用户名: 密码: 验证码:
苹果果实碳水化合物和酚类物质代谢及MdSPS基因干扰对叶片同化物碳分配影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是重要的温带水果,因其色泽美观、果肉酸甜可口、营养价值高而深受全世界消费者的喜爱。苹果果实含有丰富的初生和次生代谢物质,如可溶性糖、有机酸、氨基酸和酚类物质等。苹果果实代谢物质含量因果实本身发育阶段、组织部位和基因型的不同有所差异。同时,果实代谢物质也受到外界环境和栽培技术等的影响。本文分析了苹果果实发育过程中糖积累及糖代谢相关基因家族在不同组织中的表达特性,研究了糖代谢相关酶活性及其基因表达与糖代谢及积累之间的关系;采用农杆菌介导法,通过RNAi技术,探索了C类SPS基因在苹果蔗糖合成中的作用;同时研究了苹果果实在树冠中的分布、果实套袋和转果等环境因素对果皮和果肉糖、有机酸、氨基酸和酚类物质的影响。主要研究结果如下:
     1.苹果果实发育的前期阶段(40DAB),SDH、NINV、SUSY、FK和HK酶活性高,相应基因表达水平也高,加速幼果中山梨醇和蔗糖代谢以满足果实发育初期细胞分裂和生长所需能量和碳中间物。这个阶段果糖、蔗糖和淀粉积累较少。随果实继续生长(细胞膨大期),相应的酶活性和基因的表达降低,淀粉、果糖和蔗糖开始积累,MdTMT1和MdTMT2的表达上调。果实发育的最后阶段(134DAB),淀粉降解,蔗糖继续积累,MdSPS5和MdSPS6的表达上调,SPS酶活性升高。数据表明,苹果果实糖代谢和积累受果实发育阶段的调节。糖代谢相关基因家族MdSDHs、MdCWINVs、MdNINVs、MdvAINVs、MdSUSYs、MdFKs、MdHKs、MdSPSs、MdSOTs、MdSUTs、MdTMTs和MdvGTs在苹果成熟叶、茎尖、幼果和成熟果中表达特征不同表明它们在糖积累中起的作用不同。
     2.苹果基因组中发现了6个SPS基因家族成员,根据其核苷酸序列相似性,分为A(MdSPS1/2/3),B(MdSPS4)和C(MdSPS5/6)三个亚家族。苹果叶片中C类SPS基因表达量最高,约占总SPS基因表达的97%。为进一步验证SPSC在苹果蔗糖合成中的作用以及对源叶同化物碳分配的影响,本试验构建了以SPSC为靶基因的RNA干扰载体,通过农杆菌介导法将其转入苹果品种‘绿袖Greensleeves’,经抗性筛选、PCR鉴定获得转化株系。转基因植株叶片MdSPSC表达降为原来的42~61%。转基因株系叶片SPS酶活性的体外测定无明显改变,但MdSPSC表达的下降降低了叶片中蔗糖含量,增加碳源向淀粉的分配,使转基因叶片中蔗糖、葡萄糖和果糖含量分别降为对照的26~33%,51~62%和40%,淀粉含量增加,植株的生长量没有受到明显的影响。以上结果表明成熟苹果叶片中C类SPS基因在蔗糖合成中起关键性作用,影响碳源分配。和非转基因植株相比,转基因植株的生长量没有发生变化的原因可能是存在另外一个补偿途径。
     3.苹果品种‘旭McIntosh’、‘嘎拉Gala’和‘陆奥Mutsu’树冠外围和内膛果的研究结果表明,与内膛果相比,外围果果皮果糖含量较高;果肉中果糖含量没有明显差异。外围果蔗糖、葡萄糖、半乳糖、木糖、核糖、鼠李糖和棉子糖含量高于内膛果。外围果淀粉含量低于内膛果。外围果山梨醇、麦芽糖醇和木糖醇含量较高,肌醇含量只在果皮中有差异。‘McIntosh’内膛果果皮苹果酸含量高于外围果果皮,‘Mutsu’外围果果肉苹果酸含量高于内膛果果肉,其它情况下树冠位置对果实苹果酸含量没有显著影响。抗坏血酸和延胡索酸在外围果果皮中积累较多,其它有机酸在不同组织类型和品种间积累的特性不同。内膛果大部分氨基酸含量显著高于外围果,大部分酚类物质含量显著低于内膛果。
     4.与对照相比,套袋期间‘乔纳金Jonagold’果实花青苷的合成受到抑制。套袋果实含有较多的淀粉、葡萄糖和半乳糖。果实套袋没有显著影响果糖含量,显著降低了蔗糖含量,总非结构性碳水化合物含量没有显著变化。套袋处理没有明显影响苹果酸含量,提高了奎宁酸、莽草酸和柠檬酸含量,显著降低了抗坏血酸含量,总有机酸含量没有受到显著的影响。套袋处理显著降低了果皮酚类物质含量,尤其是花青苷和黄酮醇,摘袋后酚类物质含量上升。同时,套袋处理抑制了花青苷合成相关基因的表达(MdPAL、MdCHS、MdCHI、MdF3H、MdDFR1、MdLDOX、MdUFGT和MdMYB10),摘袋后上述基因的表达6h内上调,并在30h时达到最高值,花青苷合成增加,果皮逐渐着色,14d后颜色呈鲜红色。
     5.‘Fortune’和‘Mutsu’转果前,与阴面果皮相比,阳面果皮花青苷合成相关基因(MdPAL、MdCHS、MdCHI、MdF3H、MdDFR1、MdLDOX、MdUFGT和MdMYB10)的表达较高,花青苷和黄酮醇类物质含量较高。转果后阳面果皮(原来的阴面果皮)上述花青苷合成基因的表达6h内开始上调,6h或30h时达到最高值后下降。转果后阳面果皮(原来的阴面果皮)花青苷、黄酮醇及总酚含量增加。转果174h后,阳面果皮(原来的阴面果皮)总酚含量高于对照阳面果皮;阴面果皮(原来的阳面果皮)黄酮醇含量高于转果后阳面果皮(原来的阴面果皮),也高于对照的阳面果皮。
Apple is a temperate-zone fruit, but consumed worldwide for its unique characteristics,such as color, flavor and aroma, freshness, crispness, especially its nutritional value. Itsprimary and secondary metabolites such as carbohydrates, organic acids, amino acids andphenolic compounds are responsible for its high acceptance and reputation. The levels ofthese metabolites vary according to developmental stage, genotype and tissue type, as well asenvironmental conditions and human involvement. Here, we identified members of thevarious gene families that encode key enzymes or transporters involved in sugar metabolismand accumulation using homology analysis based on Malus genome and EST sequences andcomparison of expression patterns in different tissues, and analyzed the relationship of theirrelative transcript abundance and activities of enzymes with sugar accumulation during applefruit development; In addition, the expression of SPSC was decreased via RNA interference todetermine its role in sucrose synthesis and plant growth in apple plants. Furthermore, weconducted a systematic examination of the effects of canopy position, fruit bagging andturning on the concentrations of the main primary and secondary metabolites in apple peeland flesh of different apple cultivars.
     The main results are as followes:
     1. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase,cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase arerelatively high, and the resulting high enzyme activities are responsible for the rapidutilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugaraccumulation. As the fruit continues to grow due to cell expansion, the transcript levels andactivities of these enzymes are down-regulated, with concomitant accumulation of fructoseand elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1andMdTMT2; the excess carbon is converted into starch. At the late stage of fruit development,sucrose accumulation is enhanced, consistent with the elevated expression ofsucrose-phosphate synthase (SPS), MdSPS5and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentallyregulated. The expression charactors of MdSDHs、MdCWINVs、MdNINVs、MdvAINVs、MdSUSYs、MdFKs、MdHKs、MdSPSs、MdSOTs、MdSUTs、MdTMTs和MdvGTs varied indifferent tissues indicated that they play different roles in sugar metabolism and accumulation.
     2. Six isoforms of SPS genes, MdSPS1/2/3, MdSPS4and MdSPS5/6, were expressed inapple leaves, which were grouped into three families, MdSPSA, MdSPSB and MdSPSC,respectively. MdSPSC accounted for approximately97%of all the SPS transcripts in appleleave. To determine the role of MdSPSC in sucrose synthesis in apple leaves, RNAinterference targeting MdSPS5/6was used to suppress the expression of MdSPS5/6. Relativeto the untransformed control, MdSPSC expression level in the transgenic lines decreased toaround42~61%, but total SPS activity was decreased slightly. Leaf sucrose, glucose andfructose concentrations at midday were decreased to approximately26~33%,51%~62%and40%of the untransformed control, respectively, whereas starch content almost doubled in thetransgenic lines, with sorbitol concentration unchanged. Plant vegetative growth was notsignificantly affected. These data indicate that type C SPS genes play a key role in sucrosesynthesis in mature apple leaves. The unaltered vegetative growth of the transgenic plants ismost likely related to the presence of compensatory mechanisms in end-product synthesis andexport in apple leaves.
     3. For ‘McIntosh’,‘Gala’ and ‘Mutsu’, peel of outer-canopy had higher concentration offructose than that of inner-canopy fruit. Both flesh and peel of outer-canopy fruit had higherconcentrations of glucose, sucrose, galactose, xylose, ribose, raffinose, rhamnose, sorbitol,maltitol and xylitol. Outer-canopy fruit had less starch than inner-canopy fruit. Canopyposition did not significantly affect malic acid concentrations except in the peel of ‘McIntosh’and the flesh of ‘Mutsu’. Although levels of ascorbic and succinic acids were higher in thepeels collected from the outer canopy, the pattern of distribution for other organic acids withinthe canopy depended upon tissue type and cultivar. Compared with the inner-canopy fruit,outer-canopy fruits had lower levels of amino acids, but higher concentrations of phenoliccompounds.
     4. Compared with the control, bagged ‘Jonagold’ fruit were yellowish, and had higherscores for lightness and hue angle, lower values for chroma, and the lowest concentration ofanthocyanins. Also, bagged fruit had more starch, glucose, and galactose, but less of the othersugars and sugar alcohols. The concentrations of fructose and total soluble carbohydrateswere not obviously affected by bagging. Although the malic acid concentration was notinfluenced by bagging, other acids were either increased (quinic, shikimic, and citric) ordecreased (ascorbic). The concentration of total organic acids did not show large difference among three treatments except that it was the lowest in the bagged fruit at14d after bagremoval. Phenolic compounds, especially flavonols in the peel, were severely inhibited, buttheir concentrations were enhanced by re-exposure to sunlight. The de-bagging treatment ledto up-regulation of the expression of MYB10and seven structural genes (MdPAL, MdCHS,MdCHI, MdF3H, MdDFR1, MdLDOX and MdUFGT) in anthocyanin biosynthesis. Alltranscripts were induced rapidly at6h after bag removal, peaking at Hour30before declining,with concomitant accumulation of anthocysnins.
     5. For the unturned (control) fruit, the sun-exposed peel had higher expression levels ofMdMYB10and seven structural genes in anthocyanin synthesis (MdPAL, MdCHS, MdCHI,MdF3H, MdDFR1, MdLDOX and MdUFGT), and higher levels of anthocyanins and favonolsthan in the shaded peel for both ‘Fortune’ and ‘Mutsu’ varieties. Exposure of the shaded peelto full sun caused marked up-regulation of the expression of MdMYB10and all sevenstructural genes, which peaked between6h and30h after fruit turning, consequently leadingto higher levels of anthocysnins, flavonols and total phenolics than in the sun-exposed peel ofcontrol fruit at174h. Interestingly, the levels of flavonols were higher in the shaded peel ofturned fruit (original sunny peel) than in the sun-exposed peel of both control and turned fruitin both varieties.
引文
陈俊伟,张上隆,张良诚.2004.果实中糖的运输、代谢与积累及其调控.植物生理与分子生物学学报,30(1):1~10
    陈华民,何晨阳.2011. RNAi基因沉默技术及其在植物抗病性改良中应用的策略.植物保护,37(6):55~58
    邓丽莉,生吉萍.2012苹果果实糖代谢过程及其调控研究进展.保鲜与加工,12(1):1~5,11
    冯凤娟.2008.农杆菌介导的DHAR基因转化甜瓜和苹果的研究.[硕士毕业论文].杨凌:西北农林科技大学
    郝燕燕,任宏伟,郭平毅.2011.苹果果实套袋对光合同化物积累与转化的影响.园艺学报,38(2):233~239
    李培环,董晓颖,王永章,阎升平,刘成连.2002.苹果果实发育过程中淀粉代谢和淀粉粒超微结构研究.果树学报,19(3):141~144
    任秋萍,周淑梅,王秀玲.2010.苹果山梨醇脱氢酶的基因表达、组织分布和活性调控.中国细胞生物学学报,32(4):668~672
    魏建梅.2005.红富士苹果适宜纸袋筛选和套袋对果实糖积累及其相关酶活性影响的研究.[硕士毕业论文].杨凌:西北农林科技大学
    王海波,陈学森,辛培刚,张小燕,慈志娟,石俊,张红.2007.几个早熟苹果品种果实糖酸组分及风味品质的评价.果树学报,24(4):513~516
    王少敏,高华君,张骁兵.2002.套袋对红富士苹果色素及糖、酸含量的影响.园艺学报,29(3):263~265
    张超,王彦杰,付建新,王晓庆,王玮然,董丽.2012.高等植物己糖激酶基因研究进展.生物技术通报,(4):19~26
    张燕子.2010.不同苹果糖酸组成及苹果酸转运体功能研究.[博士学位论文].杨凌:西北农林科技大学
    Ackermann J, Fischer M, Amado R.1992. Changes in sugars, acids, and amino acids during ripening andstorage of apples (cv. Glockenapfel). J Agr Food Chem,40:1131~1134
    Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M.2010TheVitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling.Bmc Plant Biol,10:245
    Aldrich J, Cullis C A.1993. RAPD analysis in flax: optimization of yield and reproducibility using klenTaq1DNA polymerase, chelex100, and gel purification of genomic DNA. Plant Mol Biol Rep,11:128~141
    Aluri S, Büttner M.2007. Identification and functional expression of the Arabidopsis thaliana vacuolarglucose transporter1and its role in seed germination and flowering. P Natl Acad Sci USA,104:2537~2542
    ApRees T.1974. Pathways of carbohydrate breakdown in higher plants. In Biochemistry. PlantBiochemistry. Vol II. London: Butterworth:89~127
    Arakawa O, Uematsu N, Nakajima H.1994. Effect of bagging on fruit quality in apples [Malus pumila].Bull Faculty Agric Hirosaki Univ,57:25~32
    Awad M A, de Jager A, van Westing L M.2000. Flavonoid and chlorogenic acid levels in apple fruit:characterisation of variation. Sci Hortic,83:249~263
    Awad M A, Wagenmakers P S, de Jager A.2001. Effects of light on flavonoid and chlorogenic acid levelsin the skin of ‘Jonagold’ apples. Sci Hortic,88:289~298
    Ayre B G.2011. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning.Mol Plant,4:377~394
    Büttner M.2007. The monosaccharide transporter (-like) gene family in Arabidopsis. Febs Letters,581:2318~2324
    Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T.2007. Isolation and functional analysisof a MYB transcription factor gene that is a key regulator for the development of red coloration in appleskin. Plant Cell Physiol,48:958~970
    Barbieri M, Belfanti E, Tartarini S, Vinatzer B, Sansavini S, Silfverberg-Dilworth E, Gianfranceschi L,Hermann D, Patocchi A, Gessler C.2003. Progress of map-based cloning of the Vf-resistance gene andfunctional verification: Preliminary results from expression studies in transformed apple. HortScience,38:329~331
    Barritt B, Rom C, Guelich K, Drake S, Dilley M.1987. Canopy position and light effects on spur, leaf, andfruit characteristics of delicious apple. HortScience,22:402~405
    Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer B A,Gianfranceschi L, Gessler C, Sansavini S.2004. The HcrVf2gene from a wild apple confers scabresistance to a transgenic cultivated variety. P Natl Acad Sci USA,101:886~890
    Berüter J.1985. Sugar accumulation and changes in the activities of related enzymes during developmentof the apple fruit. J Plant Physiol,121:331~341
    Bible B B, Singha S.1993. Canopy position influences CIELAB coordinates of peach color. HortScience,28:992~993
    Bieniawska Z, Paul Barratt D, Garlick A P, Thole V, Kruger N J, Martin C, Zrenner R, Smith A M.2007.Analysis of the sucrose synthase gene family in Arabidopsis. Plant J,49:810~828
    Borejsza-Wysocka E, Malnoy M, Aldwinckle H, Meng X, Bonasera J, Nissinen R, Kim J, Beer S.2004.The fire blight resistance of apple clones in which DspE-interacting proteins are silenced. XInternational Workshop on Fireblight704:509~514
    Borejsza-Wysocka E, Norelli J L, Aldwinckle H S, Malnoy M.2010. Stable expression and phenotypicimpact of attacin E transgene in orchard grown apple trees over a12year period. BMC biotechnol,10:41
    Boyer J, Liu R H.2004. Apple phytochemicals and their health benefits. Nutr J,3:12
    Braun D M, Slewinski T L.2009. Genetic control of carbon partitioning in grasses: roles of sucrosetransporters and tie-dyed loci in phloem loading. Plant Physiol,149:71~81
    Brill E, van Thournout M, White R G, Llewellyn D, Campbell P M, Engelen S, Ruan Y L, Arioli T, FurbankR T.2011. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wallsynthesis in cotton fiber. Plant Physiol,157:40~54
    Brown S.2012. Apple. Fruit Breeding, Handbook of Plant Breeding8. Springer Science+Business Media:329~367
    Bulley S M, Wilson F M, Hedden P, Phillips A L, Croker S J, James D J.2005. Modification of gibberellinbiosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. PlantBiotechnol J,3:215~223
    Burroughs L.1957. The amino-acids of apple juices and ciders. J Sci Food Agr,8:122~131
    Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, LunnJ E.2004. Evolution and function of the sucrose-phosphate synthase gene families in wheat and othergrasses. Plant Physiol,135:1753~1764
    Ceymann M, Arrigoni E, Sch rer H, Bozzi Nising A, Hurrell R F.2012. Identification of apples rich inhealth-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. J Food ComposAnal,26:128~135
    Chen C S, Zhang D, Wang Y Q, Li P M, Ma F W.2012. Effects of fruit bagging on the contents of phenoliccompounds in the peel and flesh of ‘Golden Delicious’,‘Red Delicious’, and ‘Royal Gala’ apples. SciHortic,142:68~73
    Chen S, Hajirezaei M, Bornke F.2005. Differential expression of sucrose-phosphate synthase isoenzymesin tobacco reflects their functional specialization during dark-governed starch mobilization in sourceleaves. Plant Physiol,139:1163~1174
    Cheng L L, Zhou R, Reidel E J, Sharkey T D, Dandekar A M.2005. Antisense inhibition of sorbitolsynthesis leads to up-regulation of starch synthesis without altering CO2assimilation in apple leaves.Planta,220:767~776
    Cho J-I, Ryoo N, Ko S, Lee S-K, Lee J, Jung K-H, Lee Y-H, Bhoo S H, Winderickx J, An G.2006.Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.).Planta,224:598~611
    Cho J I, Ryoo N, Eom J S, Lee D W, Kim H B, Jeong S W, Lee Y H, Kwon Y K, Cho M H, Bhoo S H.2009. Role of the rice hexokinases OsHXK5and OsHXK6as glucose sensors. Plant Physiol,149:745~759
    Claeyssen é, Rivoal J.2007. Isozymes of plant hexokinase: occurrence, properties and functions.Phytochemistry,68:709~731
    Conner A J, Barrell P J, Baldwin S J, Lokerse A S, Cooper P A, Erasmuson A K, Nap J-P, Jacobs J M.2007.Intragenic vectors for gene transfer without foreign DNA. Euphytica,154:341~353
    D'Aoust M-A, Yelle S, Nguyen-Quoc B.1999. Antisense inhibition of tomato fruit sucrose synthasedecreases fruit setting and the sucrose unloading capacity of young fruit. The Plant Cell Online,11:2407~2418
    Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, Carmi N, Zhang G, Diber A, PollockS.2011a. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of themetabolic transition to sucrose accumulation. Plant Mol Biol,76:1~18
    Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, Carmi N, Zhang G F, Diber A,Pollock S, Karchi H, Yeselson Y, Petreikov M, Shen S, Sahar U, Hovav R, Lewinsohn E, Tadmor Y,Granot D, Ophir R, Sherman A, Fei Z J, Giovannoni J, Burger Y, Katzir N, Schaffer A A.2011b.Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolictransition to sucrose accumulation. Plant Mol Biol,76:1~18
    Dancer J, Hatzfeld W D, Stitt M.1990. Cytosolic cycles regulate the turnover of sucrose in heterotrophiccell-suspension cultures of Chenopodium rubrum L. Planta,182:223~231
    Dandekar A M, Teo G, Defilippi B G, Uratsu S L, Passey A J, Kader A A, Stow J R, Colgan R J, James D J.2004. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit.Transgenic Res,13:373~384
    De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday A M, Smith S M, Van Laere A, VanDen Ende W.2004. Arabidopsis AtcwINV3and6are not invertases but are fructan exohydrolases(FEHs) with different substrate specificities. Plant Cell Environ,28:432~443
    Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J F, Guindon S, Lefort V, LescotM.2008. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res,36:W465~W469
    Drogoudi P D, Pantelidis G.2011. Effects of position on canopy and harvest time on fruit physico-chemicaland antioxidant properties in different apple cultivars. Sci Hortic,129:752~760
    Eschrich W.1980. Free space invertase, its possible role in phloem unloading. Ber Dtsch Bot Ges,93:363~378
    Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, GardinerS E, Hellens R P, Allan A C.2009. Multiple repeats of a promoter segment causes transcription factorautoregulation in red apples. The Plant Cell Online,21:168~183
    Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C.2007. Red colouration inapple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J,49:414~427
    Fallahi E, Colt W M, Baird C R, Fallahi B, Chun I J.2001. Influence of nitrogen and bagging on fruitquality and mineral concentrations of ‘BC-2Fuji’ apple. HortTechnology,11:462~466
    Fan R C, Peng C C, Xu Y H, Wang X F, Li Y, Shang Y, Du S Y, Zhao R, Zhang X Y, Zhang L Y.2009.Apple sucrose transporter SUT1and sorbitol transporter SOT6interact with cytochrome b5to regulatetheir affinity for substrate sugars. Plant Physiol,150:1880~1901
    Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E, Mello C C.1998. Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans. Nature,391:806~811
    Flachowsky H, H ttasch C, H fer M, Peil A, Hanke M-V.2010a. Overexpression of LEAFY in apple leadsto a columnar phenotype with shorter internodes. Planta,231:251~263
    Flachowsky H, Peil A, Rollins J, Hanke M, Richter K, Lee D.2008. Improved fire blight resistance intransgenic apple lines by constitutive overexpression of the MbR4gene of Malus baccata. Acta Hort,793:287~291
    Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V.2007. Overexpression of BpMADS4from silver birch(Betula pendula Roth.) induces early-flowering in apple (Malus×domestica Borkh.). Plant Breeding,126:137~145
    Flachowsky H, Szankowski I, Fischer T C, Richter K, Peil A, H fer M, D rschel C, Schmoock S, Gau A E,Halbwirth H.2010b. Transgenic apple plants overexpressing the Lc gene of maize show an alteredgrowth habit and increased resistance to apple scab and fire blight. Planta,231:623~635
    Fromm M, Bayha S, Carle R, Kammerer D R.2012. Characterization and quantitation of low-andhigh-molecular weight phenolic compounds in apple seeds. J Agric Food Chem,60:1232~1242
    Gao Z, Jayanty S, Beaudry R, Loescher W.2005. Sorbitol transporter expression in apple sink tissues:implications for fruit sugar accumulation and watercore development. J Am Soc Hortic Sci,130:261~268
    Gao Z, Maurousset L, Lemoine R, Yoo S D, Van Nocker S, Loescher W.2003. Cloning, expression, andcharacterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. PlantPhysiol,131:1566~1575
    Gasic K, Hernandez A, Korban S S.2004. RNA extraction from different apple tissues rich in polyphenolsand polysaccharides for cDNA library construction. Plant Mol Biol Rep,22:437a~437gGomis D B, Lobo A M P, Alvarez M D G, Alonso J J M.1990. Determination of amino acids in appleextracts by high performance liquid chromatography. Chromatographia,29:155~160
    Granot D.2007. Role of tomato hexose kinases. Funct Plant Biol,34:564~570
    Hagen S F, Borge G I A, Bengtsson G B, Bilger W, Berge A, Haffner K, Solhaug K A.2007. Phenoliccontents and other health and sensory related properties of apple fruit (Malus×domestica Borkh., cv.Aroma): Effect of postharvest UV-B irradiation. Postharvest Biol Tec,45:1~10
    Haigler C H, Singh B, Zhang D S, Hwang S, Wu C F, Cai W X, Hozain M, Kang W, Kiedaisch B, StraussR E, Hequet E F, Wyatt B G, Jividen G M, Holaday A S.2007. Transgenic cotton over-producingspinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber qualityunder controlled environmental conditions. Plant Mol Biol,63:815~832
    Holefors A, Xue Z-T, Zhu L-H, Welander M.2000. The Arabidopsis phytochrome B gene influencesgrowth of the apple rootstock M.26. Plant cell rep,19:1049~1056
    Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T.2002.Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. PlantPhysiol Bioch,40:955~962
    Hrazdina G, Kiss E, Galli Z, Rosenfield C, Norelli J, Aldwinckle H.2002. Down regulation of ethyleneproduction in ‘Royal Gala’ apples. XXVI International Horticultural Congress: Issues and Advancesin Postharvest Horticulture628:239~251
    Hubbard N L, Pharr D M, Huber S C.2006. Sucrose phosphate synthase and other sucrose metabolizingenzymes in fruits of various species. Physiol Plantarum,82:191~196
    Hudina M, Stampar F, Orazem P, Petkovsek M M, Veberic R.2012. Phenolic compounds profile,carbohydrates and external fruit quality of the ‘concorde’ pear (Pyrus communis L.) after bagging. CanJ Plant Sci,92:1~9
    Hyson D A.2011. A comprehensive review of apples and apple components and their relationship to humanhealth. Adv Nutr,2:408~420
    Igarashi M, Ogasawara H, Hatsuyama Y, Saito A, Suzuki M.2002. Introduction of rol C into Marubakaidou[Malus prunifolia Borkh. var. ringo Asami Mo84-A] apple rootstock via Agrobacterium tumefaciens.Plant Sci,163:463~473
    Ishimaru K, Hirotsu N, Kashiwagi T, Macloka Y, Nagasuga K, Ono K, Ohsugi R.2008. Overexpression ofa maize SPS gene improves yield characters of potato under field conditions. Plant Prod Sci,11:104~107
    Jakopic J, Stampar F, Veberic R.2009. The influence of exposure to light on the phenolic content of ‘Fuji’apple. Sci Hortic,123:234~239
    James D, Dandekar A (1991) Regeneration and transformation of apple (Malus pumila Mill.). Plant tissueculture manual: fundamentals and applications. Kluwer, Dordrecht:1~18
    James D J, Passey A J, Barbara D J, Bevan M.1989. Genetic transformation of apple (Malus pumila Mill.)using a disarmed Ti-binary vector. Plant cell rep,7:658~661
    Janssen B, Thodey K, Schaffer R, Alba R, Balakrishnan L, Bishop R, Bowen J, Crowhurst R, Gleave A,Ledger S.2008. Global gene expression analysis of apple fruit development from the floral bud to ripefruit. Bmc Plant Biol,8:16
    Jia H J, Araki A, Okamoto G.2005. Influence of fruit bagging on aroma volatiles and skin coloration of‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biol Tec,35:61-68
    Ju Z.1998. Fruit bagging, a useful method for studying anthocyanin synthesis and gene expression inapples. Sci Hortic,77:155~164
    Kanamaru N, Ito Y, Komori S, Saito M, Kato H, Takahashi S, Omura M, Soejima J, Shiratake K, Yamada K.2004. Transgenic apple transformed by sorbitol-6-phosphate dehydrogenase cDNA: switch betweensorbitol and sucrose supply due to its gene expression. Plant Sci,167:55~61
    Kandel-Kfir M, Damari-Weissler H, German M, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N,Granot D.2006. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics,predicted structure and intracellular localization. Planta,224:1341~1352
    Karve A, Rauh B L, Xia X, Kandasamy M, Meagher R B, Sheen J, Moore B.2008. Expression andevolutionary features of the hexokinase gene family in Arabidopsis. Planta,228:411~425
    Kenis K, Keulemans J, Davey M W.2008. Identification and stability of QTLs for fruit quality traits inapple. Tree genet genomes,4:647~661
    Khan S A, Beekwilder J, Schaart J G, Mumm R, Soriano J M, Jacobsen E, Schouten H J.2012. Differencesin acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree genetgenomes, doi:10.1007/s11295-012-0571-y
    Kikuchi T.1964. Influence of fruit bag practice on coloration process in apples of different varieties. BullFac Agric Hirosaki Univ,10:89~99
    Kim S H, Lee J R, Hong S T, Yoo Y K, An G, Kim S R.2003. Molecular cloning and analysis ofanthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci,165:403~413
    Kim Y-M, Heinzel N, Giese J-O, Koeber J, Melzer M, Rutten T, VON WIRén N, Sonnewald U, HajirezaeiM-R.2013. A dual role of Tobacco Hexokinase1in primary metabolism and sugar sensing. Plant CellEnviron, doi:10.1111/pce.12060
    Ko K, Norelli J L, Reynoird J P, Boresjza-Wysocka E, Brown S K, Aldwinckle H S.2000. Effect ofuntranslated leader sequence of AMV RNA4and signal peptide of pathogenesis-related protein1b onattacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol lett,22:373~381
    Kondo S, Maeda M, Kobayashi S, Honda C.2002. Expression of anthocyanin biosynthetic genes in Malussylvestris L.‘Mutsu’ non-red apples. J Hortic Sci Biotech,77:718~723
    Kortstee A, Khan S, Helderman C, Trindade L, Wu Y, Visser RGF, Brendolise C, Allan A, Schouten H,Jacobsen E.2011. Anthocyanin production as a potential visual selection marker during planttransformation. Transgenic Res,20:1253~1264
    Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-i, Igasaki T, Nishiguchi M, Yano K,Shimizu T.2010. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus×domestica Borkh.). Plant Cell Physiol,51:561~575
    Kotoda N, Iwanami H, Takahashi S, Abe K.2006. Antisense expression of MdTFL1, a TFL1-like gene,reduces the juvenile phase in apple. J Am Soc Hortic Sci,131:74~81
    Krishnaprakash M S, Aravindaprasad B, Krishnaprasad C A, Narasimham P, Ananthakrishna S M,Dhanaraj S, Govindarajan V S.1983. Effect of apple position on the tree on maturity and quality. JHortic Sci,58,31~36.
    Langenkamper G, Fung R W M, Newcomb R D, Atkinson R G, Gardner R C, MacRae E A.2002. Sucrosephosphate synthase genes in plants belong to three different families. J Mol Evol,54:322~332
    Laporte M M, Galagan J A, Prasch A L, Vanderveer P J, Hanson D T, Shewmaker C K, Sharkey T D.2001.Promoter strength and tissue specificity effects on growth of tomato plants transformed with maizesucrose-phosphate synthase. Planta,212:817~822
    Lata B, Trampczynska A, Paczesna J.2009Cultivar variation in apple peel and whole fruit phenoliccomposition. Sci Hortic,121:176~181
    Li F, Lei H, Zhao X, Shen X, Liu A, Li T.2012a. Isolation and characterization of two sorbitol transportergene promoters in micropropagated apple plants (Malus×domestica) regulated by drought stress. PlantGrowth Regul,68:475~482
    Li F, Lei H, Zhao X, Tian R, Li T.2012b. Characterization of three sorbitol transporter genes inmicropropagated apple plants grown under drought stress. Plant Mol Biol Rep,30:123~130
    Li M J, Feng F F, Cheng L L.2012c. Expression Patterns of Genes Involved in Sugar Metabolism andAccumulation during Apple Fruit Development. PloS one,7: e33055
    Li M J, Ma F W, Shang P F, Zhang M, Hou C M, Liang D.2009. Influence of light on ascorbate formationand metabolism in apple fruits. Planta,230:39~51
    Li P M, Cheng L L.2009. The elevated anthocyanin level in the shaded peel of ‘Anjou’ pear enhances itstolerance to high temperature under high light. Plant Sci,177:418~426
    Li P M, Ma F W, Cheng L L.2012d. Primary and secondary metabolism in the sun-exposed peel and theshaded peel of apple fruit. Physiol Plant, doi:10.1111/j.1399-3054.2012.01692.x
    Li Y, Mao K, Zhao C, Zhao X Y, Zhang H L, Shu H R, Hao Y J.2012e. MdCOP1ubiquitin E3ligasesinteract with MdMYB1to regulate light-induced anthocyanin biosynthesis and red fruit coloration inapple. Plant Physiol,
    Li Y H, Zhang Y Z, Feng F F, Liang D, Cheng L L, Ma F W, Shi S G.2010. Overexpression of a Malusvacuolar Na+/H+antiporter gene (MdNHX1) in apple rootstock M.26and its influence on salttolerance. Plant cell tiss org,102:337~345
    Li Z, Palmer W M, Martin A P, Wang R, Rainsford F, Jin Y, Patrick J W, Yang Y, Ruan Y L.2012f. Highinvertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heattolerance of, young fruit. J Exp Bot,63:1155~1166
    Liang D, Cui M, Wu S, Ma F W.2012Genomic structure, sub-cellular localization, and promoter analysisof the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep,30:904~914
    Liu J, Sink K, Dennis F.1983. Plant regeneration from apple seedling explants and callus cultures. Plantcell tiss org,2:293-304
    Liu Y, Zhang X, Zhao Z.2013. Effects of fruit bagging on anthocyanins, sugars, organic acids, and colorproperties of ‘Granny Smith’and ‘Golden Delicious’during fruit maturation. Eur Food Res Technol,236:329~339
    Lunn J E, MacRae E.2003. New complexities in the synthesis of sucrose. Curr Opin Plant Biol,6:208~214
    Lutfiyya L L, Xu N, D’Ordine R L, Morrell J A, Miller P W, Duff S M G.2007. Phylogenetic andexpression analysis of sucrose phosphate synthase isozymes in plants. J Plant Physiol,164:923~933
    Ma F W, Cheng L L.2003. The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependentthermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel. PlantSci,165:819~827
    Ma F W, Cheng L L.2004. Exposure of the shaded side of apple fruit to full sun leads to up-regulation ofboth the xanthophyll cycle and the ascorbate-glutathione cycle. Plant Sci,166:1479~1486
    Mahmoudi E, Soltani B M, Yadollahi A, Hosseini E.2012. Independence of color intensity variation in redflesh apples from the number of repeat units in promoter region of the MdMYB10gene as an allele toMdMYB1and MdMYBA. Iranian Journal of Biotechnology,10(3):153~160
    Malnoy M, Aldwinckle H S.2007. Development of fire blight resistance by recombinant DNA technology.Plant Breeding Rev,26,315~358
    Malnoy M, Borejsza-Wysocka E, Pascal-Omenaca L, Aldwinckle H, Oh C-S, Beer S.2007. Silencing ofHIPM, the apple protein that interacts with HrpN of Erwinia amylovora. XI International Workshopon Fire Blight793:261~264
    Malnoy M, Borejsza-Wysocka E E, Abbott P, Lewis S, Norelli J L, Flaishman M, Gidoni D, Aldwinckle HS.2010. Genetic transformation of apple (Malus×domestica) without use of a selectable marker gene.Tree Genet Genomes,6:423~433
    Malnoy M, Xu M, Borejsza-Wysocka E, Korban S S, Aldwinckle H S.2008. Two receptor-like genes, Vfa1and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. MolPlant microbe in,21:448~458
    Moscatello S, Famiani F, Proietti S, Farinelli D, Battistelli A.2011. Sucrose synthase dominatescarbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia deliciosa, cvHayward). Sci Hortic,128:197~205
    Nguyen-Quoc B, Foyer C H.2001. A role for ‘futile cycles’ involving invertase and sucrose synthase insucrose metabolism of tomato fruit. J Exp Bot,52:881~889
    Ni D A.2012. Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol Plant,DOI10.1007/s11738-012-1036-5
    Nilsson T, Gustavsson K E.2007. Postharvest physiology of ‘Aroma’ apples in relation to position on thetree. Postharvest Biol Tec,43:36~46
    Norelli J L, Borejsza-Wysocka E, Reynoird J P, Aldwinckle H S.2000. Transgenic ‘Royal Gala’ appleexpressing attacin E has increased field resistance to Erwinia amylovora (fire blight). Acta Hortic,538:631~633
    Noro S, Kudo N, Kitsuwa T.1989. Differences in sugar and organic acid contents between bagged andunbagged fruit of the yellow apple cultivars, and the effect on development of anthocyanin. J Japa SocHortic Sci,58:17~24
    Nosarszewski M, Clements A M, Downie A B, Archbold D D.2004. Sorbitol dehydrogenase expressionand activity during apple fruit set and early development. Physiol Plantarum,121:391~398
    Nosarzewski M.2007. Sorbitol dehydrogenase expression in apple fruit. University of Kentucky DoctoralDissertations. Paper485
    Nosarzewski M, Archbold D D.2007. Tissue-specific expression of SORBITOL DEHYDROGENASE inapple fruit during early development. J Exp Bot,58:1863~1872
    Nour V, Trandafir I, Ionica M E.2010. Compositional characteristics of fruits of several apple (Malusdomestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,38:228~233
    Park J Y, Canam T, Kang K Y, Unda F, Mansfield S D.2009. Sucrose phosphate synthase expressioninfluences poplar phenology. Tree Physiol,29:937~946
    Park S W, Song K J, Kim M Y, Hwang J-H, Shin Y U, Kim W-C, Chung W-II.2002. Molecular cloning andcharacterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase fromthe ‘Fuji’ apple. Plant Sci,162:513~519
    Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M.2008. Osmyb4expression improves adaptiveresponses to drought and cold stress in transgenic apples. Plant Cell Rep,27:1677~1686
    Patrick J.1997. Phloem unloading: sieve element unloading and post-sieve element transport. Annu RevPlant Biol,48:191~222
    Pawlicki-Jullian N, Sedira M, Welander M.2002. The use of Agrobacterium rhizogenes transformed rootsto obtain transgenic shoots of the apple rootstock Jork9. Plant cell tiss org,70:163~171
    Pe a L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater J M.2001. Constitutiveexpression of Arabidopsis LEAFY or APETALA1genes in citrus reduces their generation time. NatBiotechnol,19:263~267
    Proctor J, Lougheed E.1976. The effect of covering apples during development. HortScience,11:108-109
    Radchuk V, Korkhovoy V.2005. The rolB gene promotes rooting in vitro and increases fresh root weight invivo of transformed apple scion cultivar ‘Florina’. Plant cell tiss org,81:203~212
    Ramos D, Weinbaum S, Shackel K, Schwankl L, Mitcham E, Mitchell F, Snyder R, Mayer G, McGourty G.1993. Influence of tree water status and canopy position on fruit size and quality of Bartlett pears. ActaHort,367,192~200
    Randhir R, Lin Y T, Shetty K.2004. Stimulation of phenolics, antioxidant and antimicrobial activities indark germinated mung bean sprouts in response to peptide and phytochemical elicitors. ProcessBiochem,39:637~646
    Renz A, Stitt M.1993. Substrate specificity and product inhibition of different forms of fructokinases andhexokinases in developing potato tubers. Planta,190:166~175
    Rolland F, Baena-Gonzalez E, Sheen J.2006. Sugar sensing and signaling in plants: conserved and novelmechanisms. Annu Rev Plant Biol,57:675~709
    Rommens C M, Humara J M, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K.2004. Cropimprovement through modification of the plant’s own genome. Plant Physiol,135:421~431
    Ruan Y L, Llewellyn D J, Furbank R T.2003. Suppression of sucrose synthase gene expression repressescotton fiber cell initiation, elongation, and seed development. The Plant Cell Online,15:952~964
    Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S.2010. Sugar input, metabolism, and signaling mediated byinvertase: roles in development, yield potential, and response to drought and heat. Mol Plant,3:942~955
    Silfverberg-Dilworth E, Patocchi A, Belfanti E, Tartarini S, Sansavini S, Gessler C.2005. HcrVf2Introduced into Gala confers race-specific scab resistance. Proceedings of the Plant and AnimalGenome XIII Conference, San Diego, California. Abstract P, pp15~19
    Stitt M, Wilke I, Feil R, Heldt H W.1988. Coarse control of sucrose-phosphate synthase in leaves:alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation ofsucrose. Planta,174:217~230
    Strand A, Zrenner R, Trevanion S, Stitt M, Gustafsson P, Gardestrom P.2000. Decreased expression of twokey enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrosephosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism intransgenic Arabidopsis thaliana. Plant J,23:759~770
    Sturm A.1999. Invertases. Primary structures, functions, and roles in plant development and sucrosepartitioning. Plant Physiol,121:1~8
    Sun J D, Zhang J S, Larue C T, Huber S C.2011. Decrease in leaf sucrose synthesis leads to increased leafstarch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limitedphotosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Environ,34:592~604
    Syvertsen J, Albrigo L.1980. Some effects of grapefruit tree canopy position on microclimate, waterrelations, fruit yield, and juice quality. J Am Soc Hortic Sci,105:454~459
    Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke M V, Stich K, Fischer T C.2009. Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidinsynthase in apple (Malus sp.). Planta,229:681~692
    Szankowski I, Waidmann S, El-Din Saad Omar A, Flachowsky H, H ttasch C, Hanke M-V.2008.RNAi-silencing of MdTFL1induces early flowering in apple. Acta Hortic,839:633~636
    Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R.2006. Light-induced expression of aMYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol,142:1216~1232
    Tang G Q, Lüscher M, Sturm A.1999. Antisense repression of vacuolar and cell wall invertase intransgenic carrot alters early plant development and sucrose partitioning. The Plant Cell Online,11:177~189
    Telias A, Rother D, Hoover E.2008. Plant and environmental factors influencing the pattern of pigmentaccumulation in ‘Honeycrisp’ apple peels, using a novel color analyzer software tool. HortScience,43:1321~1627
    Telias A, Wang-Lin K, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoover E E, Bradeen J M.2011. Apple skin patterning is associated with differential expression of MYB10. Bmc Plant Biol,11:93
    Teo G, Suzuki Y, Uratsu S L, Lampinen B, Ormonde N, Hu W K, DeJong T M, Dandekar A M.2006.Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. P Natl Acad SciUSA,103:18842~18847
    Tr nkner C, Lehmann S, Hoenicka H, Hanke M V, Fladung M, Lenhardt D, Dunemann F, Gau A,Schlangen K, Malnoy M.2010. Over-expression of an FT-homologous gene of apple induces earlyflowering in annual and perennial plants. Planta,232:1309~1324
    Treutter D.2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul,34:71~89
    Tyas J A, Hofman P J, Underhill S J R, Bell K L.1998. Fruit canopy position and panicle bagging affectsyield and quality of ‘Tai So’ lychee. Sci Hortic,72:203~213
    Unuk T, Tijskens L, Germ ek B, Zadravec P, Vogrin A, Hribar J, Sim i M, Tojnko S.2012. Effect oflocation in the canopy on the colour development of three apple cultivars during growth. J Sci FoodAgr,
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K,Troggio M, Pruss D.2010. The genome of the domesticated apple (Malus×domestica Borkh.). Natgenet,42:833~839
    Wang F, Sanz A, Brenner M L, Smith A.1993. Sucrose synthase, starch accumulation, and tomato fruit sinkstrength. Plant Physiol,101:321~327
    Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens R P, Chagne D, Rowan D D, TroggioM.2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatorycomplex. Plant Cell Environ,34:1176~1190
    Wang L, Li X R, Lian H, Ni D A, He Y, Chen X Y, Ruan Y L.2010. Evidence that high activity of vacuolarinvertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent andindependent pathways, respectively. Plant Physiol,154:744~756
    Wang L, Liao S, Ruan Y L.2013. Cell wall invertase as a regulator in determining sequential developmentof endosperm and embryo through glucose signaling early in seed development. Plant signaling&behavior,8(1): eLocation ID: e22722
    Wang X L, Xu Y H, Peng C C, Fan R C, Gao X Q.2009. Ubiquitous distribution and different subcellularlocalization of sorbitol dehydrogenase in fruit and leaf of apple. J Exp Bot,60:1025~1034
    Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D.2011. Ectopic expression of a novel peach(Prunus persica) CBF transcription factor in apple (Malus×domestica) results in short-day induceddormancy and increased cold hardiness. Planta,233:971~983
    Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X.2007. Chemical compositional characterization ofsome apple cultivars. Food Chem,103:88~93
    Xie R, Zheng L, He S, Zheng Y, Yi S, Deng L.2011. Anthocyanin biosynthesis in fruit tree crops: Genesand their regulation. Afr J Biotechnol,10:19890~19897
    Xu Y, Feng S, Jiao Q, Liu C, Zhang W, Chen W, Chen X.2012. Comparison of MdMYB1sequences andexpression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar'Ralls' and its blushed sport. Euphytica:1~14
    Yamaki S.1980. A sorbitol oxidase that converts sorbitol to glucose in apple leaf. Plant Cell Physiol,21:591~599
    Yamaki S.1984. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars,organic acids, phenolic compounds and amino acids. Plant Cell Physiol,25:151~166
    Yamaki S.1994Physiology and metabolism of fruit development-biochemistry of sugar metabolism andcompartmentation in fruits. Postharvest Physiol Fruits,398:109~120
    Yamaki S, Ino M.1992. Alteration of cellular compartmentation and membrane permeability to sugars inimmature and mature apple fruit. J Am Soc Hortic Sci,117:951~954
    Yamashita H, Daimon H, Akasaka-Kennedy Y, Masuda T.2004. Plant regeneration from hairy roots ofapple rootstock, Malus prunifolia Borkh. Var. ringo Asami, strain Nagano No.1, transformed byAgrobacterium rhizogenes. Jpn Soc Hortic Sci,73:505~510
    Yepes L M, Aldwinekle H S.1994. Factors that effect leaf regeneration efficiency in apple, and effect ofantibiotics in morphogenesis. Plant cell tiss org,37:257~269
    Yu B, Zhang D, Huang C, Qian M, Zheng X, Teng Y, Su J, Shu Q.2012. Isolation of anthocyaninbiosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected byorgan/tissue, cultivar, bagging and fruit side. Sci Hortic,136:29~37
    Zhang L Y, Peng Y B, Pelleschi-Travier S, Fan Y, Lu Y F, Lu Y M, Gao X P, Shen Y Y, Delrot S, Zhang D P.2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol,135:574~586
    Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y.2012. Identification,characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidityin apple. BMC genomics,13:537
    Zhang Y Z, Li P M, Cheng L L,2010. Developmental changes of carbohydrates, organic acids, amino acids,and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem,123:1013~1018
    Zheng C C, Porat R, Lu P, O’Neill S D.1998. PNZIP is a novel mesophyll-specific cDNA that is regulatedby phytochrome and a circadian rhythm and encodes a protein with a leucine zipper motif. PlantPhysiol,116:27~35
    Zhou R, Cheng L L, Wayne R.2003. Purification and characterization of sorbitol-6-phosphate phosphatasefrom apple leaves. Plant Sci,165:227~232
    Zhou R, Cheng L L, Dandekar A M.2006. Down-regulation of sorbitol dehydrogenase and up-regulation ofsucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. J Exp Bot,57:3647~3657
    Zhu L H, Li X, Welander M.2008. Overexpression of the Arabidopsis gai gene in apple significantlyreduces plant size. Plant Cell Rep,27:289~296
    Zhu L H, Holefors A, Ahlman A, Xue Z T, Welander M.2001. Transformation of the apple rootstock M.9/29with the rol B gene and its influence on rooting and growth. Plant Sci,160:433~439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700