linkage group alignment from fourindependent (Brassica oleracea) RFLP maps. Genome1998,41:226-235
    [123] Hu J, Vick BA. Target region amplification polymorphism: a novel marker technique for plantgenotyping. Plant Molecular Biology Reporter2003,21:289-294
    [124] Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD,May GD, Cregan PB.High-throughput SNP discovery through deep resequencing of a reducedrepresentation library to anchor and orient scaffolds in the soybean whole genome sequence. BmcGenomics2010,11:38
    [125] Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC. Development of publicimmortal mapping populations, molecular markers and linkage maps for rapid cycling Brassicarapa and B. oleracea. TAG Theoretical and Applied Genetics2009,120:31-43
    [126] Iniguez-Luy FL, Voort AV, Osborn TC. Development of a set of public SSR markers derived fromgenomic sequence of a rapid cycling Brassica oleracea L. genotype. TAG Theoretical and AppliedGenetics2008,117:977-985
    [127] Jain M, Tyagi AK, Khurana JP. Genome-wide analysis, evolutionary expansion, and expression ofearly auxin-responsiveSAUR gene family in rice (Oryza sativa). Genomics2006,88:360-371
    [128] Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloningin the post-genome era. Plant Physiology2002,129:440-450
    [129] Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ. Evolution ofgenome size in Brassicaceae. Annals of Botany2005,95:229-235
    [130] Keightley PD, Bulfield G. Detection of quantitative trait loci from frequency changes of markeralleles under selection. Genetical research1993,62:195-204
    [131] Kennard W, Slocum M, Figdore S, Osborn T. Genetic analysis of morphological variation inBrassica oleracea using molecular markers. TAG Theoretical and Applied Genetics1994,87:721-732
    [132] Kianian S, Quiros C. Generation of a Brassica oleracea composite RFLP map: linkagearrangements among various populations and evolutionary implications. TAG Theoretical andApplied Genetics1992,84:544-554
    [133] Kifuji Y, Hanzawa H, Terasawa Y, Nishio T. QTL analysis of black rot resistance in cabbage usingnewly developed EST-SNP markers. Euphytica2013,1-7
    [134] Knox M, Ellis T. Excess heterozygosity contributes to genetic map expansion in pea recombinantinbred populations. Genetics2002,162:861
    [135] Kosambi D. The estimation of map distance from recombination values. Ann Eugen1944,12:172-175
    [136] Kwok P-Y. High-throughput genotyping assay approaches. Pharmacogenomics2000,1:95-100
    [137] Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellitemotifs differs between plants and vertebrates. Nucleic Acids Research1993,21:1111
    [138] Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics1996,144:1903-1228
    [139] Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicatesthat Brassica genomes have evolved through extensive genome replication accompanied bychromosome fusions and frequent rearrangements. Genetics1998,150:1217-1228
    [140] Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLPlinkage maps. Genetics1989,121:185-199
    [141] Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE, Etoh T. A genetic map for Brassicaoleracea based on RFLP markers detected with expressed DNA sequences and mapping ofresistance genes to race2of Plasmodiophora brassicae (Woronin). Genome1992,35:409-420
    [142] Lanner C, Bryngelsson T, Gustafsson M. Relationships of wild Brassica species with chromosomenumber2n=18, based on RFLP studies. Genome1997,40:302-308
    [143] Lan T H, Delmoonte T A, Reischmann K P. An EST-enriched comparative map of Brassicaoleracea and Arabidopsis thaliana. Genome Research2000,10:776-788
    [144] Li Y, Hagen G, Guilfoyle TJ. An auxin-responsive promoter is differentially induced by auxingradients during tropisms. The Plant Cell Online1991,3:1167-1175
    [145] Liehter R. Effcient yield of embryoids by culture of isolated microspores of different Brassicaceuespecies. Plant Breed1989,103:119-123
    [146] Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X, Wu J. Development of InDelmarkers for Brassica rapa based on whole-genome re-sequencing. Theoretical and AppliedGenetics2013,126:231-239
    [147] Lomax TL, Mehlhorn RJ, Briggs WR. Active auxin uptake by zucchini membrane vesicles:quantitation using ESR volume and delta pH determinations. Proceedings of the NationalAcademy of Sciences1985,82:6541-6545
    [148] Lorieux M, X. P, B. G, C. L. Maximum-likelihood models for mapping genetic markers showingsegregation distortion.2.F2populations. TAG Theoretical and Applied Genetics1995,90:81-89
    [149] Lou P, Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Transcript profiling of a dominant malesterile mutant (Ms-cd1) in cabbage during flower bud development. Plant Science2007,172:111-119
    [150] Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, Edwards KJ.Transferability and genomespecificity of a new set of microsatellite primers among Brassica species of the U triangle.Molecular Ecology Notes2002,2:7-11
    [151] Lowe AJ, Moule C, Trick M, Edwards K. Efficient large-scale development of microsatellites formarker and mapping applications in Brassica crop species. TAG Theoretical and Applied Genetics2004,108:1103-1112
    [152] Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregationdistortion in maize. TAG Theoretical and Applied Genetics2002,105:622-628
    [153] Lyttle TW. Segregation distorters. Annual Review of Genetics1991,25:511-581
    [154] Martin Trick, Yan Long, Jinling Meng, Ian Bancroft. Single nucleotide polymorphism (SNP)discovery in the polyploidy Brassica napus using Solexa transcriptome sequencing. PlantBiotechnology Journal2009,7:334-346
    [155] Martin Trick, Foo Cheung, Nizar Drou. A newly-developed community microarray resource fortranscriptome profiling in Brassica species enables the confirmation of Brassica-specificexpressed sequences. BMC Plant Biology2009,9:50
    [156] Mayer K, Schüller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Stiekema W, Entian K-D,Terryn N. Sequence and analysis of chromosome4of the plant Arabidopsis thaliana. Nature1999,402:769-777
    [157] Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J. Identification ofgenomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassicaoleracea. Theoretical and Applied Genetics2013,126:549-556
    [158] Michelmore R W, Paran I,Kesseli R V. Identification of markers linked to disease resistancegenes by bulked segregantanalysis: a rapid method to detect markers in specific genomic regionsusing segregating populations. ProcNatlAcadSci1991,88:9829-9832
    [159] Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE. An initial map ofinsertion and deletion (INDEL) variation in the human genome. Genome research2006,16:1182-1190
    [160] Mok DW, Mok MC. Cytokinin metabolism and action. Annual review of plant biology2001,52:89-118
    [161] Moriguchi K, Kimizuka-Takagi C, Ishii K, Nomura K. A genetic map based on RAPD, RFLP,isozyme, morphological markers and QTL analysis for clubroot resistance in Brassica oleracea.Breeding science1999,49:257-265
    [162] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature methods2008,5:621-628
    [163] Morton N, MacLean C. Analysis of family resemblance.3. Complex segregation of quantitativetraits. American Journal of Human Genetics1974,26:489
    [164] Nagaoka T, Doullah MA, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K.Identification of QTLs that control clubroot resistance in Brassica oleracea and comparativeanalysis of clubroot resistance genes between B. rapa and B. oleracea. TAG Theoretical andApplied Genetics2010,120:1335-1346
    [165] Osborn T, Kole C, Parkin I, Sharpe A, Kuiper M, Lydiate D, Trick M. Comparison of floweringtime genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics1997,146:1123-1129
    [166] Park J-E, Kim Y-S, Yoon H-K, Park C-M. Functional characterization of a small auxin-up RNAgene in apical hook development in Arabidopsis. Plant Science2007,172:150-157
    [167] Parkin IA, Sharpe AG, Keith DJ, Lydiate DL. IdentiWcation of the A and C genomes ofamphiploid Brassica napus (oilseed rape). Genome1995,38:1122–1133
    [168] Perfectti F, Pascual L. Segregation distortion of isozyme loci in cherimoya (Annona cherimolaMill). TAG Theoretical and Applied Genetics1996,93:440-446
    [169] Pu Z-j, Shimizu M, Zhang Y-j, Nagaoka T, Hayashi T, Hori H, Matsumoto S, Fujimoto R,Okazaki K. Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. MolecularBreeding2012,1-10
    [170] Qi X, Stam P, Lindhout P. Use of locus-specific AFLP markers to construct a high-densitymolecular map in barley. TAG Theoretical and Applied Genetics1998,96:376-384
    [171] Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J. Genome-scale transcriptomeanalysis of the desert poplar, Populus euphratica. Tree physiology2011,31:452-461
    [172] Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Current opinion inplant biology2002,5:94-100
    [173] Ramsay LD, Jennings DE, Kearsey MJ, Marshall DF, Bohuon EJR, a EA, Lydiate DJ. Theconstruction of a substitution library of recombinant backcross lines in Brassica oleracea for theprecision mapping of quantitative trait loci. Genome1996,39:558-567
    [174] Richard I, Beckmann JS. How neutral are synonymous codon mutations? Nature genetics1995,10:259-259
    [175] Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux M.Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassicaoleracea. TAG Theoretical and Applied Genetics2004,108:1555-1563
    [176] Sakamoto K, Kusaba M, Nishio T. Single-seed PCR-RFLP analysis for the identification of Shaplotypes in commercial F1hybrid cultivars of broccoli and cabbage. Plant Cell Reports2000,19:400-406
    [177] Sch n CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE. Quantitative trait locusmapping based on resampling in a vast maize testcross experiment and its relevance toquantitative genetics for complex traits. Genetics2004,167:485-498
    [178] Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Naturebiotechnology2000,18:233-234
    [179] Sebastian R, Howell E, King G, Marshall D, Kearsey M. An integrated AFLP and RFLP Brassicaoleracea linkage map from two morphologically distinct doubled-haploid mapping populations.TAG Theoretical and Applied Genetics2000,100:75-81
    [180] Sebastian R, Kearsey M, King G. Identification of quantitative trait loci controlling developmentalcharacteristics of Brassica oleracea L. TAG Theoretical and Applied Genetics2002,104:601-609
    [181] Senior M, Chin E, Lee M, Smith J, Stuber C. Simple sequence repeat markers developed frommaize sequences found in the GENBANK database: Map construction. Crop science1996,36:1676-1683
    [182] Shedlock AM, Okada N. SINE insertions: powerful tools for molecular systematics. Bioessays2000,22:148-160
    [183] Shen Y-J, Jiang H, Jin J-P, Zhang Z-B, Xi B, He Y-Y, Wang G, Wang C, Qian L, Li X.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes.Plant Physiology2004,135:1198-1205
    [184] Sibov ST, D. L, A.A. G, Silva AR, Mangolin CA, Benchimol LL, De Souza AP. Molecularmapping in tropical maize (Zea mays L.) using microsatellite markers.2. Quantitative trait loci(QTL) for grain yield, plant heigth, ear height and grain moisture. Hereditas2003,139:96-106
    [185] Slocum M, Figdore S, Kennard W, Suzuki J, Osborn T. Linkage arrangement of restrictionfragment length polymorphism loci in Brassica oleracea. TAG Theoretical and Applied Genetics1990,80:57-64
    [186] Soller M, Beckmann J. Marker-based mapping of quantitative trait loci using replicated progenies.TAG Theoretical and Applied Genetics1990,80:205-208
    [187] Song K. Brassica taxonomy based on nuclear restriction fragment length polymorphisms. Nine1988,19:C23
    [188] Takahata Y, Keller WA. High frequency embryogenesis and plant regeneration in isolatedmicrospore culture of Brassica oleracea L. Plant science1991,74:235-242
    [189] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucleic Acids Research1984,12:4127-4138
    [190] Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq.Bioinformatics2009,25:1105-1111
    [191] Truco M, Hu J, Sadowski J, Quiros C. Inter-and intra-genomic homology of the Brassica genomes:implications for their origin and evolution. TAG Theoretical and Applied Genetics1996,93:1225-1233
    [192] U N. Genome-analysis in Brossica with special reference to the experimental formation of B.napus and its peculiar mode of fertilization. Japan J Bot1935,7:389-452
    [193] Uzunova M, Ecke W, Weissleder K, R bbelen G. Mapping the genome of rapeseed (Brassicanapus L.). I. Construction of an RFLP linkage map and localization of QTLs for seedglucosinolate content. TAG Theoretical and Applied Genetics1995,90:194-204
    [194] V li ü, Brandstr m M, Johansson M, Ellegren H. Insertion-deletion polymorphisms (indels) asgenetic markers in natural populations. BMC genetics2008,9:8
    [195] Van Ooijen J, Voorrips R. JoinMap(R)3.0, Software for the calculation of genetic linkage maps.Plant Research International, Wageningen, The Netherlands2001
    [196] Van Ooijen J. JoinMap(R)4, Software for the calculation of genetic linkage maps in experimentalpopulations. Kyazma BV, Wageningen, Netherlands2006
    [197] Voorrips R, Jongerius M, Kanne H. Mapping of two genes for resistance to clubroot(Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea bymeans of RFLP and AFLP markers. TAG Theoretical and Applied Genetics1997,94:75-82
    [198] Vuylsteke M, Antonise R, Bastiaans E, Lynn Senior M, Stuber C, Kuiper M. A high density AFLPlinkage map of Zea mays L. Plant and Animal Genome V1997, poster abstract206
    [199] Walley PG, Carder J, Skipper E, Mathas E, Lynn J, Pink D, Buchanan-Wollaston V. A newbroccoli×broccoli immortal mapping population and framework genetic map: tools for breedersand complex trait analysis. TAG Theoretical and Applied Genetics2012,1-18
    [200] Wang C, Zhu C, Zhai H, Wan J. Mapping segregation distortion loci and quantitative trait loci forspikelet sterility in rice (Oryza sativa L.). Genetics Research2005,86:97-10
    [201] Wanxing Wang, Shunmou Huang, Yumei Liu, Zhiyuan Fang. Construction and analysis of ahigh-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC genomics2012,13:523
    [202] Weller J. Maximum likelihood techniques for the mapping and analysis of quantitative trait lociwith the aid of genetic markers. Biometrics1986,627-640
    [203] Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified byarbitrary primers are useful as genetic markers. Nucleic acids research1990,18:6531-6535
    [204] Xiyin Wang, Manuel Torres, Gary Pierce, Cornelia Lemke, Lisa Nelson. A physical map ofBrassica oleracea shows complexity of chromosomal changes following recursivepaleopolyploidizations. BMC Genomics2011,12:470
    [205] Yan J, Zhu J, He C, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmentalbehavior of tiller number in rice (Oryza sativa L.). Theoretical and Applied Genetics.1998,97:267-274
    [206] Yashwanti Mudgil, Joachm F, Jiping Zhou, Brenda Temple, Kun Jiang, Alan M. ArabidopsisN-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a GProtein–Mediated Pathway. Plant Cell2009,21(11):3591-3609
    [207] Yu Shuancang, Zhang Fenglan, Yu Yangjun, Zhang Deshuang, Zhao Xiuyun, Wang Wenhong.Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp.pekinensis) by tag sequencing. Plant Molecular Biology Reporter2012,30:17-28
    [208] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNAfingerprinting. EP Patent1993
    [209] Zeng Z-B. Theoretical basis for separation of multiple linked gene effects in mapping quantitativetrait loci. Proceedings of the National Academy of Sciences1993,90:10972-10976
    [210] Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y. De novo assemblyand Characterisation of the Transcriptome during seed development, and generation of genic-SSRmarkers in Peanut (Arachis hypogaea L.). BMC Genomics2012,13:90
    [211] Zhang J, Vankova R, Malbeck J, Dobrev PI, Xu Y, Chong K, Neff MM. AtSOFL1and AtSOFL2act redundantly as positive modulators of the endogenous content of specific cytokinins inArabidopsis. PloS one2009,4:e8236
    [212] Zhang Q, Li F, Liu M, Wang G. Chlorophyll a fluorescence parameters of flag leaf of the wheatand seed grouting under different water treatments. Acta Agriculturae Boreali-Sinica2003,18:26-28
    [213] Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T,Vivar H. Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistanceare coincident with QTLs for inflorescence traits and plant height in a doubled-haploid populationof barley. Theoretical and Applied Genetics.1999,99:1221-1232
    [214] Zou F, Gelfond JA, Airey DC, Lu L, Manly KF, Williams RW, Threadgill DW. Quantitative TraitLocus Analysis Using Recombinant Inbred Intercrosses Theoretical and Empirical Considerations.Genetics2005,170:1299-1311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700