用户名: 密码: 验证码:
小麦CBL基因和CIPK基因的克隆及在非生物胁迫中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物,其种植面积、总产量及总贸易额均居粮食作物之首。干旱、高盐等是严重影响小麦产量和品质的非生物逆境,研究小麦对逆境信号的感知、传导以及抗逆性的分子机制,对小麦抗逆分子育种研究与开发具有重要意义。Ca2+作为第二信使介导植物对各种不同逆境胁迫的反应,这其中涉及到复杂的信号转导途径。类钙调磷酸酶B蛋白(Calcineurin B-Like, CBL)和其互作蛋白激酶(CBL-interacting protein kinase, CIPK)是与非生物逆境胁迫相关的Ca2+信号转导中很重要的组分。然而到目前为止,除了发现一个小麦CIPK基因(WPK4)参与细胞分裂素以及光和营养胁迫信号转导外,对小麦CBL和CIPK基因的系统研究还未见报道。我们在对DFCI数据库和NCBI数据库中小麦CBL和CIPK基因相关EST序列的搜索和分析的基础上,利用RACE技术分别成功地克隆了7个CBL基因和8个CIPK基因,并对它们编码的蛋白质进行了系统的分析。利用酵母双杂交方法研究了CBL和CIPK之间特异的相互作用。利用RT-PCR和qRT-PCR技术分析了这些基因在不同非生物胁迫逆境处理下的表达水平。另外,进一步通过对转TaCIPK14基因和转TaCIPK29基因的烟草在非生物胁迫下的表型,生理生化指标与分子机制的分析,揭示了TaCIPK14和TaCIPK29在非生物胁迫中功能和作用机理,取得的主要研究结果如下:
     1)小麦CBL和CIPK蛋白与水稻同源的CBL和CIPK蛋白的氨基酸序列和结构高度相似,这些CBL蛋白均含有四个能结合Ca2+的EF-hands结构域和一个FPSF结构域;CIPK蛋白都含有激酶结构域,FISL结构域和PPI结构域。进化分析显示,小麦CBL蛋白和CIPK蛋白和水稻同源CBL蛋白和CIPK蛋白都归类于相同的亚族。
     2)基因表达分析结果表明,小麦特定的CBL或CIPK基因对冷、盐、渗透胁迫和ABA处理的响应模式不同,而且同一处理能够被不同的CBL或CIPK基因感应,这说明小麦CBL和CIPK基因可能介导对不同胁迫信号的交联过程。
     3)利用酵母双杂交技术分析发现,小麦不同的CBL和CIPK蛋白之间的相互作用的特异性和强度不同。一些重要的特异性的CBL-CIPK互作子如:TaCBL1-TaCIPK9, TaCBL1-TaCIPK23, TaCBL2-TaCIPK2, TaCBL3-TaCIPK2, TaCBL2-TaCIPK29和TaCBL3-TaCIPK29可能参与小麦对不同非生物胁迫的响应。这些结果表明,小麦CBL和CIPK对不同非生物胁迫的信号转导是通过形成不同的CBL-CIPK复合物来解码特定胁迫下产生的特异Ca2+信号。
     4)系统分析了TaCIPK14基因和TaCIPK29基因在非生物胁迫反应中的作用。TaCIPK14基因受冷、渗透胁迫和盐胁迫等非生物胁迫以及胁迫相关信号分子ABA、乙烯和H202诱导。证明了在烟草中过表达TaCIPK14基因可提高转基因烟草植株对冷和盐胁迫的抗性。TaCIPK14提高对冷和盐的抗性是通过调控一些抗氧化酶或胁迫相关基因如NtCAT, NtDREB3和NtLEA等的表达来实现的。增强的抗氧化酶的活性有助于清除逆境下产生的过量ROS,减轻ROS对细胞膜的损伤。同时,TaCIPK14能降低转基因烟草在盐胁迫下的Na+含量和提高细胞的K+/Na+比率,这也有助于植物对盐胁迫的抗性。
     5) TaCIPK29基因能够被盐、冷、甲基紫晶(MV)、ABA和乙烯诱导。过表达TaCIPK29基因的烟草植株增强了对盐胁迫的抗性。TaCIPK29通过提高一些通道蛋白基因如NtSOS1, NtNHX2, NtNHX4和NtCAX3的表达来维持高的K+/Na+比和Ca2+含量以及通过增强CAT和POD的表达和活性来减少H2O2对细胞膜的损伤来抵抗盐胁迫的伤害。TaCIPK29没有特定的定位信号,在整个细胞中都有分布。。TaCIPK29不仅能够特异地与小麦的TaCBL2和TaCBL3互作,也能与烟草的NtCBL2和NtCBL3互作,说明TaCIPK29通过CBL2和CBL3传递Ca2+信号。同时TaCIPK29还能与烟草的NtCAT1相互作用,增强其活性,这有助于清除过多的H202。因此,TaCIPK29是一个盐胁迫中的正调控因子,参与了盐胁迫下对离子和ROS的调控。
     综上所述,如同水稻和拟南芥中同源的CBL和CIPK基因一样,小麦CBL和CIPK基因也是非生物胁迫响应基因。不同的CBL和CIPK基因可能赋予植物对不同逆境的抗性。已鉴定的抗逆基因TaCIPK14和TaCIPK29可作为培育转基因抗逆小麦新品种的候选基因。本研究为深入研究小麦中这两个重要的基因家族的功能和分子机制奠定了基础,同时也有助于小麦抗逆分子育种研究与开发。
Wheat is a world staple crop, and its acreage, total production and trade ranks the first place among food crops. However, wheat production is often constrained by various abiotic stresses, such as drought, salinity, and extreme temperatures. Understanding the molecular mechanism of the abiotic stress responses can facilitate the genetic improvement of stress tolerance in wheat. Calcium, as a second messenger, is involved in the mediation of various responses to different environmental stresses and related to highly complex signal transduction pathways. Calcineurin B-like proteins (CBLs) and their target proteins, the CBL-interacting protein kinases (CIPKs), have emerged as key Ca2+-mediated signaling components in response to various abiotic stresses in many plants. However, the CBL and CIPK genes in wheat have not yet been comprehensively studied to date, except one CIPK gene (WPK4) which has been reported to mediate cytokine signaling transduction and the response to light and nutrient deprivation. In this study, seven CBL genes and eight CIPK genes were amplified from wheat genome using the RACE technique and their preferential interaction and differential responses to various abiotic stresses were investigated. The roles of two wheat CIPK genes TaCIPK14and TaCIPK29in response to abiotic stresses were further investigated. The main results are as follows:
     1) Wheat CBLs and CIPKs were found to be similar to their counterparts in rice in motif structure and subgroup classification. These CBL proteins have four EF-hands and FPSF domains, while CIPK proteins contain kinase domain, FISL domain and PPI domain.
     2) The isolated wheat CBL and CIPK genes were found to be expressed differentially in various tissues and in response to different abiotic stresses including cold, salt, and osmotic stresses and exposure to the phytohormone abscisic acid (ABA). Furthermore, we also found that one CBL or CIPK gene was able to respond to several treatments, and one treatment was sensed by multiple CBL or CIPK genes. Thus, TaCBLs and TaCIPKs were found to mediate crosstalk among different signaling pathways.
     3) The preferential interactions of TaCBLs and TaCIPKs were identified using a yeast two-hybrid assay. Several important, specific CBL-CIPK interaction partners (TaCBL1-TaCIPK9, TaCBL1-TaCIPK23, TaCBL2-TaCIPK2, and TaCBL3-TaCIPK2, TaCBL2/TaCBL3-TaCIPK29) were found to be responsive to distinct abiotic stresses. These results suggest that wheat CBL and CIPK genes may collectively mediate crosstalk of multiple stress signaling pathways through the formation of different CBL-CIPK complexes to decode stress-specific Ca2+signaling.
     4) The roles of the TaCIPK14and TaCIPK29gene in response to various abiotic stresses were further investigated. TaCIPK14gene was upregulated under cold or when treated with salt, PEG or exogenous stresses related signaling molecules including ABA, ethylene and H2O2. Subcellular localization assay revealed the presence of TaCIPK14throughout the cell. Phenotype analysis showed that overexpression of TaCIPK14in tobacco enhanced cold and salt stress tolerance. Overexpression of TaCIPK14enhanced cold and salt stress tolerance by regulating the expression of antioxidant genes or stress related genes such as NtCAT, NtDREB3, NtLEA5, etc and enhancing the antioxidant system to reduce ROS accumulation and relieve membrane damage. Moreover, enhanced salt stress tolerance in TaCIPK14overexpressing plants was also attributed to decreased Na+content and elevated K+/Na+ratio.
     5) TaCIPK29transcript was induced by NaCl, cold, methyl viologen (MV), ABA and ethylene treatments. Overexpression of TaCIPK29in tobacco resulted in increased salt tolerance. Further investigation showed that transgenic tobacco seedlings retained high K+/Na+ratio and Ca2+content by up-regulating some transporter genes such as NtSOSI, NtNHX2, NtNHX4and NtCAX3and reduced H2O2accumulation and membrane damage through enhancing the activities and expression of CAT and POD under salt stress. Finally, TaCIPK29was localized throughout cells and it interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3and NtCAT1. Taken together, our results showed that TaCIPK29functions as a positive factor under salt stress, involved in the regulation of ion and ROS homeostasis.
     In conclusion, wheat CBL and CIPK genes were found to be abiotic stress responsive genes as those in rice and Arabidopsis. Different CBL or CIPK genes may differentially contribute to the plants' tolerance to distinct stresses. TaCIPK14and TaCIPK29gene may be useful candidate genes for developing stress-tolerant crops including wheat. Our work may facilitate further functional studies of these two important gene families and is beneficial for further molecular breeding in wheat.
引文
[1]Hepler PK. Calcium:a central regulator of plant growth and development. Plant Cell.2005,17:2142-2155.
    [2]Williamson RE, Ashley CC. Free Ca2+and cytoplasmic streaming in the alga Chara. Nature.1982,296 (5858):647-50.
    [3]Sanders D, Brownlee C, Harper JF. Communicating with calcium Plant Cell.1999, 11(4):691-706.
    [4]Kudla J, Batistic O, Hashimoto K. Calcium Signals:The Lead Currency of Plant Information Processing. Plant Cell.2010,22,541-563.
    [5]Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Annu. Rev. Plant Biol.2010,61,593-620.
    [6]Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci.2009, 14,37-42.
    [7]Webb AAR, McAinsh MR, Taylor JE, et al. Calcium ions as intracellular second messengers in higher plants. Adv. Bot. Res.1996,22:45-96.
    [8]Allen GJ, Chu SP, Schμmacher K, et al. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 2000,289,2338-2342.
    [9]Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci. 2013,18(1):30-40.
    [10]Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie.2011, 93(12):2054-9.
    [11]Luan S, Kudla J, Rodriguez-Concepcion, M, et al. Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants. Plant Cell.2002,14, S389-S400.
    [12]McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol.2003,159,585-598.
    [13]Chinpongpanich A, Limruengroj K, Phean-O-Pas S, et al. Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L. BMC Res Notes. 2012,5:625.
    [14]Popescu SC, Popescu GV, Bachan S, et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. PNAS.2007,104(11):4730-5.
    [15]Reddy AS, Ben-Hur A, Day IS. Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry.2011,72(10):1007-19.
    [16]Kushwaha R, Singh A, Chattopadhyay S. Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell.2008, 20(7):1747-59.
    [17]Perochon A, Aldon D, Galaud JP, et al. Calmodulin and calmodulin-like proteins in plant calciμm signaling. Biochimie.2011,93(12):2048-53.
    [18]Oh MH, Kim HS, Wu X, et al. Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochem J.2012,443(2):515-23.
    [19]Magnan F, Ranty B, Charpenteau M, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J.2008,56(4):575-89.
    [20]Leba LJ, Cheval C, Ortiz-Martin I, et al. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant J.2012,71(6):976-89.
    [21]Delk NA, Johnson KA, Chowdhury NI, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol.2005,139(1):240-53.
    [22]Tsai YC, Koo Y, Delk NA, et al. Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant J.2012. doi: 10.1111/tpj.12043.
    [23]Hrabak EM, Chan CW, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.2003,132(2):666-80.
    [24]Asano T, Tanaka N, Yang G, et al. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol.2005, 46(2):356-66.
    [25]Ma P, Liu J, Yang X, et al. Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Appl Biochem Biotechnol.2013.
    [26]薛彬,夏新莉,尹伟伦.杨树钙依赖蛋白激酶基因家族生物信息学分析.经济林研究[J].2010,28(1):20-27.
    [27]Li AL, Zhu YF, Tan XM, et al. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol.2008a,66(4):429-43.
    [28]Li A, Wang X, Leseberg CH, et al. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav.2008b,3(9):654-6.
    [29]Cheng SH, Willmann MR, Chen HC, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol.2002,129(2):469-85.
    [30]Harper JF, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol.2004,55:263-288.
    [31]Ludwig AA, Romeis T, Jones JD. CDPK-mediated signalling pathways:specificity and cross-talk. J Exp Bot.2004,55(395):181-8.
    [32]Boudsocq M, Droillard MJ, Regad L, et al. Characterization of Arabidopsis calcium-dependent protein kinases:activated or not by calcium?. Biochem J.2012, 15;447(2):291-9.
    [33]Mori IC, Murata Y, Yang Y, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol.2006,4(10):e327.
    [34]Geiger D, Scherzer S, Mumm P, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. PNAS.2010, 107(17):8023-8.
    [35]Geiger D, Maierhofer T, Al-Rasheid KA,et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal.2011,4(173):ra32.
    [36]Kobayashi M, Ohura I, Kawakita K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell.2007,19(3):1065-80.
    [37]Asano T, Hayashi N, Kobayashi M, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J.2012,69(1):26-36.
    [38]Ding Y, Cao J, Ni L, et al. ZmCPKll is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot.2013,64(4):871-84.
    [39]Choi HI, Park HJ, Park JH, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol.2005, 139(4):1750-61.
    [40]Zhu SY, Yu XC, Wang XJ, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007,19(10):3019-36.
    [41]Kim H, Hwang H, Hong JW, et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot.2012,63(2):1013-24.
    [42]Ishida S, Yuasa T, Nakata M, et al. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell.2008,20 (12):3273-88.
    [43]Ho SL, Huang LF, Lu CA, et al. Sugar starvation-and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol. Biol.2013,81(4-5):347-61.
    [44]Matschi S, Werner S, Schulze WX, et al. Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. Plant J.2012. doi:10.1111/tpj.12090.
    [45]Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998,280 (5371):1943-5.
    [46]Kudla J, Xu Q, Harter K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. PNAS.1999,96(8):4718-23.
    [47]Batistic O, Kudla, J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta.2004,219,915-924.
    [48]Reddy VS, Reddy AS. Proteomics of calcium-signaling components in plants. Phytochemistry.2004,65 (12):1745-76.
    [49]Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol.2004,134,43-58.
    [50]Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim. Biophys. Acta.2009,1793,985-992.
    [51]Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network:function and perspectives. New Phytol.2009,84,517-528.
    [52]Xiang Y, Huang YM, Xiong LZ. Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. Plant Physiol.2007,144, 1416-1428.
    [53]Gu ZM, Ma BJ, Jiang Y, et al. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene.2008,415, 1-12.
    [54]Li LB, Zhang YR, Liu KC, et al. Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agri. Sci. China.2010,9,19-30.
    [55]Zhang CX, Bian MD, Yu H, et al. Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.). Plant Physiol. Biochem. 2011,49,1306-1312.
    [56]Yu Y, Xia X, Yin W, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul.2007,52,101-110.
    [57]Zhang HC, Yin WL, Xia XL. Calcineurin B-Like family in Populus:comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul.2008,56,129-140.
    [58]Pandey GK. Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol. Mol. Biol. Plants.2008,14(1&2):51-68.
    [59]Nagae M, Nozawa A, Koizumi N, et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J Biol Chem.2003, 278(43):42240-6.
    [60]Lewit-Bentley A, Rety S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol.2000,10,637-643.
    [61]Batistic O, Kim Kyung-Nam, Kleist Thomas, et al. The CBL-CIPK Network for Decoding Calcium Signals in Plants. S. Luan (ed.), Coding and Decoding of Calcium Signals in Plants, Signaling and Communication in Plants.2010b,10. doi 10.1007/978-3-642-20829-4_12.
    [62]Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, et al. The structure of the Arabidopsis thaliana SOS3:molecular mechanism of sensing calcium for salt stress response. J Mol Biol.2005,345:1253-1264
    [63]Batistic O, Rehers M, Akerman A, et al. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Res.2012,22(7):1155-68.
    [64]Du WM, Lin HX, Chen S, et al. Phosphorylation of SOS3-Like Calcium-Binding Proteins by Their Interacting SOS2-Like Protein Kinases Is a Common Regulatory Mechanism in Arabidopsis. Plant Physiol.2011,156,2235-2243.
    [65]Hashimoto KJ, Eckert C, Anschutz U, et al. Phosphorylation of Calcineurin B-like (CBL) Calcium Sensor Proteins by Their CBL-interacting Protein Kinases (CIPKs) Is Required for Full Activity of CBL-CIPK Complexes toward Their Target Proteins. J. Biol. Chem.2012,287,7956-7968.
    [66]Albrecht V, Ritz O, Linder S, et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 2001,20,1051-1063.
    [67]Lee SC, Lan WZ, Kim BG, et al. A protein phosphorylation/dephosphorylation network regulates,a plant potassium channel. PNAS.2007,104,15959-15964.
    [68]Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell.2001,13,1383-1400.
    [69]Gong D, Guo Y, Jagendorf AT, et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol. 2002,130:256-264.
    [70]Sanchez-Barrena MJ, Fujii H, Angulo I, et al. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol. Cell.2007,26,427-435.
    [71]Batistic O, Waadt R, Steinhorst L, et al. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J.2010a,61(2):211-22.
    [72]Kim BG, Waadt R, Cheong YH, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J.2007,52,473-484.
    [73]Liu LL, Ren HM, Chen LQ, et al. A protein kinase, calcineurin B-like protein-interacting protein Kinase 9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol.2013,161(1):266-77.
    [74]Hwang YS, Bethke PC, Cheong YH, et al. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol. 2005,138,1347-1358.
    [75]Drerup MM, Schlucking K, Hashimoto K, et al. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol. Plant.2013,18.
    [76]Waadt R, Schmidt LK, Lohse M, et al. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J.2008,56(3):505-16.
    [77]Xu J, Li HD, Chen LQ, et al. A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell.2006,125, 1347-1360.
    [78]Zhao J, Sun Z, Zheng J, et al. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol.2009,69,661-674.
    [79]Cheong YH, Pandey GK, Grant JJ, et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J.2007,52,223-239.
    [80]Martinez-Atienza J, Jiang XY, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice. Plant physiol.2007,143,1001-1012.
    [81]Kurusu T, Hamada J, Nokajima H, et al. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol.2010,153(2):678-92.
    [82]Yoona S, Parka J, Ryua M, et al. Calcineurin B-like proteins in rice can bind with calcium ion and associate with the Arabidopsis CIPK family members. Plant Sci. 2009,177 (6):577-583
    [83]Tripathi V, Parasuraman B, Laxmi A, et al. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J.2009, 58(5):778-90.
    [84]Wang RK, Li LL, Cao ZH, et al. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance intransgenic plants. Plant Mol. Biol.2012,79:123-135.
    [85]Chen L, Ren F, Zhou L, et al. The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp. Bot.2012, 63(17):6211-22.
    [86]Lan WZ, Lee SC, Che YF, et al. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Mol. Plant.2011,4(3):527-36.
    [87]Ren XL, Qi GN, Feng HQ, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J.2013, 20.
    [88]Oh SI, Park J, Yoon S, et al. The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5'-methylthioadenosine nucleosidase in a calcium-dependent manner. Plant Physiol.2008,148(4):1883-96.
    [89]Albrecht V, Weinl S, Blazevic D, et al. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J.2003,36,457-470.
    [90]Quan R, Lin H, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell.2007,19,1415-1431.
    [91]Li RF, Zhang JW, Wu GY, et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ.2012,35(9):1582-1600.
    [92]Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. PNAS.2000, 97,735-740.
    [93]Zhu JK. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002,53,247-273.
    [94]Zhu JK. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003,6,441-445.
    [95]Tang RJ, Liu H, Bao Y, et al. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol.2010, 74,367-380.
    [96]Huertas R, Olias R, Eljakaoui Z, et al. Overexpression of S1SOS2 (S1CIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ.2012,35: 1467-1482.
    [97]Roy SJ, Huang W, Wang XJ, et al. A novel protein kinase involved in Na+ exclusion revealed from positional cloning. Plant Cell Environ.2013, 36(3):553-68.
    [98]Held K, Pascaud F, Eckert C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res.2011,21(7):1116-30.
    [99]Pandey GK,Cheong YH, Kim BG.,et al. CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res.2007, 17:411-421
    [100]Cheong YH, Sung SJ, Kim BG, et al. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol. Cells.2010,29(2):159-65.
    [101]Kim KN, Cheong YH, Grant JJ, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell.2003,15(2):411-23.
    [102]Huang C, Ding S, Zhang H, et al. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci.2011a,181:57-64
    [103]Yang W, Kong Z, Omo-Ikerodah E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice {Oryza sativa L.). J Genet. Genomics.2008,35(9):531-43, S1-2.
    [104]Ho CH, Lin SH, Hu HC, et al. CHL1 functions as a nitrate sensor in plants. Cell. 2009,138(6):1184-94.
    [105]Ho CH, Tsay YF. Nitrate, ammonium, and potassium sensing and signaling. Curr. Opin. Plant Biol.2010,13(5):604-10.
    [106]Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science.2009, 324(5930):1068-71.
    [107]Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport. Plant Cell Physiol.2010,51(11):1821-39.
    [108]Soon FF, Ng LM, Zhou XE, et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science.2012,335(6064):85-8.
    [109]Pandey GK, Cheong YH, Kim KN, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell. 2004,16,1912-1924.
    [110]Pandey GK, Grant JJ, Cheong YH, et al. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol. Plant.2008,1,238-248.
    [111]Guo Y, Xiong L, Song CP, et al. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell.2002, 3(2):233-44.
    [112]Qin Y, Li X, Guo M, et al. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci. China C. Life Sci. 2008,51:391-401
    [113]Zhu J, Fu X, Koo YD, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol. Cell Biol.2007,27(14):5214-24.
    [114]Katiyar-Agarwal S, Zhu J, Kim K, et al. The plasma membrane Na+/H+antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. PNAS.2006,103(49):18816-21.
    [115]Kimura S, Kawarazaki T, Nibori H, et al. The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Bio chem.2013,153(2):191-5.
    [116]Li ZY, Xu ZS, Chen Y, et al. A Novel Role for Arabidopsis CBL1 in Affecting Plant Responses to Glucose and Gibberellin during Germination and Seedling Development. PLoS One.2013,8(2):e56412.
    [117]Fuglsang AT, Guo Y, Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell.2007,19(5):1617-34.
    [118]Liu LL, Ren HM, Chen LQ, et al. A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol.2013,161(1):266-77.
    [119]Tang RJ, Liu H, Yang Y, et al. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res.2012,22(12):1650-65.
    [120]Lee KW, Chen PW, Lu CA, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal.2009,2(91):ra61.
    [121]Livaka KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001, 25,402-408.
    [122]Sano H, Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. PNAS.1994,91, 2582-2586.
    [123]Ikeda Y, Koizumi N, Kusano T, et al. Sucrose and Cytokinin Modulation of WPK4, a Gene Encoding a SNF1-Related Protein Kinase from Wheat. Plant Physiol.1999, 121,813-820.
    [124]Ohta M, Guo Y, Halfter U, et al. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. PNAS. 2003,100:11771-11776
    [125]Kim KN, Cheong YH, Gupta R, et al. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol.2000, 124(4):1844-53.
    [126]Gong DM, Guo Y, Schumaker KS, et al. The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis. Plant Physiol.2004,134, 919-926.
    [127]Piao HL, Xuan YH, Park SY, et al. OsCIPK31, a CBL interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol. Cell.2010,30,19-27.
    [128]Brenchley R, Spannagl M, Pfeifer M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature.2012,491(7426):705-10.
    [129]Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.1968,25: 189-198.
    [130]张蜀秋,李云,武维华.植物生理学实验技术教程.科学出版社[M].2011.
    [131]Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.Plant Cell Physiol.2001,42:1265-1273.
    [132]Kong X, Pan J, Zhang M, et al. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ.2011,34:1291-1303
    [133]Yang Q, Chen ZZ, Zhou XF, et al. Overexpression of SOS (Salt Overly Sensitive) Genes Increases Salt Tolerance in Transgenic Arabidopsis. Mol. Plant.2009,2: 22-31.
    [134]Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+ /Na+ ratios. Ann. Bot.1999,84:123-133.
    [135]Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci.2004,86:407-421.
    [136]Munns R, Tester M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008,59:651-681.
    [137]Shi H, Lee BH, Wu SJ, et al. Overexpression of plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol.2003,21:81-85.
    [138]Mochida K, Kawaura K, Shimosaka E, et al. Tissue expression map of a large number of expressed sequence tags and its application to insilico screening of stress response genes in common wheat. Mol. Genet. Genomics.2006,276: 304-312.
    [139]Huang XS, Liu JH, Chen XJ. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol.2010,10,230.
    [140]Couee I, Sulmon C, Gouesbet G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp. Bot. 2006,57:449-459.
    [141]Zhu JK. Plant salt tolerance. Trends Plant Sci.2001,6:66-71.
    [142]Sorrells ME, La Rota M, Bermudez-Kandianis CE, et al. Comparative DNA Sequence Analysis of Wheat and Rice Genomes. Genome Res.2003,13: 1818-1827.
    [143]Nelson BK, Cai X, Nebenfuhr A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J.2007,51: 1126-1136.
    [144]Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter. PNAS.2000,97(12):6896-901.
    [145]Rodriguez-Rosales MP, Jiang X, Galvez FJ, et al. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol.2008,179,366-377.
    [146]Rodriguez-Rosales MP, Galvez FJ, Huertas R, et al. Plant NHX cation/proton antiporters. Plant Signal. Behav.2009,4,1-13.
    [147]Cheng NH, Pittman JK, Shigaki T, et al. Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion Homeostasis. Plant Physiol.2005,138:2048-2060.
    [148]Zhao J, Barkla BJ, Marshall J, et al. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta.2008,227:659-669.
    [149]Gouiaa S, Khoudi H, Leidi EO, et al. Expression of wheat Na+/H+antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol. Biol.2012,79:137-155
    [150]Verslues PE, Batelli G, Grillo S, et al. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol. Cell Biol.2007,27:7771-7780
    [151]D'Angelo C, Weinl S, Batistic O, et al. Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J.2006,48(6):857-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700