用户名: 密码: 验证码:
2种美人蕉属植物对镉的积累及其耐受生理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属镉(Cd)污染已成为世界广泛关注的环境问题之一,利用环境友好型技术—植物修复技术清除环境Cd污染已取得了重大进展,寻找有经济价值的Cd污染修复新植物仍是科学家孜孜追求的目标。美人蕉属植物对Cd耐受性强,生物量大,生长速度快,可用于土壤Cd污染的原位修复。同属植物芭蕉芋是一种新型能源观赏植物,其根茎可用于工业酒精的生产。但芭蕉芋对重金属Cd的吸收积累特性未见报道,对Cd污染的修复能力缺少评价。本研究选用我国主栽的3个芭蕉芋品种(PLRF、Xingyu-1和Xingyu-2)为试材,以大花美人蕉品种Australia为对照,利用盆栽实验研究了芭蕉芋和大花美人蕉Cd积累特征及Cd对芭蕉芋及大花美人蕉生长的影响;并从光合生理、逆境氧化胁迫、根际土壤微环境变化及矿质元素吸收与分配4大部分探讨了美人蕉属植物对Cd的忍耐和解毒机制。主要获得的结果如下:
     1.美人蕉属植物生物量大,生长速度快,对Cd具有一定的富集作用,可作为Cd污染土壤修复的候选植物,但美人蕉属植物不符合Cd超富集植物的标准,不属于Cd超富集植物。美人蕉属植物种间对Cd的富集能力存在差异,芭蕉芋对Cd的富集效率高于大花美人蕉,且生物量大于大花美人蕉,因此,芭蕉芋的Cd修复效果优于大花美人蕉。芭蕉芋种内不同品种间对Cd的富集也存在差异,‘Xingyu-1’的富集作用最大,‘Xingyu-2’的富集作用最小,‘PLRF’介于二者之间,用于土壤Cd修复选择‘Xingyu-1’或‘PLRF’效果较好。3个芭蕉芋品种间,‘Xingyu-2’为Cd低富集品种,作为粮食作物种植安全性较高。
     2. Cd在美人蕉属植物体内分配不均匀,70%~80%的Cd存在于地下器官(根和根茎)中,美人蕉属植物根系对Cd的固定和截留是降低Cd毒害的一种适应机制。
     3.低浓度Cd促进了苗期美人蕉属植物生长,高浓度Cd对苗期美人蕉属植物生长具有抑制作用;成龄期美人蕉属植物生长受Cd胁迫影响小于苗期。Cd对美人蕉属植物生长的影响存在种间差异,对大花美人蕉的影响大于对芭蕉芋的影响。
     4. Cd胁迫降低了美人蕉属植物叶片光合色素含量和净光合速率(Pn)。Cd降低芭蕉芋Pn的同时,伴随着对气孔导度(Gs)和胞间二氧化碳浓度(Ci)的抑制作用;Cd胁迫导致了大花美人蕉Pn的下降,对Gs和Ci无显著影响。因此,芭蕉芋Pn的下降既存在气孔限制因素,又存在非气孔限制因素,而Cd对大花美人蕉Pn的降低作用主要由非气孔限制因素导致的。Cd胁迫显著降低了美人蕉属植物叶片蒸腾速率,减小植物的蒸腾拉力,从而限制了Cd从地下器官向地上器官的转移,这是美人蕉属植物降低Cd毒害的另一种保护机制。
     5.低浓度的Cd处理未导致美人蕉属植物叶片光系统Ⅱ(PSⅡ)的损伤,但高浓度Cd显著降低了美人蕉属植物最大量子产量(Fv/Fm)和实际量子产量(Yield),损伤光合器官PSⅡ,减少光能捕获,阻断光合电子传递速度,降低了参与光化学反应的能量,导致光合速率降低。大花美人蕉通过提高热耗散(qN)的方式降低高浓度Cd对其产生的伤害,而在芭蕉芋中不存在这种保护机制。
     6.外施Cd处理对美人蕉属植物叶片和根系产生了不同程度的氧化胁迫,Cd对过氧化氢(H2O2)含量的影响强于(或早于)对相对电导率(REC)和丙二醛(MDA)含量的影响,对根系的氧化胁迫程度强于对叶片的,大花美人蕉的胁迫程度强于芭蕉芋的。美人蕉属植物同时启动了抗氧化酶保护系统和非酶抗氧化系统应对Cd胁迫,耐Cd毒害强的种(芭蕉芋)或品种‘Xingyu-1’的保护系统活性或含量较高,耐性差的种(大花美人蕉)和品种‘Australia’的保护系统活性或含量较低,过氧化物酶(POD)负责大花美人蕉根系内过氧化物的解毒作用,过氧化氢酶(CAT)则负责芭蕉芋根系过氧化物的清除。
     7. Cd处理改变了根际土壤微环境,提高了微生物的数量,降低了根际土壤酶活性,影响了根际土壤矿质元素的活化和利用。低浓度Cd对根际土壤微生物影响较小,高浓度Cd胁迫增加了根际土壤真菌和放线菌数量,但对细菌数量影响较小。Cd胁迫降低了美人蕉属植物根际土壤脲酶、蛋白酶和蔗糖酶活性,蛋白酶的下降幅度最大,其次是脲酶,蔗糖酶的降幅最小;且苗期的抑制作用小于成龄期。Cd胁迫提高了土壤过氧化氢酶的活性。
     8.低浓度Cd处理促进了芭蕉芋对矿质营养元素和氮素的吸收,改变了地上部和地下部矿质的分配比例,而高浓度的Cd处理则抑制了芭蕉芋对矿质元素的吸收和运转。但不同的元素在不同品种之间存在差异,Cd对芭蕉芋大量元素的影响小于对微量元素的影响;Cd胁迫明显抑制大花美人蕉对矿质元素的积累。Cd对芭蕉芋矿质元素吸收的促进作用与对根际土壤微环境的改变有关,而对矿质元素吸收和运转的抑制作用则主要是由于高浓度Cd胁迫抑制了矿质元素的主动吸收(降低光合能量的产生或降低了代谢过程中的酶活性)和被动吸收(破坏离子通道和转运蛋白),降低了蒸腾拉力,减少了矿质从地下部向地上部的转运。从矿质元素含量变化来看,美人蕉属植物叶绿素降低和叶片黄化不是由于Fe、Mg、Cu、Mn、Ca和K等矿质元素的亏缺造成的。
Cadmium (Cd) pollution in soil has been one of the most important environmentalconcerns in the world. Phytoremediation, used to clear Cd pollution, has gained significantprogress in recent decades as cost-effective, eco-friendly technologies. Scientists arededicated to find new plants with ecomomic value or landscape value used in Cd pollutionarea. Some canna species might be an interesting alternative for use in phytoremediationtechnology with their high tolerance to Cd, high biomass production and fast-growingadvantage. Canna edulis is a new energy plants with ornamental value, its rhizome can beused to produce industrial alcohol due to high starch content. But the absorptioncharacteristics and remediation ability of C. edulis to Cd have not repored until now. In thispaper, three edible canna cultivars (PLRF, Xingyu-1and Xingyu-2) which are the mostcommon cultivars in China, and a C. generalis cultivar (Australia) were used as materials.This study mainly focused on the Cd accumulation characteristics in two Canna species andthe effect on their growth under Cd stress, discussed the tolerance mechamisns of Canna fromphotosynthetic physiology, antioxidative stress, micro-environment change in the rhizospheresoil and absorption and distribution of mineral elements under Cd stress by pot experientment.The main results are described as follows:
     1. Canna plants could be used for the remediation in situ decontamination of soilspolluted with Cd because of their high biomass, high tolerance and accumulation of Cd andfast-growing advantage, but they were not hyperacculmulators because they didn’t meet thestandard of Cd huperaccumulators. There were differences between C. edulis and C. generalis,the biomatter, tolerance and accumulation of C. edulis were higher than those of C. generalis,so the remediation effect of C. edulis was better than C. generalis. There were differencesamong the cultivars of C. edulis as well. The accumulation ability of the Xingyu-1was thehighest among three cultivars, followed by PLRF and the Xingyu-2. The remedationefficiency of Xingyu-1or PLRF was better than Xingyu-2in Cd polluted soil. However theXingyu-2had higher security as food crops for cultibation because it belonged to a relativelylower accumulator in three cultivars.
     2. The distribution of Cd in canna plants was non-uniform.70%to80%of Cd presentedin the underground organs (roots and rhizomes). The retention of Cd in the roots played animportant role in detoxifying Cd.
     3. Low concentration of Cd treated in seedling stage promoted the growth of Canna, buthigh concentration of Cd inhibited the growth of Canna. The inhibited effects showeddifference between two treatment stages and two species, the mature stage was lower thanseedling stage, C. edulis was lower than the C. generalis.
     4. Cd stress decreased the photosynthetic pigment contents of canna plants, resulting tothe declines of net photosysthesis rate (Pn). At the same time, the stomatal conductance (Gs)and intercellular CO2concentration (Ci) of edible canna were also inhibited under Cd stress,but Cd stress had no significant effect on the Gs and Ci of C. generalis. So the Pn declines ofedible canna were due to both stomatal and non-stomatal inhibiting factors, while that of C.generalis was only dedicated to the non-stomatal inhibiting factors. Cd stress significantlydecreased the transpiration rate (Tr) of canna plants, led to the reduction of transpiration pulland limitment of the Cd uptake and transfication from the underround organ to aerial organ,which was another protection mechanism to reduce Cd toxicity.
     5. Low concentrations of Cd did not damage PSII of canna plant, but high concentrationsof Cd significantly reduced the maximum quantum yield (Fv/Fm), the actual quantum yield,energy capturing and the energy involved in the photochemical reaction, damagedphotosystem II (PSII), blocked photosynthetic electron transfer rate (ETR), resulted in Pndeclines. C. generalis reduced toxicity of high concentrations Cd by improvingnon-photochemical quenching (qN). However, there were no such protection mechanisms inC edulis.
     6. Oxidative stress was induced by Cd treatment in both leaves and roots. The changes ofH2O2contents were stronger and earlier than the relative electric conductivity (REC) and thecontents of malondialdehyde (MDA). The degree of oxidative stress in the roots was strongerthan in the leaves, in C. generalis than in C edulis. At the same time, canna plants started theantioxidant enzymes protection system and non-enzymes antioxidant system in response toCd stress. High Cd-tolerant species or cultivar, such as C edulis or Xingyu-1, had higherantioxidant enzymes activity and antioxidant contents than the low Cd-tolerance ones, such asC. generalis cultivar Australia. Peroxidase (POD) was responsible for the peroxidedetoxification in roots of C. generalis, while catalase (CAT) was responsible for the peroxidedetoxification in roots of C edulis.
     7. Cd treatment changed the soil microenvironment of canna plants rhizosphere,improved the quantity of microbial community, reduced the soil enzyme activities, and affected the activation and utilization of the soil mineral elements in the rhizosphere. Lowconcentration Cd had little effect on the soil microenvironment of canna plants rhizosphere,but high oncentrations of Cd stress increased numbers of fungi and actinomycetes in soilrhizosphere and had little effect on the numbers of bacteria. Cd stress decreased urease,protease and invertase activity in rhizosphere soil of canna plants. The decline of protease wasthe largest, followed by urease, sucrase was the smallest. The inhibition effect in seedlingstage was less than in mature stage. Cd stress also increased soil catalase activity.
     8. Low concentration of Cd promoted abosorption of the mineral and nitrogen nutrientelements of edible canna, and changed the distribution ratio of mineral elements inabove-ground organ and underground organ. However, high contentration Cd inhibited theuptake and the translation of mineral elements in organ of edible canna. The variation ofdifferent mineral elements showed the significant difference among the different cultivars.The effects of Cd stress on macroelements were less than that of microelements in C edulis.Cd stress significantly inhibited abosorption and accumulation of the mineral and nitrogennutrient elements in C. generalis Australia. The promoted effect of Cd on the mineralelements in edible canna was related to the changes of soil microenvironment in rhizosphere,whereas the inhibition effect of high concentration Cd strss on the mineral elements in cannaplants was mainly due to the reduction of active absorption of mineral elements by reducingphotosynthetic energy and enzyme activity in metabolism, of passive absorption bydestruction ion channael and transporter protein. Cd stress reduced the transpiration pull andblocked the translocation of the mineral elements from the underground organ to arieal organtoo. According to the results of mineral elements, declines of chlorophyll content andchlorosis of the cannal plants induced by Cd were not caused by Fe, Mg, Cu, Mn, Ca and Kdeficit.
引文
蔡秋亮,林东教,何嘉文,何臻铸,朱宇鹏,曾湛均,刘士哲.2005.去污和苗圃功能兼具的美人蕉漂浮植物修复系统研究.农业工程学报,21:178~180.
    曹德菊,汤斌.2004.铅、镉及其复合污染对蚕豆根尖细胞的诱变效应.激光生物学报,13(4):302~304.
    陈涛,吴燕玉,张学询,孔庆新,宋胜焕,王连平,朴东华,高玉环.1980.张士灌区镉土改良和水稻镉污染防治研究.环境科学,1(5):7~11.
    陈镇华.2002.地表漫流田培植美人蕉对工业区综合污水深度处理的试验及大田实践.广州环境科学,17(3):14~17.
    成杰民,俞协治,黄铭洪.2005.蚯蚓一菌根在植物修复镉污染土壤中的作用.生态学报,25(6):1256~1259.
    成杰民,俞协治.2006.蚯蚓在植物修复铜、镉污染土壤中的作用.应用与环境生物学报,(3):352~355.
    段昌群,王焕校,曲仲湘.1992.重金属对蚕豆(Vic afaba)根尖的核酸含量及核酸酶活性的影响,环境科学,13(5):31~35.
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版社公司:138~197.
    葛才林,杨小勇,孙锦荷,王泽港,罗时石.2002.重会属胁迫引起的水稻和小麦幼苗DNA损伤.植物生理与分子生物学报,28(6):419~424.
    龚平,孙铁珩,李培军.1997.重金属对土壤微生物的生态效应.应用生态学报,8(2):218~224.
    顾继光,周启星.2002.镉污染土壤的治理及植物修复.生态科学,21(4):352~356.
    关松萌.1986.土壤酶及其研究法.北京:农业出版社:7~60.
    郭智,黄苏珍,原海燕.2008.镉胁迫对马蔺和鸢尾幼苗生长、Cd积累及微量元素吸收的影响.生态环境,17(2):651~656.
    郭智,原海燕,奥岩松.2009.镉胁迫对龙葵幼苗光合特性和营养元素吸收的影响.生态环境学报,18(3):824~829.
    何勇强,陶勤南,广淑和久.2000.镉胁迫下大豆中镉与几种微量元素的分布状况.浙江大学学报,26(2):155~156.
    和文祥,黄英锋,朱铭莪等.2002a.汞和镉对土壤脲酶活性影响.土壤学报,39(3):1412~420.
    和文祥,朱铭莪,张一平.2002b. pH对汞镉与土壤脲酶活性关系的影响.西北农林科技大学学报(自然科学版),30(3):66~70.
    黄国涛,欧阳底梅,向其柏,朱伟华.2005.美人蕉属品种分类研究.南京林业大学学报(自然科学版),29(4):20~24.
    李德明,朱祝军,刘永华,王玉清.2005.镉对小白菜光合作用特性影响的研究.浙江大学学报(农业与生命科学版),31(4):459~464.
    李芳柏,吴启堂.1997.无土栽培美人蕉等植物处理生活废水的研究.应用生态学报,8(1):88~92.
    李继光,李廷强,朱恩,杨肖娥,林国林,柳丹,韩晓日,张玉龙.2007.氮对超积累植物东南景天生长和镉积累的影响.水土保持学报,21(1):54~58.
    李俊钰,胥晓,杨鹏,王碧霞,王志峰,李霄峰.2012.铝胁迫对青杨雌雄幼苗生理生态特征的影响.应用生态学报,23(1):45~50.
    李玲,李娘辉,蒋素梅,冷佳奕,王小菁.2009.植物生理学模块实验指导.北京:科学出版社:95~98.
    李元,王焕校,吴玉树.1992. Cd、Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报,12(2):147~154.
    梁智,张计峰.2011.两种枣树矿质营养元素积累特性研究.植物营养与肥料学报,17(3):688~692.
    廖敏,黄昌勇,谢正苗.1998.施加石灰降低不同母质土壤中镉毒性机理研究.农业环境保护,l7(3):101~103.
    林爱军,张旭红,朱永官.2005.镉对小麦叶片DNA损伤的彗星实验研究.环境科学学报25(3):329~333.
    刘德鸿.2005.铜、镉污染土壤的“蚯蚓诱导-植物修复”作用研究.[硕士学位论文]:南京:南京农业大学.
    刘灵芝,张玉龙,李培军,龚宗强.2012.铅锌矿区分离丛枝菌根真菌对万寿菊生长及吸镉的影响,土壤学报,49(1):43~49.
    刘宛,郑乐,李培军,齐雪梅,周启星,孙铁珩.2006.镉胁迫对大麦幼苗基因组DNA多态性影响,农业环境科学学报,25(1):19~24.
    刘威,束文圣,蓝崇钰.2003.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物,科学通报,48(19):2046~2049.
    卢显芝,金建华,郝建朝,高大翔,张丽楠,刘惠芳,赵建宁.2009.不同土层土壤酶活性对重金属汞和镉胁迫的响应.农业环境科学学报,28(9):1844~1848.
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业出版社.
    马淑敏,孙振钧,王冲.2008.蚯蚓-甜高粱复合系统对土壤镉污染的修复作用及机理初探.农业环境科学学报,27(1):0133~0138.
    莫文红,李懋学.1992.镉离子对蚕豆根尖细胞分裂的影响.植物学通报,9(3):30~34.
    宁克莉,邹婧,邹金华.2010.镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响.农业环境科学学报,29(6):1050~1056.
    潘学军,李德燕,张文娥.2011.贵州葡萄属野生种光合特性的研究.植物遗传资源学报,12(1):145~149.
    潘学军,张文娥,樊卫国,蓬桂华,罗国华.2010.自然生草和间种绿肥对盆栽柑橘土壤养分、酶活性和微生物的影响.园艺学报,37(8):1235~1240.
    潘学军,张文娥,罗国华,樊卫国.2011.不同土壤管理方式下幼龄柑橘根区土壤酶活性动态变化.土壤通报,42(5):1116~1119.
    齐华,于贵瑞,程一松,王建林.2003.钾肥对灌浆期冬小麦群体内叶片光合特性的影响.应用生态学报,14(5):690~694.
    钱永强,周晓星,韩蕾,孙振元,巨关升.2011. Cd2+胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响.生态学报,31(20):6134~6142.
    孙和和,刘鹏,蔡妙珍,徐根娣,张晓斌,金爱红.2008.外源有机酸对美人蕉耐性和Cr吸收、迁移的影响.水土保持学报,22(2)75~78,154.
    孙连鹏,武睿,杨颖,黄珊珊.2008.美人蕉对水体中重金属Cd的富集能力研究.源环境保护,22,23~26.
    万雪琴,张帆,夏新莉,尹伟伦.2009.镉胁迫对杨树矿质营养吸收和分配的影响.林业科学,45(7):45~51.
    王涵,高树芳,罗丹,陈玉真.王果.2010. Cd、Pb污染土壤中蛋白酶酸性磷酸酶脱氢酶活性的变化.农业环境科学学报,29(3):505~510.
    王晓黎,郝敬虹,董春娟,张志刚,崔世茂,尚庆茂.2011.外源水杨酸对黄瓜幼苗叶片PSⅡ活性和光能分配的影响.西北植物学报,31(8):1644~1650.
    王业社,刘可慧2009.美人蕉(Canna indica Linn)镉胁迫的抗氧化机理.生态学报,29:2710~2715.
    魏树和,周启星,王新,曹伟,任丽萍,宋玉芳.2003a.杂草中具重金属超积累特征植物的筛选.自然科学进展,13(12):1259~1265.
    魏树和,周启星,王新,张凯松,郭观林.2004.一种新发现的镉超积累植物龙葵(Solanumnigrum L),科学通报,49(24):2568~2573
    魏树和,周启星,王新.2003b.18种杂草对重金属的超积累特性研究.应用基础与工程科学学报,11(2):152-160.
    吴德邻.1981.中国植物志:第16卷.北京:科学出版社.
    吴双桃.2005.美人蕉在镉污染土壤中的植物修复研究.工业安全与环保,31:13~15.
    吴伟明,宋祥甫,金千瑜,应火东,邹国燕.2000.鱼塘水面无土栽培美人蕉研究.应用环境生物学报,16(3):206~210.
    吴征镒,路安民,汤彦承,陈之端,李德珠.2003.中国被子植物科属综论.北京:科学出版社.
    徐良将,张明礼,杨浩.2011.土壤重金属镉污染的生物修复技术研究进展.南京师大学报(自然科学版),34(1):102~106.
    徐勤松,施国新,周耀明,吴国荣,王学.2004.镉在黑藻叶细胞的亚显微定位分布及毒害效应分析.实验生物学报,37(6):461~468.
    许练烽,郝兴仁,刘腾辉,程宏.1995.重金属Cd和Pb对土壤微生物活性影响的初步研究.热带亚热带土壤科学,4(4):216~220.
    杨卫东.2008.柳树对镉积累、忍耐与解毒生理机制初步研究.[博士学位论文]北京:中国林业科学研究院.
    杨肖娥,龙新宪,倪吾钟.2002.东南景天—一种新的镉超富集植物.科学通报,47(13):1003~1005.
    杨珍平,郝教敏,卜玉山,高志强,苗果园.2011. Cd胁迫对5种植物体内Cd积累及根际土壤特性的影响.水土保持学报,25(6):188~191.
    叶亚新,金进,王金虎,田苗,高平.2007.稀土镧对镉胁迫小麦遗传学防护效应的研究,中国生态农业学报,51(3):97~99.
    原海燕,黄苏珍,郭智.2010.4种鸢尾植物对铅锌矿区土壤中重金属的富集特征和修复能力.生态环境学报,19(7):1918~1922.
    袁祖丽,马新明,韩锦峰,李春明,叶永忠,吴保存.2005.镉胁迫对烟草营养器官发育及矿物质元素的影响.河南科学,23(5):679~682.
    曾路生,廖敏.2005.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报,16(11):2162~2167.
    詹杰,魏树和,牛荣成.2012.我国稻田土壤镉污染现状及安全生产新措施.农业环境科学学报,31(7):1257~1263.
    张呈祥,陈为峰.2012.美人蕉对镉的胁迫反应及积累特性植物.生态学报,36(7):690~696.
    张文娥,王飞,田治国,赵秀明,潘学军.2012.2种美人蕉属植物对夏末秋初光温变化的生理响应西北农林科技大学学报(自然科学版)40(2):121~128,135.
    张亚丽,沈其荣,姜洋.2001.有机肥料对镉污染土壤的改良效应.土壤学报,38(2):212~218.
    张银秋,台培东,李培军,吴海燕,方英,董殿波,赵青.2011.镉胁迫对万寿菊生长及生理生态特征的影响.环境工程学报,5(1):195~199.
    周启星,吴燕玉,熊先哲.1994.重金属C d-Zn对水稻的复合污染和生态效应.应用生态学报,5(4):438~441.
    朱奇宏,黄道友,刘国胜,朱光旭,朱捍华,刘胜平.2009.石灰和海泡石对镉污染土壤的修复效应与机理研究,水土保持学报,23(1):111~116.
    朱夕珍,崔理华,刘雯,刘怡.2004.垂直流美人蕉模拟人工湿地对化粪池出水的净化效果.农业环境科学学报,23(4):761~765.
    诸洪达,王继先,陈如松,常平,田伟之,高俊全,刘虎生,尹协瑜,张永保,陆梅,石磊,刘国栋.2000.中国人食品中元素浓度和膳食摄入量研究.中华放射医学与防护杂志,20(6):378~384.
    Adams D O, Yang S F.1979. Ethylene biosynthesis: Identification of1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedingsof the National Academy of Sciences,76:170~174.
    Aidid S B, Okamoto H.1993. Responses of elongation growth rate, turgor pressure and cell wallextensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals,6:245~49.kesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M.2006. Cadmium-induced effects on bone in a population-based study of women. EnvironmentHealth Perspect,114(6):830~34.
    Akhter F.2012. Cadmium accumulation and distribution in lettuce and barley.[Doctor degree thesis].London, Ontario, Canada: Western University.
    Alcántara E, Romera F J, Ca ete M, De La Guardia M D.1994. Effects of heavy metals on both inductionand function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal ofExperimental Botany,45(12):1893~1898.
    Alexieva V, Sergiev I, Mapelli S, Karanov E.2001. The effect of drought and ultraviolet radiation ongrowth and stress markers in pea and wheat. Plant Cell and Environment,24:1337~1344.
    Alfredo P D M., Julio J O C, Cabrera F, M.ngracia E.2005.Changes in enzyme activities andmicrobial biomass after “in situ” remediation of a heavy metal-contaminated soil. AppliedSoil Ecology,28(2):125~137.
    Alfvén T, Elinder C G, Hellstr m L, Lagarde F, J rup L.2004. Cadmium exposure and distalforearm fractures. Journal of Bone and Mineral Research,19(6):900~905.
    Alizadeh S M, Zahedi-Amiri G, Savaghebi-Firoozabadi G, Etemad1V, Shirvany A, Shirmardi M.2012.Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings. InternationalAgrophysics,26(3):219~224.
    Alloway B J, Steinnes E.1999. Anthropogenic addition of cadmium to soils. In: McLaughlin M J,Singh B R (Eds) Cadmium in soils and Plants. London: Kluwer Acad Publication:97~123.
    Arduini I, Godbold D L, Otinis A.1994. Cadmium and copper change root growth and morphologyof Pinus pinea and Pinus pinaster. Physiologia Plantarum,92:675~680.
    Baerug R, Singh B R.1990. Cadmium levels in soils and crops after long-term use of commercialfertilizers. Norwegian Journal of Agricultura Sciences,4(3):251~260.
    Baes C F, Mesmer R E.1976. The hydrolysis of cations. New York: Wiley.
    Bagot D, Lebeau T, Jezequel K.2006. Microorganisms for remediation of cadmium contaminatedsoils. Environmental Chemistry Letters,4:207~211.
    Baker A J M, Brooks R R.1989. Terrestrial higher plants which hyperaccumulate metallicelements-a review of their distribution, ecology and phytochemistry. Biorecovery1:81-126.
    Baker A J M, McGrath S P, Sidoli C M D, Reeves R D.1994. The possibility of in situ heavymetal decontamination of polluted soils using crops of metal-accumulating plants. Resources,Conservation and Recycling,11:41~49.
    Baker A J M, Reeves R D, McGrath S P.1991.In situ decontamination of heavy metal pollutedsoils using crops of metal-accumulating plants-a feasibility study. In: Hinchee R E,Olfenbuttel R F (Eds) In situ bioreclamation. Boston: Butter worth-Heinemann:600~605.
    Balestrasse K B, Benavides M P, Gallego S M, Tomaro M L.2003. Effect of cadmium stress onnitrogen metabolism in nodules and roots of soybean plants. Functioal Plant Biology,30:57~64.
    Balestrasse K B, Gallego S M, Tomaro M L.2004. Cadmium-induced senescence in nodules ofsoybean (Glycine max L.) plants. Plant and Soil,262:373~381.
    Balestrasse K B, Gallego S M, Tomaro M L.2006. Oxidation of the enzymes involved in nitrogenassimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plantand Soil,284:187~194.
    Baran E J, González-Baró A C, Ciciarelli M M, Rolleri C H.2010. Characterization of bio-minerals inspecies of Canna (Cannaceae). Revista de Biologia Tropical,58(4):1507~1515.
    Barański B, Stetkiewicz I, Sitarek K, Szymczak W.1983. Effects of oral, subchronic cadmiumadministration on fertility, prenatal and postnatal progeny development in rats. Arch Toxicol,54:297~302.
    Barański B.1986. Effect of maternal cadmium exposure on postnatal development and tissuecadmium, copper and zinc concentrations in rats. Arch Toxicol,58:255~260.
    Barceló J, Poschenrieder C, Andreu I, Gunse B.1986. Cadmium-induced decrease of water stressresistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. effects of Cd on waterpotential, relative water content, and cell wall elasticity. Journal of Plant Phyiology,125(1-2):17~25.
    Benavides M, Gallego S, Tomato M.2005. Cadmium toxicity in plants.Brazilian Joumal of PlantPhysiology,17(1):21~34.
    Bhattacharjee S, Mukherjee A K.1996. Ethylene evolution and membrane lipid peroxidation asindicator of salt injury in leaf tissues of Amaranthus lividus seedlings. Indian JournalExperimental Biology,34:279~291.
    Bhattacharjee S.1997/1998. Membrane lipid peroxidation, free radical scavengers and ethyleneevolution in Amaranthus as affected by lead and cadmium. Biologia Plantarum,40:131~135.
    Blaylock M, Salt D, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B, Raskin I.1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents.Environmental Science and Technology,31(3):860~865.
    Bleecker A B, Schaller G E.1996. The mechanism of ethylene perception. Plant Physiology,111:653~60.
    Bolan N S, Adriano D C, Duraisamy P, Mani A and Arulmozhiselvan K.2003a. Immobilizationand phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition.Plant and Soil,250:83~94.
    Bolan N S, Adriano D C, Mani P, Duraisamy A.2003b. Immobilization and phytoavailability ofcadmium in variable charge soils. II. Effect of lime addition. Plant Soil,251:187~918.
    Bonnissel-Gissinger P, Alnot M, Ehrhardt J J.1998. Surface oxidation of pyriteasa function of pH,Environmental Science Technology,32(19):28~39.
    Bose S, Jain A, Rai V, Ramanathan A L.2008. Chemical fractionation and translocation of heavymetals in Canna indica L. grown on industrial waste amended soil. Journal of HazardousMaterials,160:187~193.
    Brooks R R, Lee J, Reebes R D, Jaffire T J.1977. Detection of nickeliferous rocks by analysis ofherbarium specimens of indicator plants. Journal of Geochemical Exploration,7:49~77.
    Burns J K, Evensen K B.1986. Ca2+effects on ethylene, carbon dioxide and1-aminocyclopropane-1-carboxylic acid synthase activity. Physiologia Plantarum,66:609~615.
    Chance B, Maehly A C.1955. Assay of catalase and perxoidase. In: Colowick S P, Kaplan N O (eds.).Methods in enzymology. New York: Academic Press:764-775.
    Chaney R L.1983. Plant uptake of inorganic waste constituents. In: James F P, Paul B M, JoanneM K (Eds) Land treatment of hazardous waster. NJ: Noyes Data Corp, Park Ridge:50~76.
    Chaoui A, Mazhoudi S, Ghorbal M H, Ferjani E E I.1997. Cadmium and zinc induction of lipidperoxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.).Plant Science,127(2):139~47.
    Chen X, Wang J, Shi Y, Zhao M Q, Chi G Y.2011. Effects of cadmium on growth andphotosynthetic activities in pakchoi and mustard. Botanical Study,52:41~46.
    Chen Y, Bracy R P, Owings A D.2009. Nitrogen and phosphorousremoval by ornamental andwetland plants in a greenhouse recirculation research system. HortScience44(6):1704~1711.
    Chen Z S, Zhang H Y, Guo W, Zhang L Y, Tian Y L, Wei X F.2012. Cadmium stress on wheatmorphology: germination and growth. Advanced Materials Research,356-360:1075-1078.
    Cho U H, Seo N H.2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogenperoxide accumulation. Plant Science,168:113~120.
    Christensen T H, Tjell J C.1991. Sustainable management of heavy metals in agriculture. Example:Cadmium. In: Farmer JG (Ed.), Heavy Metals in the Environment Volume1. Edinburg: CEPConsultants:40-49.
    Ciesliński G, Van Rees K C J, Szmigielska A M, Krishnamurti G S R, Huang P M.1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect oncadmium bioaccumulation. Plant and Soil,203:109~117.
    Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S.2003. Heavy metaltolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil,256:243~252.
    Clarkson D T, Robards A W, Sanderson J.1971. The tertiary endodermis in barley roots: finestructure in relation to radial transport of ions and water. Planta,96:292~305.
    Clemens S, Antosiewicz D M, Ward J M, Schachtman D P.1998. The plant cDNA LCT1mediatesthe uptake of calcium and cadmium in yeast. Proceedings of the National Academy ofSciences,95:12043~12048.
    Clemente R, Almela C, Bernal M P.2006. A remediation strategy based on active phyto-remediation followed by natural attenuation in a soil contaminated by pyrite waste.Environmental Pollution,143:397~406.
    Cohen C, Fox T, Garvin D, Kochian L.1998. The role of iron-deficiency stress responses instimulating heavy-metal transport in plants. Plant Physiology,116:1063~1072.
    Cooke I.2001. The gardeners guide to growing cannas. Portland: Timber Press InC.
    Costa G, Michaut J C, Guckert A.1997. Amino acids exuded from axenic roots of lettuce andwhite lupin seedlings exposed to different cadmium concentrations. Journal of Plant Nutrition,20:883~900.
    Costa G, Morel J L.1994. Water relations, gas exchange and amino acid content in Cd-treatedlettuce. Plant Physiology Biochemistry,32:561~570.
    Cristina C S, Range A O, Castro P M.2007. Constructed wetland systems vegetated with differentplants applied to the treatment of tannery wastewater. Water Research,41(8):1790~1798.
    Czarnecka E, Edelman L, Sch ffl F, Key J L.1984. Comparative analysis of physical stressresponses in soybean seedlings using cloned heat shock cDNAs. Plant Molecular Biology,3:45~58.
    Dabeka R W, Mckenzie A D.1992. Total diet study of lead and cadmium in food compositespreliminary investigations. Journal of AOAC International,75:386~394.
    Davis LC, Vanderhoof S, Dana J, Selk K, Smith K, Goplen B, Erickson L E.1998. Movement ofchlorinated solvents and other volatile organics through plants monitored by fourier transforminfrared (FT-IR) spectrometry. Journal of Hazardous Substance Research1:4-1~4-26.
    De La Rosa G, Peralta-Videa J R, Montes M.2004. Cadmium uptake and translocation intumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OESand XAS studies. Chempsphere,55:1159~1168
    Delhaize E, Robinson N J, Jackson P J.1989. Effects of cadmium on gene expression incadmium-tolerant and cadmium-sensitive Datura innoxia cells. Plant Molecular Biology,12:487~497.
    Dominguez M J, Gutiérrez F, León R, Vilchez C, Vega J M, Vigara J.2003. Cadmium increases theactivity levels of glutamate dehydrogenase and cysteine synthase in Chlamydomonas reinhardtii. PlantPhysiol ology Biochemistry,41:828~832.
    Dong J, Wu F B, Zhang G P.2005. Effect of cadmium on growth and photosynthesis of tomatoseedlings. Journal of Zhejiang University Science B,6:974~980.
    Dra kiewicz M, Tukendorf A, Baszyński T.2003. Age-dependent response of maize leaf segmentsto cadmium treatment: effect on chlorophyll fluorescence and phytochelation accumulation.Journal of Plant Physiology,160:247~254.
    Dushenkov V, Kumar P B A N, Motto H, Raskin I.1995. Rhizofiltration: the use of plants toremove heavy metals from aqueous streams. Environmental Science and Technology,29:1239~1245.
    Ebbs D S, Lasat M M, Brady D J, Cornish J, Gordon R, Kochian L V.1997. Phytoextraction ofcadmium and zinc from a contaminated soil. Journal of Environmetal Qualigy,26:1424~1430.
    Ecker J R.1995. The ethylene signal transduction pathway in plants. Science,268:667~675.
    Edelman L, Czarnecka, E, Key, J L.1988. Induction and accumulation of heat shock-specific polyA+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. PlantPhysiology,86:1048~1056.
    Fagioni M, D’Amici G M, Timperio A M, olla L.2009. Proteomic analysis of multiproteincomplexes in the thylakoid membrane upon cadmium treatment. Journal of ProteomeResearch,8:310~326.
    Fan X T, Sokorai K J B.2005. Assessment of radiation sensitivity of fresh-cut vegetables using electrolyteleakage measurement. Postharvest Biology and Technology,36:191~197.
    FAO/WHO Food Standards Programme CODEX Alimentarius Committee.2008. Report of the2ndsession of the Codex Committee on contaminants in foods. The Hague, the Netherlands.31March-4April.
    Farquhar G D,Sharky T D.l982. Stomatal conductance and photosynthesis.Annual Review of PlantPhysiology,33:3l7~345.
    Fischerová Z, Tlusto P, Ji ina Száková J, ichorová K.2006. A comparison of phytoremediationcapability of selected plant species for given trace elements. Environmental Pollution,144(1):93~100.
    Fuhrer J, Geballe G T, Fries C.1981. Cadmium-induced change in water economy on beans:involvement of ethylene formation. Plant Physiology,67(suppl.):55.
    Fuhrer J.1982a. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell andEnvironment,5(4):263~270.
    Fuhrer J.1982b. Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolusvulgaris L.). Plant Physiology,70(1):162~167.
    Gallego S M, Benavides M P, Tomaro M L.1996. Effect of heavy metal ion excess on sunflowerleaves: evidence for involvement of oxidative stress. Plant Science,121(2):151~159.
    Gao S, Tanji K, Peters D, Lin Z, Terry N.2003. Selenium removal from irrigation drainage waterflowing through constructed wetland cells with special attention to accumulation in sediments.Water Air Soil Pollution,144:263~284.
    Gao X, Akhter F, Tenuta M, Flaten D N, Gawalko E J, Grant C A.2010. Mycorrhizal colonizationand grain Cd concentration of field-grown durum wheat in response to tillage, preceding cropand phosphorus fertilization. Journal of the Science of Food and Agriculture,90(5):750~758.
    Gao X, Tenuta M, Flaten D N, Grant C A.2011. Cadmium concentration in flax colonized bymycorrhizal fungi depends on soil phosphorus and cadmium concentrations. Communicutionsin Soil Science and Plant Analysis,42:1882~1897.
    Gardea-torresdey J L, Peralta-videa J R, Montes M, De la Rosa G, Corral-Diaz B.2004.Bioaccumulation of cadmium, chrormium and copper by Convolvulus anensis L.: Impact onplant growth and uptake of nutritional elements. Bioresource Technology,92(3):229~235.
    Genty B,Briantais J M,Baker N R.1989. The relationship between the quantum yield of photosyntheticelectron transport and quenching of chlorophyll fluorescence. Biochimicaet Biophysica Acta(BBA):General Subjects,990(1):87~92.
    Giannopolities C H, Ries S K.1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology,59:309~314.
    Gifford S, Dunstan R H, O’Connor W, Koller C E, MacFarlane G R.2006Aquatic zooremediation:deploying animals to remedate contaminated aqueatic envieronments. Trends inBiotechnology,25(2):60~65.
    Gill S S, Khan N A, Anjum N A, Tuteja N.2011. Amelioration of cadmium stress in crop plants bynutrients management: morphological, physiological and biochemical aspects. Plant Stress,5(1):1~23.
    Grant C A, Bailey L D, McLaughlin M J, Singh B R.1999. Management factors which influencecadmium concentrations in crops. In: McLaughlin M J, Singh B R (Eds), Cadmium in soilsand plants. Dordrecht: Kluwer Academic Publishers:151~198.
    Grant C A, Sheppard S C.2008. Fertilizer impacts on cadmium availability in agricultural soilsand crops. Human and Ecological Risk Assessment,14:210~228.
    Grant C A.2011. Influence of phosphate fertilizer on cadmium in agricultural soils and crops.Pedologist,143-155.
    Grill E, L ffler S, Winnacker E L, Zenk M H.1989. Phytochelatins, the heavy-metal-bindingpeptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteinedipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy ofSciences,86(18):6838~6842.
    Grill E, Thumann J, Winnacker E L, Zenk M H.1988. Induction of heavy-metal binding phyto-chelatins by inoculation of cell cultures in standard media. Plant Cell Reports,7:375~378.
    Grill E, Winnacker E L, Zenk M H.1985. Phytochelatins: the principal heavy-metal complexingpeptides of higher plants. Science,230:674~676.
    Grill E, Winnacker E L, Zenk M H.1987. Phytochelatins, a class of heavy-metal-binding peptidesfrom plants, are functionally analogous to metallothioneins. Proceedings of the NationalAcademy of Sciences,84:439~443.
    Gundersen P, Steinnes E.2003. Influence of pH and TOC concentration on Cu, Zn, Cd, and Alspeciation in rivers. Water Research,37(2):307~318.
    Gussarsson M, Asp H, Adalsteinsson S, Jensen P.1996. Enhancement of cadmium effects on growth andnutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). Journal ofExperimental Botany,47:211~215.
    Ha N T H, Sakakibara M, Sano S, Hori R S, Sera K.2009. The Potential of eleocharis acicularisfor phyto-remediation: case study at an abandoned mine site. Clean–Soil Air Water,37(3):203~208.
    Haag-Kerwer A, Sch fer H J, Heiss S, Walter C, Rausch T.1999. Cadmium exposure in Brassicajuncea causes a decline in transpiration rate and leaf expansion without effect on photo-synthesis. Journal of Experimental Botany,50:1827~1835.
    Hansen D, Duda P J, Zayed A, Terry N.1998. Selenium removal by constructed wetlands: role ofbiological volatilization. Environmental Science and Technology,32:591~597.
    Harada E, Yamaguchi Y, Koizumi N, Hiroshi S.2002. Cadmium stress induces production of thiolcompounds and transcripts for enzymes involved in sulfur assimilation pathway in Arabidopsis.Journal of Plant Physiology,159(4):445~448.
    Heath R L, Packer L.1968. Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fattyacid peroxidation. Archives of Biochemistry and Biophysics,25:189~198.
    Hernández L E, Carpena-Ruiz R, Gárate A.1996. Alterations in the mineral nutrition of peaseedlings exposed to cadmium. Journal of Plant Nutrition,19(12):1581~1598.
    Hershko A.1988. Ubiquitin-mediated protein degradation. The Journal of Biological Chemistry,263(30):15237~15240.
    Hsu Y T, Kao C H.2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings.Plant, Cell and Environment,26:867~874.
    Hsu Y T, Kao C H.2005. Abscisic acid accumulation and cadmium tolerance in rice seedlings. PhysiologiaPlantarum,124:71~80.
    Hsu Y T, Kao C H.2007. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxideaccumulation. Plant and Soil,298:231~241.
    Huang J, Chen J, Berti W, Cunningham S.1997. Phytoremediation of lead-contaminated soils: roleof synthetic chelates in lead phytoextraction. Environmental Science and Technology31:800~805.
    Hung P V, Morita N.2005. Physicochemical properties and enzymatic digestibility of starch from ediblecanna (Canna edulis) grown in Vietnam. Carbohydrate Polymers,61:314~321.
    IARC.1993. IARC monographs on the evaluation of carcinogenic risks to humans. Beryllium,cadmium, mercury, and exposures in the glass manufacturing industry:119-237.
    Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M.2007. Bioremediation of cadmium contaminated soilusing symbiosis between leguminous plant and recombinant rhizobia with the MTL4and the PCSgenes. Chemosphere,66,1670~1676.
    Iskandar I K, Adriano D C.1997. Remediation of soils contaminated with metals: a review ofcurrent practices in the USA, In: Iskandar I K, Adriano D C (Eds), Remediation of soilscontaminated with metals. Advances in Environmental Science. UK: Northwood:1-26.
    Ismail A A, Pye S R, Cockerill W C, Lunt M, Silman A J, Reeve J, Banzer D, Benevolinskava L I.2002. Incidence of limb fracture across Europe: results from the European ProspectiveOsteoporosis Study (EPOS). Osteoporosis International,13(7):565~571.
    Jiang H M, Yang J C, Zhang J F.2007. Effects of external phosphorus on the ultrastructure and thechlorophyll content of maize under cadmium and zinc stress. Environment Pollution,147:750~756.
    Jing Y D, He Z L, Yang X E.2007. Role of soil rhizobacteria in phytoremediation of heavy metalcontaminated soils. Journal of Zhejiang University Science B,8(3):192~207.
    Ju G C, Li X Z, Rauser W E, Oaks A.1997. Influence of cadmium on the production ofγ-glutamylcysteine peptides and enzymes of nitrogen assimilation in Zea mays seedlings.Physiologia Plantarum,101:793~799.
    Jungmann J, Reins H A, Schobert C, Jentsch S.1993. Resistance to cadmium mediated ubiquitin-dependent proteolysis. Nature,361:369~371.
    Kao P H, Huang C C, Hseu Z Y.2006. Response of microbial activities to heavy metals in a neutral loamysoil treated with biosolid.Chemosphere,64(1):63~70.
    Ke D S, Wang A G, Sun G C, Dong L F.2002. The effect of active oxygen on the activity of ACC synthaseinduced by exogenous IAA. Acta Botanica Sinica,44:551~556.
    Khan N A, Samiullah, Singh S, Nazar R.2007. Activities of antioxidative enzymes, sulphur assimilation,photosyn-thetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potentialunder cadmium stress. Journal of Agro Crop Science,193:435~444.
    Khan N A, Singh S, Umar S.2008. Sulfur assimilation and abiotic stress in plants. GmbH and Co. K:Springer-Verlag Berlin and Heidelberg.
    Klang-westin E, Eriksson J.2003. Potential of Salix as phytoextractor for Cd on moderately contaminatedsoils.Plant and Soil,249(1):127~137.
    Kozlov M V, Haukioja E, Bakhtiarov AV, StroganovD N.1995. Heavymetalsinbirch leaves around anickel-coppers melter at Monchegorsk, Northwestern Russia. Environmental Pollution,90:291~299.
    Krupa Z.1988. Cadmium-induced changes in the composition and structure of the light-harvestingcomplex II in radish cotyledons. Physiologia Plantarum,73:518~24.
    Lane T W, Saito M A, George G N, Pickering I J, Prince R C, Morell F M M.2005. A cadmiumenzyme from a marine diatom. Nature,435:42.
    Larsson E H, Bornman J F, Asp H.1998. Influence of UV-B radiation and Cd2+on chlorophyllfluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany,49:1031~1039.
    Laspina N V, Groppa M D, Tomaro M L, Benavides M P.2005. Nitric oxide protects sunflowerleaves against Cd-induced oxidative stress. Plant Science,169:323~330.
    Leita L, Contin M, Maggioni A.1991. Distribution of cadmium and induced Cd-binding proteinsin roots, stems and leaves of Phaseolus vulgaris. Plant Science,77:139~147.
    Levine A, Tenhaken R, Dixon R, Lamb C.1994. H2O2from the oxidative burst orchestrates the planthypersensitive disease resistance response. Cell,79:583~593.
    Li S G, Zhang K F, Zhou SQ, Zhang L Q, Chen Q L.2009. Use of dewatered municipal sludge onCanna growth in pot experiments with a barren clay soil. Waste Management,29:1870~1876.
    Lichtenthaler H K, Wellbum A R.1983. Determinations of total carotenoids and chlorophylls a and b ofleaf extracts in different solvents. Biochemical Society Transactions,603:591~592.
    Lin D, Ouyang Y, Huang C H, Huang DY.2010. Characterization of heavy metals from bananafarming soils. Clean–Soil Air Water,38(5):430~436.
    Liu D H, Jiang W S, Wang W, Zhai L.1995. Evaluation of metal ion toxicity on root tip cells bythe Allium test. Israel Journal of Plant Sciences,43:125~133.
    Liu D H, Kottke I.2004. Subcellular localization of cadmium in the root cells of Allium cepa byelectron energy loss spectroscopy and cytochemistry. Journal of Biosciences,29:329~335.
    Lombi E, Zhao F J, Dunham S J, McGrath S P.2001a. Phytoremediation of heavy metalcontaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.Journal of Environmental Quality,30(6):1919~1926.
    Lombi E, Zhao F J, McGrath S P, Young S D, Sacchi G A.2001b. Physiological evidence for ahigh-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. NewPhytologist,149:53~60.
    Lombi E, Zhao F J, Zhang G Y, Sun B, Fitz W, Zhang H, McGrath S P.2002. In situ fixation ofmetals in soils using bauxite residue: chemical assessment. Environmental Pollution118(3):435~443.
    Long X H, Ni N, Wang X H, Wang J X, Zhang Z H, Zed Rengel, Liu Z P, Shao H B.2013.Phytoremediation of cadmium-contaminated soil by two Jerusalem artichoke (Helianthus tuberosus L.)genotypes. Clean-soil, Air, Water,41(2):202~209.
    López-Climent M F, Arbona V, Pérez-Clemente R M, Gómez-Cadenas A.2011. Effects of cadmium ongas exchange and phytohormone contents in citrus. Biologia Plantarum,55(1):187~190.
    Lozano-Rodriguez E, Hernandez L E, Bonay P, Carpena-Ruiz R O.1997. Distribution of cadmiumin shoot and root tissues of maize and pea plants: physiological disturbances. JournalExperimental Botany,48(306):123~128.
    Lucero M E, Mueller W, Hubstenberger J, Phillips G C, O'Connell M A.1999. Tolerance tonitrogenous explosives and metabolism of TNT by cell suspensions of Datura innoxia. InVitro Cellular and Developmental Biology-Plant,35:480~486.
    Ma J F, Ryan P R, Delhaize E.2001. Aluminium tolerance in plants and the complexing role oforganic acids. Trends in Plant Science,6(6):273~278.
    Makino T, Kamiya T, Sekiya N, Maejima Y J, Akahane I, Takano H.2010. Chemical remediationof cadmium-contaminated paddy soils by washing with ferric chloride: Cd extractionmechanism and on-site verification. Australia: Brisbane:35~38.
    Mann S S, Ritchie G S P.1993. The influence of pH on the forms of cadmium in four westAustralian soils. Australian Journal of Soil Research,31:255~270.
    Mattioni C, Gabbrielli R, Vangronsveld J, Clijsters H.1997. Nickel and cadmium toxicity andenzymatic activity in nitolerant and non-tolerant populations of Silene italica. Journal ofPlant Physiology,150(1-2):173~177.
    McLaughlin M J, Singh B R.1999. Cadmium in Soils and Plants, a global perpective. In:McLaughlin M J, Singh B R (Eds) Cadmium in soils and plants. Dordrecht: Kluwer AcademicPublishers:1-7.
    Mench M, Morel J L, Guckert A, Guillet B.1988. Metal binding with root exudates of lowmolecular weight. Journal of Soil Science,39:521~527.
    Mensah E, Odai S N, Ofori E, Kyei-Baffour N.2008. Influence of transpiration on cadmium (Cd)and lead (Pb) uptake by cabbage, carrots and lettuce from irrigation water in Ghana. AsianJournal of Agricultural Research,2(2):56~60.
    Mulla D J, Page A L, Ganje T J.1980. Cadmium accumulation and bioavailability in soils fromlong-term fertilization. Journal of Environmental Quality,9:408~412.
    Mulligan C N, Yong R N, Gibbs B F.2001. Surfactant-enhanced remediation of contaminated soil:a review. Engineering Geology,60(1):371~380.
    Murray H, Pinchin T A, Macfie S M.2011. Compost application affects metal uptake in plantsgrown in urban garden soils and potential human health risk. Journal of Soils Sediments,11:815~829.
    Nagalakshmi N, Prasad M N.2001. Responses of glutathione cycle enzymes and glutathione metabolism tocopper stress in Scenedesmus bijugatus. Plant Science,160:291~299.
    Naidu R, Kookana R S, Sumner M E, Harter R D, Tiller K G.1999. Cadmium sorption andtransport in variable charge soils: a review. Journal of Environmental Qua1ity,26:602~617.
    Nakano K, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinachchloroplasts. Plant and Cell Physiology,22:867~880.
    Neill S, Desikan R, Hancock J.2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology, l5:388~395.
    Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L.1994. Heat-shock proteinsinduce heavy-metal tolerance in higher plants. Planta,194:360~367.
    Neumann P M, De Souza M P, Pickering I J, Terry N.2003. Rapid microalgal metabolism ofselenate to volatile dimethylselenide. Plant Cell Environment,26:897~905.
    Nevena C, Ljubinko J, Dragana D, Milorad V, Suzana M, Marija N.2012. Potential use of Canna indica L.for phytoremdiation of heavy metals. Republic of Macedomia: Balwois-Ohrid:1-8.
    Newman L, Strand S, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff B, Wilmoth J, Heilman P,Gordon M.1997. Uptake and biotransformation of trichloroethylene by hybrid poplars.Environmental Science Technology,31:1062~1067.
    Nicholson F A, Jones K C, Johnston A E.1994. Effect of phosphate fertilizers and atmosphericdeposition on long-term changes in the cadmium content of soils and crops. EnvironmentalScience Technology,28:2170~2175.
    Obata H, Umebayashi M.1997. Effects of cadmium on mineral nutrient concentrations in plants differingin tolerance for cadmium. Journal of Plant Nutrition,20(1):97~105.
    Ogawa T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K.2004. Relationship amongprevalence of patients with Itai-itai disease, prevalence of abnormal urinary findings, andcadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyamaprefecture of Japan. International Journal of Environmental Health Research,14:243~252.
    Olivares-Rieumont S, de la Rosa D, Liama L, Graham D W, D’Alessandro K, Borroto J, MartinezF, Sánchez J.2005. Assessment of heavy metal levels in Almendares River sediments-HavanaCity, Cuba. Water Research,39(16):3945~3953.
    Ostrowski S R, Wilbur S, Chou C H, Pohl H R, Stevens Y W, Allred P M, Ronev N, Fay M,Tylenda C A.1999. Agency for toxic substances and disease registry’s1997priority list ofhazardous substances. Latent effects-carcinogenesis, neurotoxicology, and developmentaldeficits in humans and animals. Toxicology and Industrial Health,15(7):602~644.
    Ottow J C G,Benckiser G.1982. Iron toxicity of rice as multiple nutrient soil stress. Trop Agric ReserchSeries,15:167~174.
    Pancholy S K, Rice E L, Turner J A.1975. Soil factors preventing revegetation of a denuded areanear an abandoned Zinc Smelter in Oklahama. Journal of Applied Ecology,12(1):337~342.
    Pedas P, Ytting C K, Fuglsang A T, Jahn T P, Schjoerring J K, Husted S.2008. Manganeseefficiency in barley: identification and characterization of the metal ion transporter HvIRT1.Plant Physiology,148:455~466.
    Peijnenburg W, Baerselman R, de Groot A, Jager T, Leenders D, Posthuma L, Van Veen R.2000.Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. ArchivesEnvirnmental Contamination Toxicology,39:420~430.
    Peng J F, Song Y H, Yuan P, Cui X Y, Qiu G L.2009. The remediation of heavy metalscontaminatied sediment. Journal of Hazardous Materials,161:633~640.
    Pennazio S, Roggero P.1992. Effect of cadmium and nickel on ethylene biosynthesis in soybean.Biologia Plantarum,34:345~349.
    Peralta-Videa J R, de la Rosa G,Gonzalez J H,Gardea-Torresdey J L.2004. Effects o f the growth stageon the heavy metal tolerance of alfalfa plants. Advances in Environmental Research,8(3-4):679~685.
    Pérez E, Lares M.2005. Chemical composition, mineral profile, and functional properties of canna (Cannaedulis) and arrowroot (Maranta spp.) starches. Plant Food for Human Nutrition,60:113~116.
    Pérez E, Lares M, González Z.1997. Some characteristics of sagu (Canna edulis Ker.) and zulu (Marantaspp.) rhizomes. Journal Agriculture and Food Chemistry,45:2546~2549.
    Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C.2002. Heavy metal toxicity: cadmiumpermeates through calcium channels and disturbs the plant water status. The Plant Journal: forcell molecular biology,32:539~548.
    Petrovi N M, Kastori R R, Raj an I.1991. Effect of cadmium on nitrate reductase activity inyoung sugar beet plants differently supplied with potassium. Zemlji te ibiljka,40:29~36.
    Piotrowska A, Bajguz A, Godlewska-y kiewicz B, Zambrzycka E.2010. Changes in growth, biochemicalcomponents, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed tocadmium and lead. Archives Environmental Contamination and Toxicology,58:594~604.
    Plaza S, Tearall K L, Zhao F J, Buchner P, McGrath S P, Hawkesford M J.2007. Expression andfunctional analysis of metal transporter genes in two contrasting ecotypes of the hyper-accumulator Thlaspi caerulescens. Journal of Experimental Botany,58:1717~1728.
    Polidoros A N, Scandalios J G.1999. Role of hydrogen peroxide and different classes of antioxidants in theregulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.).Physiologia Plantarum,106:112~120.
    Polle A,Schützendübel A.2004.Heavy metal signaling in plants:linking cellular and organismic responses//Hirt A,Shinozaki K.Plant responses to abiotic stress.Berlin:Springer-Verlag,187~216.
    Poschenrieder C, Gunsé B, Barceló J.1989. Influence of cadmium on water relations, stomatalresistance, and abscisic acid content in expanding bean leaves. Plant Physiology,90:1365~1371.
    Prasad T K, Anderson M D, Martin B A, Stewart C R.1994. Evidence for chilling-induced oxidative stressin maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell,6:65~74
    Punshon T, Dickinson N M.1999.Heavy metal resistance and accumulation characteristics inwillows. International Journal of Phytoremediation,1:361~385.
    Raicevic S, Wright J V, Veljkovic V, Conca J L.2006.The oretical stability assessment of uranylphosphates and apatites: selection of amendments for in situ remediation of uranium, TheScience of the Total Environment,355(1-3):13~24.
    Ramos I,Esteban E,Lucens J J,Garate A.2002. Cadmium uptake and subsellular distribution in plants ofLactuce sp. Cd-Mn interaction. Plant Science,162:761~767.
    Rauser W E, Ackerley C A.1987. Localization of cadmium in granules within differentiating andmature root cells. Canadian Journal of Botany,65:643~646.
    Reddy G N, Prasad M N V.1993. Tyrosine is not phosphorylated in cadmium induced hsp70cognate in maize (Zea mays L.) seedlings. Role in chaperone function? Biochem Arch,9:25~32.
    Reddy G N, Prasad M N V.1995. Cadmium-induced protein phosphorylation changes in rice(Oryza sativa L.) seedlings. Journal of Plant Physiology,145:67~70.
    Roane T M, Pepper I L.1999. Microbial responses to environmentally toxic. Microbial ecology,38(4):358~364
    Roberts A H C, Longhurst R D, Brown M W.1994. Cadmium status of soils, plants and grazinganimals in New Zealand. New Zealand Journal of Agriculture Research,37:119~129.
    Rugh C L, Senecoff J F, Meagher R B, Merkle S A.1998. Development of transgenic yellow poplarfor mercury phytoremediation. Nature Biotechnology,16:925~928.
    Rugh C L, Wilde H D, Stack N M, Thompson D M, Summers A O, Meagher R B.1996. Mercuricion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modifiedbacterial merA gene. Proceedings of the National Academy of Sciences of the United Statesof America,93(8):3182~3187.
    Salt D E, Rauser W E.1995. MgATP-dependent transport of phytochelatins across the tonoplast ofoat roots. Plant Physiology,107:1293~1301.
    Salt D E, Smith R D, Raskin I.1998. Phytoremediation. Annual Review of Plant Physiology andPlant Molecular Biology,49:643~668.
    Sánchez-Rodríguez E, Rubio-Wilhelmi M M, Cervilla L M, Blasco B, Rios J J, Rosales M A, Romero L,Ruiz J M.2010. Genotypic differences in some physiological parameters symptomatic for oxidativestress under moderate drought in tomato plants. Plant Science,178:30~40.
    Sanità di Toppi L, Gabbrielli R.1999. Response to cadmium in higher plants. Environmental andExperimental Botany,41(2):105~130.
    Sanità di Toppi L, Lambardi M, Pazzagli L, Cappugi G, Durante M, Gabbielli R.1998. Responseto cadmium in carrot in vitro plants and cell suspension cultures. Plant Science,137:119~129.
    Sav H,Christopher J.1995. Intergrated in situ soil remediation technology: the lasagna processEnvironmental Science and Technology,29:2528~2534.
    Schnoor J L, Licht L A, Mccutcheon S C, Wolfe N L, Carreira L H.1995. Phytoremediation oforganic and nutrient contaminants. Environmental Science and Technology,29(7):318A~323A.
    Schnoor J L.1997. Phytoremediation: For Ground-Water Remediation Technologies AnalysisCenter. Technology Evaluation Report. TE-98-01.
    Segeren W, Maas P J M.1971. The genus canna in northern South America. Acta Botanica Neerlandica,20(6):663~680.
    Shah K, Dubey R S.1998. A18kDa Cd inducible protein complex: its isolation and characterization fromrice (Oryza sativa L.) seedlings. Journal of Plant Physiology,152:448~454.
    Sharma P, Dubey R S.2006. Cadmium uptake and its toxicity in higher plants. In: Khan Samiullah N A(Eds) Cadmium toxicity and tolerance in plants. New Delhi: Narosa Publishing House:64-86.
    Shaw B P.1995. Effects of mercury and cadmium on the activities of antioxidative enzymes in theseedlings of Phaseolus aureus. Biologia Plantarum,37(4):587~596.
    Sheppard M I, Sheppard S C, Grant C A.2007. Solid/liquid partition coefficients to model traceelement critical loads for agricultural soils in Canada. Canadian Journal of Soil Science,87:189~201.
    Siedlecka A, Krupa Z, Samuelsson G, Oquist G, Gardestr m P.1997. Primary carbon metabolismin Phaseolus vulgaris under Cd/Fe interaction. Plant Physiology Biochemistry,35(12):951~957.
    Siedlecka A, Krupa Z.1996.Interaction between cadmium and iron and its effect on photosyntheticcapacity of primary leaves of Phaseolus vulgaris. Plant Physiology Biochemistry,34:833~841.
    Siedlecka A, Krupa Z. l996. Interaction between cadmiumand iron and its effects on photosyntheticcapacity of primary leaves of Phaseolus vulgaris.Plant Physiology and Biochemistry,34:833~841.
    Singh B R, McLaughlin M J.1999. Cadmium in soils and plants, summary and reseachperspectives. In: McLaughlin M J, Singh B R (Eds) Cadmium in soils and plants. Dordrecht:Kluwer Academic Publishers:257~267.
    Smith R A H, Bradshaw A D.1972. Stabilization of toxic mine wastes by the use of tolerant plantpopulations.Transactions of the Institution of Mining and Metallurgy, Section A,81:230~237.
    Stobart A K, Griffiths W T, Ameen-Bukhari I, Sherwood R P. l985. The effect of Cd on the biosynthesis ofchlorophyll in leaves o f barley. Physiologia Plantarum,63:293~298.
    Sun L P, Liu Y, Jin H.2009. Nitrogen removal from polluted river by enhanced floating bed growncanna. Ecological Engineering,35:135~140.
    Suresh B, Ravishankar G.2004. Phytoremediation-a novel and promising approach forenvironmenttal clean-up. Crittical Reviews Biotechnology,24:97~124.
    Tanaka N, Koyama T.2000. A new s pecies of canna (Cannaecae) from Northern Argentina. Journal ofJapanese Botany,75(2):89~91.
    Tanaka, N.2001. Taxonomic revision of the family Cannaceae in the New World and Asia. Makinoa Ser.2,1:34~43.
    Tang, L, Ren J, Yu F K.2011. Effect of cadmium supply levels to cadmium accumulation by Salix.International Journal of Environmental Science and Technology,8:493~500.
    Tao L, Ren J, Yu F K.2011. Effect of cadmium supply levels to cadmium accumulation by Salix.International journal of Science and Technology,8(3):493~500.
    Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y.2003a. A comparative study of edible canna(Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemicalproperties. Carbohydrate Polymers,53:317~324.
    Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y.2003b. A comparative study of edible canna(Canna edulis) starch from different cultivars. Part II. Molecular structure of amylase and amylopectin.Carbohydrate Polymers,54:489~498.
    Thompson P, Ramer L, Guffey A P, Schnoor J L.1998. Decreased transpiration in poplar treesexposed to2,4,6-trinitrotoluene. Environmental Toxicology and Chemistry,17:902~906.
    Tollsten L, Muller P.1996. Volatile organic compounds emitted from beech leaves.Phytochemistry,43:759~762.
    Traina S J.1999. The environmental chemistry of cadmium. In: McLaughlin M J, Singh B R (Eds)Cadmium in soils and plants. Dordrecht: Kluwer Academic Publishers:12.
    Turgut C, Pepe K M, Cutright T J.2004. The effect of EDTA and citric acid on phytoremediationof Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution,131:147~154.
    Turgut C, Pepe M K, Cutright T J.2005. The effect of EDTA on Helianthus annuus uptake,selectivity, and translocation of heavy metals when grown in Ohio, New Mexico andColombia soils. Chemosphere,58(8):1087~1095.
    Turnau K, Kottke I, Oberwinkler F.1993. Element localization in mycorrhizal roots of Pteridiumaquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. NewPhytologist,123(2):313~324.
    Turner A P, Dickinson N M.1993. Survival of Acer pseudoplatanus L.(sycamore) seedlings onmetal liferous soils. New Phytologist,123(2):509~521.
    Urwin P E, Groom Q J, Robinson N J.1996. Characterization of two cDNAs and identification oftwo proteins that accumulate in response to cadmium in cadmium-tolerant Datura innoxia(Mill.) cells. Journal of Experimental Botany,47(301):1019~1024.
    Vangronsveld J, vanAssche F, Clijsters H.1995. Reclamation of a bare industrial areacontaminated by non-ferrous metals: in situ metal immobilization and revegetation.Environmental Pollution,87:51~59.
    Vassilev A, Lidon F, Matos M D C, Ramalho J C, Yordanov I.2002. Photosynthetic performanceand content of some nutrients in cadmium-and copper-treated barley plants. Journal of PlantNutrition,25:2343~2360.
    Vázquez M D, Poschenrieder C, Barcelo J.1992. Ultrastructural effects and localization of lowcadmium concentrations in bean roots. New Phytologist,120:215~226.
    Vázquez S, Fernandez-Pascual M, Sanchez-Pardo B, Carpena R O, Zornoza P.2007. Subcellularcompartmentalisation of cadmium in white lupins determined by energy-dispersive X-raymicroanalysis. Journal of Plant Physiology,164:1235~1238.
    Verma S, Dubey R S.2001. Effect of cadmium on soluble sugars and enzymes of their metabolism in rice.Biologia Plantarum,44(1):117~123.
    Wagner G J.1993. Accumulation of cadmium in crops plants and its consequences to humanhealth. Advances in Agronomy,51:173~212.
    Wang X, Liu Y G, Zeng G M, Chai L Y, Song X C, Min Z Y, Xiao X.2008. Subcellulardistribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environmentaland Experimental Botany,62(3):389~395.
    Wang Y P, Shi J Y, Wang H, Lin Q, Chen X, Chen Y.2007. The influence of soil heavy metals pollutionon soil microbial biomass, enzyme activity, and community composition near a copper smelter.Ecotoxicology and Environmental Safety,67(1):75~81.
    Wang Y Q, Xiao L Z, Li S Y, Guo Y, Cai X D.2010. Effects of combined pollution of Pb and Cd ongrowth and yield of rice. Agricultural Science&Technology,11(5):168~170.
    Wang Y S, Liu K H.2009. Stress responses and resistance mechanism of Canna indica Linn to cadmium.Acta Ecologica Sinica.29:2710~2715.
    Weigel H, J ger H.1980. Subcellular distribution and chemical form of cadmium in bean plants.Plant Physiology,65:480~482.
    Welch R M, Norvell W A.1999. Mechanisms of cadmium uptake, translocation and deposition inplants. In: McLaughlin M J, Singh B R (Eds) Cadmium in Soils and Plants. Dordrecht:Kluwer Academic Publishers:125~150.
    Williams C H, David D J.1976. The accumulation in soil of Cd residues from phosphate fertilizersand their effect on the Cd content of plants. Soil Science,121:86~93.
    Wu F B, Dong J, Qian Q Q, Zhang G P.2005. Subcellular distribution and chemical form of Cdand Cd-Zn interaction in different barley genotypes. Chemosphere,60:1437~1446.
    Wu J, Hsu F C, Cunningham S D.1999. Chelate-assisted Pb phytoextraction: Pb availability,uptake, and translocation constraints. Environmental Science and Technology,33:1898~1904.
    Xu D F, Xu J M, He Y, Huang P M.2009. Effect of iron plaque formation on phosphorusaccumulation and availability in the rhizosphere of wetland plants. Water Air and SoilPollution,200:79~87.
    Yang Z X, Liu S Q, Zheng D W, Feng S D.2006. Effects of cadium, zinc and lead on soil enzymeactivities. Joumal of Environmental Sciences,18(6):1135~1141.
    Yoon J M, Oh B T, Just C L, Schnoor J L.2002.Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environmental Science and Technology,36:4649~4655.
    Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F.2006. Cadmium inducible Fedeficiency responses observed from macro and molecular views in tobacco plants. Plant CellReport,25:365~373.
    Zhang F P, Li C F, Tong L G, Yue L X, Li P, Ciren Y J, Cao C G.2010. Response of microbialcharacteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology,45:144~151.
    Zhang M D, Chen Q, Shen S H.2011. Physiological responses of two Jerusalem artichoke cultivars todrought stress induced by polyethylene glycol. Acta Physiologiae Plantarum,33:313~318.
    Zhang W E, Tian Z G, Pan X J, Zhao X M, Wang F.2013. Oxidative stress and non-enzymatic antioxidantsin leaves of three edible canna cultivars under drought stress. Hortorticulture, Environment andBiotechnology,54(1):1~8.
    Zhang Y, Zhang H W,Su Z C, Zhang C G.2008. Soil microbial characteristics under long-term heavymetal stress: A case study in Zhangshi wastewater irrigation area, Shenyang. Pedosphere,18(1):1~10.
    Zhang Z H, Rengel Z, Meney K.2008. Interactive effects of N and P on growth but not on resourceallocation of Canna indica in wetland microcosms. Aquatic Botany,89:317~323.
    Zhang Z H, Rengel Z, Meney K.2009. Kinetics of ammonium, nitrate and phosphorus uptake byCanna indica and Schoenoplectus validus. Aquatic Botany,91:71~74.
    Zhu Z J, Yu J Q, Gerendas J, Burkhard S. Effects of light intensity and nitrogen from on growth andactivities of H2O2scavenging enzymes in tobacco. Plant Natrition and Fertilizen Science,1998,4(4):379~385.
    Zvinowanda C M, Okonkwo J O, Shabalala P N, Agyei N M.2009. A novel adsorbent for heavy metalremediation in aqueous environments. International Environmental Science and technology,6(3):425~434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700