用户名: 密码: 验证码:
茄属种及其种间体细胞杂种的染色体特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过细胞融合的方式将马铃薯野生种或其他茄属近缘种的优良性状引入马铃薯栽培种是马铃薯资源创制的重要途径之一。研究体细胞杂种基因组中来自双亲的染色体的组成和重排,并在染色体水平解析性状的改变与染色体导入的联系,对基于染色体水平的马铃薯育种和细胞遗传学研究具有重要意义。荧光原位杂交是联系DNA序列和染色体生物学研究的重要工具。因此,本研究建立并优化了马铃薯荧光原位杂交体系,在此基础上对可能用于马铃薯资源创制的茄属几个相关种的染色体特征进行了研究,同时对马铃薯S. tuberosum和S. melongena的几个体细胞杂种进行了染色体分析。主要研究结果如下:
     1.基于BAC-FISH标记的马铃薯染色体核型
     本研究首先采用5个来自S. tuberosum和7个来自S. bulbocastanum的染色体特异BAC,通过BAC-FISH识别了马铃薯野生种S. chacoense的全套12条染色体。然后据已报道的遗传图谱、BAC连锁群以及前人核型分析信息,按照染色体和对应的BAC-FISH杂交结果将染色体进行排列,建立了S. chacoense12条染色体标准图,为后续研究奠定了基础。
     2.马铃薯、番茄、茄子染色体的ITR分布特征
     以二倍体茄属代表种S. tuberosum (A genome)、S. chacoense (A genome)、S. bulbocastanum (B genome)、S. pinnatisectum (B genome)、S. paucissectum (P genome)、 S. lycopersicum和S. melongena为材料,开展了端粒探针FISH杂交。结果显示,内部端粒序列(ITR)在供试种染色体着丝粒区域大量扩增。Dot blot定量分析发现,各个种中端粒序列相对含量的增加与FISH检测到的端粒信号强弱基本一致。大量来源于ITR的FISH信号被定位于S. pinnatisectum (B genome)粗线期染色体的主缢痕中。另外,在马铃薯A genome种S. chacoense第12染色体长臂的亚着丝粒区域检测到一对杂合的ITR位点。这些结果暗示,ITR可能与功能着丝粒有关。
     3.茄属代表种rDNA分布
     通过PCR扩增分别得到S.tuberosum、S. chacoense和S. melongena的5S rRNA基因和45S rRNA基因间隔区(IGS)的5'ETS。序列分析显示,S. tuberosum和S.chacoense的5S rRNA基因间隔区高度同源,5'ETS序列也高度同源。而S. tuberosum和S. melongena的5S rRNA基因间隔区序列差异较大,5'ETS序列差异也较大。用S. tuberosum5S rDNA和25S rDNA作为FISH探针,与7个马铃薯种和1个番茄、1个茄子种染色体进行原位杂交,结果显示,在所杂交的材料中,5S rDNA只在1组同源染色体上有杂交信号,25S rDNA除了S. melongena在3对非同源染色体上均有信号外,其它种也只在1组同源染色体上有信号。配对分析显示,5S rDNA和25SrDNA位于不同的染色体。信号分析还表明,在S. tuberosum、S. berthaultii、S. bulbocastanum、S. acaule和S. melongena5个种中,同源染色体之间的5S rDNA或25S rDNA信号强弱存在明显差异。
     4.寡核苷酸SSR在茄属几个种染色体上的分布
     通过FISH分别研究了单、二和三核苷酸SSR,包括(A)n、(C) n、(CG) n、(AC) n、(TC)n、(AT) n、(AAC) n、(AAG)n、(AAT)n、(AGG) n、(CAC) n、(CAT)n、(CAG)n、(ACT) n、(ACG)n和(GCC)n在马铃薯栽培种S. tuberosum和野生种S. chacoense中期染色体上的物理分布。总体上,所有核苷酸SSR在染色体上呈散点状分布。(A)。在S. chacoense中信号主要位于染色体末端和部分着丝粒区域,而在S. tuberosum中信号较少且分布没有明显规律。(AAT)n、(ACT)n和(CAG)n在S. chacoense中几乎出现在所有染色体的末端,但在其他部位很少发现,而在S.tuberosum中除去少数染色体末端外其他多数信号呈点状分散分布于整个染色体上。进一步分别采用混合的单、二和三核苷酸SSR在马铃薯种S. chacoense、S. bulbocastanum和S. pinnatisectum以及番茄有丝分裂中期染色体上开展了FISH定位。结果显示,单和二核苷酸SSR在马铃薯种和番茄染色体上的分布模式类似。三核苷酸SSR在马铃薯种间的分布模式类似,但在马铃薯和番茄间表现出很大的差异,在番茄中几乎所有的信号都集中于染色体着丝粒附近并且信号强烈,而在马铃薯中信号主要位于大多数染色体末端并呈点状分布。在一定程度上,该研究对马铃薯种间以及马铃薯和番茄之间差异SSR的筛选提供了依据。
     5. S. tuberosum与几个相关种染色体GISH分析
     以马铃薯栽培种S. tuberosum基因组DNA为探针,与包括S. tuberosum (A genome)、S. chacoense (A genome)、S. pinnatisectum (B genome)、S. bulbocastanum (B genome)、S. paucissectum(P genome)、S. etuberosum (E genome)、S. lycopersicum (L genome)和S. melongena在内的茄属种进行GISH杂交,结果显示,S. tuberosum与S. chacoense、S. paucissectum的基因组DNA同源性最高,其次是S. etuberosum和S. pinnatisectum,再次是S. bulbocastanum。S. lycopersicum和S. melongena与S.tuberosum同源性最低。因此,如果GISH用于体细胞杂种染色体组分分析,能够有效鉴定S. tuberosum与S. bulbocastanum (B genome)、S. lycopersicum和S. melongena的体细胞杂种,但S. tuberosum与S. chacoense (A genome)和S. paucissectum (P genome)的体细胞杂种很难用GISH分析鉴定染色体组分。
     6.体细胞杂种染色体组成鉴定
     研究以S. chacoense基因组DNA为探针,分别采用不封阻、封阻两种方式对S. tuberosum和S. chacoense的体细胞杂种进行GISH分析,结果显示,由于双亲同源性较高,不能清楚地分析杂种的染色体组分。进一步分别采用地高辛和生物素标记S. tuberosum和S. chacoense基因组DNA,开展了双色GISH,对3C10-2(混倍体)、3C28-1(5x)和3C33-2(6x)三个体细胞杂种的双色GISH结果显示,在3个体细胞杂种染色体中,除能够观察到少数单色荧光信号外,大部分染色体均同时被S. chacoense的红色信号和S. tuberosum的绿色信号覆盖。表明采用GISH的方法不能直观地区分S. tuberosum和S. chacoense体细胞杂种中染色体的组成。该结果说明如果两个融合亲本亲缘关系较近,采用GISH技术很难鉴定杂种的染色体组分。
     马铃薯和茄子体细胞杂种的双色GISH结果显示,在供试的3个体细胞杂种中均能够清晰的鉴定出染色体的亲本来源,包括整条染色体和重排的染色体。进一步结合rDNA探针、端粒探针,在马铃薯和茄子的体细胞杂种中检测到了多种染色体重排现象,包括末端对末端的染色体融合、含有rDNA位点染色体的易位重排等。同时,在体细胞杂种60-10中还发现了2条具有双着丝粒的重排染色体,分别由端粒对端粒的末端融合和易位重排产生。另外,在60-13中1条重排染色体上的重排位点发现了ITR信号。结果表明,在GISH基础上结合丰富的细胞遗传学标记的检测方法是研究马铃薯和茄子体细胞杂种染色体组成的有效工具。
Introgression of desired traits from wild potato species or other closely related Solanum species into potato cultivars by cell fusion is an applicable way to create new germplasms. Investigations into the genome compositions, chromosome rearrangement, and the association of trait variation with chromosome introgression of the somatic hybrids are of great significance for potato breeding and cytogenetic studies on the chromosomal level. Fluorescence in situ hybridization plays an important role in connecting DNA sequences and chromosome biology. Therefore, the present study established and optimized a fluorescence in situ hybridization system in potato, and further examined the characteristics of chromosomes of several related Solanum species that would probably being involved in potato genetic-resource creation. Additionally, chromosome analysis was performed with several somatic hybrids derived from S. tuberosum and S. melongena. The main results obtained are as following:
     1. The karyotype of potato chromosomes based on BAC-FISH markers
     First, a full set of12chromosomes of the wild potato species S. chacoense were identified through BAC-FISH with chromosome-specific BACs, including5from S. tuberosum and7from S. bulbocastanum. Then, the standard karyotype of12S. chacoense chromosomes was set up according to the genetic maps, the BAC linkage groups, as well as previously reported karyotype information, which would lay a foundation for follow-up study.
     2. Distribution characteristics of ITRs in potato, tomato, and eggplant chromosomes
     FISH hybridizations using telomeric probe were conducted in representative diploid Solanum species, including S. tuberosum (A genome), S. chacoense (A genome), S. bulbocastanum (B genome), S. pinnatisectum (B genome), S. paucissectum (P genome), S. lycopersicum, and S. melongena. The results showed that interstitial telomeric repeats (ITRs) had been undergone an intense amplification in centromeric regions of chromosomes in tested species. Dot blot analysis revealed basically the same trends between the increasing of the relative contents of telomeric sequences and the strengthening of FISH signals from telomeric probe in species assayed. Large amount of ITR FISH signals were located in primary constrictions of pachytene chromosomes in S. pinnatisectum (B genome). In addition, a pair of heterozygous ITR sites were detected in the pericentromeric regions on the long arms of chromosome12in potato A genome species S. chacoense. These results suggest that ITRs may be related to the functional centromeres.
     3. Distribution of rDNA in representative Solanum species
     The5S rRNA genes and the5'ETS of45S rRNA gene spacer regions (IGS) were obtained by the PCR amplification in S. tuberosum, S. chacoense and S. melongena, respectively. Sequence analysis showed that the spacer regions of5S rRNA genes and also the5'ETS sequences between S. tuberosum and S. chacoense were highly homologous. However, the sequences of5S rRNA gene spacer regions and that of the5'ETS between S. tuberosum and S. melongena were diverged. The FISH assays were performed on chromosomes from seven potato, one tomato, and one eggplant species using S. tuberosum derived5S rDNA and25S rDNA probes. The results showed that5S rDNA signals were detected in only one set of homologous chromosome, while25S rDNA signals were detected in another set of homologous chromosome except for S. melongena in which25S rDNA signals presented on three pairs of homologous chromosomes. The5S rDNA and25S rDNA were found on distinct chromosomes when paring the homologous chromosomes. The strength of the5S rDNA or25S rDNA signals varied significantly between homologous chromosomes in S. tuberosum, S. berthaultii, S. bulbocastanum, S. acaule and S. melongena.
     4. Distribution of oligonucleotide SSRs on chromosomes in several Solanum species
     The physical distributions of mono-, di-, and trinucleotide SSRs, including (A)n,(C)n,(CG)n,(AC)n,(TC)n,(AT)n,(AAC)n,(AAG)n,(AAT)n,(AGG)n,(CAC)n,(CAT)n,(CAG)n,(ACT)n,(ACG)n, and (GCC)n on metaphase chromosomes were investigated by FISH in potato cultivated species S. tuberosum and wild species S. chacoense. In general, all kinds of nucleotide SSRs were scattered on chromosomes. The signals of (A)n were mainly detected at the ends and parts of the centromeric regions of chromosomes in S. chacoense, but fewer signals were detected in S. tuberosum with random distributions. Signals from (AAT)n,(ACT)n, and (CAG)n were restricted at almost all the chromosomal ends in S. chacoense, while they were scattered throughout the chromosomes in S. tuberosum excluding a few located at chromosome ends. FISH mapping of the mixture of mono-, di-, and trinucleotide SSRs on mitotic metaphase chromosomes were conducted respectively in potato species S. chacoense, S. bulbocastanum, and&pinnatisectum, as well as in tomato. The distribution patterns of mono-and dinucleotide SSRs were similar between potato and tomato species. However, great discrepancy in distribution of trinucleotide SSRs was found between tomato and potato, almost all the trinucleotide SSRs signals were concentrated in or around the centromeric regions of tomato chromosomes with strong intensities while they were spotted principally at most chromosomal ends in potato species. These findings provide, to a certain extent, a basic information for screening differential SSRs among potato species and between potato and tomato.
     5. GISH analysis of chromosomes between S. tuberosum and several related species
     Using the genomic DNA of cultivated potato S. tuberosum as a probe, GISH hybridizations were performed in species including S. tuberosum (A genome), S. chacoense (A genome), S. pinnatisectum (B genome), S. bulbocastanum (B genome), S. paucissectum (P genome), S. etuberosum (E genome), S. lycopersicum (L genome) and S. melongena. The results showed that S. tuberosum shared the highest homology of genomic DNA with S. chacoense and S. paucissectum, lower with S. etuberosum and S. pinnatisectum, lowest with S. bulbocastanum, S. lycopersicum and S. melongen. Therefore, if GISH is employed in discriminating the chromosomal compositions of somatic hybrids, it would be effective to discriminate S. tuberosum from S. bulbocastanum, S. lycopersicum and S. melongena, but it could be impractical when S. tuberosum is fused with S. chacoense and S. paucissectum.
     6. Identification of chromosome composition in the somatic hybrids
     GISH analysis with and without blocking were carried out separately with somatic hybrids derived from S. tuberosum and S. chacoense using S. chacoense genomic DNA as probe. The results demonstrated an infeasibility in identifying the chromosomal compositions of the hybrids owing to a high homology between the parents. For further tests, double-color GISH employing digoxin and biotin labeled genomic DNA probes from S. tuberosum and S. chacoense were conducted in somatic hybrids3C10-2(mixoploid),3C28-1(5x), and3C33-2(6x). The results showed that apart from a small number of chromosomal segments covered by apparent single color signals, most of the chromosomes were simultaneously painted on red or green signals from S. chacoense or S. tuberosum. It was illustrated impossible to discriminate the chromosomal compositions of the somatic hybrids between S. tuberosum and S. chacoense through GISH. The results indicate that GISH method is incapable of distinguishing chromosomal components in somatic hybrids derived from closely related species.
     Results from double-color GISH investigation of three somatic hybrids between potato and eggplant showed that the parental origins of the chromosomes, including whole chromosomes and rearranged chromosomes, were clearly identified. In combination with the rDNA and the telomere probe in further study, a variety of chromosomal rearrangements, involving end-to-end chromosome fusion and chromosome translocation containing the rDNA locus, were detected in the somatic hybrids. Two rearranged double-centromeric chromosomes, which might be resulted from telomere-to-telomere fusion and translocation, respectively, were found in somatic hybrid60-10. Additionally, ITR signal was found at the site where the rearrangement had occurred on a rearranged chromosome of60-13. The results demonstrated that the GISH detection method that assists with abundant cytogenetic markers serves as an effective tool in diagnosing the chromosome constituents of somatic hybrids.
引文
1.蔡兴奎.原生质体融合创造抗青枯病的马铃薯新种质及其遗传分析.[博士学位论文].武汉:华中农业大学图书馆,2003
    2.李广存,金黎平,谢开云,庞万福,卞春松,段绍光,屈冬玉.马铃薯青枯病抗性鉴定新方法.中国马铃薯,2006,3:129-134
    3.梁远发,何礼远,冯兰香,唐益雄,屈贤铬,夏凤.马铃薯抗青枯病转基因植株抗性鉴定.中国马铃薯学术研讨会与第五届世界马铃薯大会论文集,2004
    4.屈冬玉,谢开云,金黎平,庞万福,卞春松,段绍光.中国马铃薯产业发展与食物安全.中国农业科学,2005,38:358-362
    5.宋伯符.充满朝阳的中国马铃薯产业.见:马铃薯产业与高新技术.哈尔滨:哈尔滨工程大学出版社,2002:185-188
    6.谢从华.马铃薯产业的现状与发展.华中农业大学学报(社会科学版),2012:1-4
    7. Sambrook J, Russell DW.分子克隆实验指南精编版.化学工业出版社,2008
    8. Abad JP, de Pablos B, Agudo M, Molina I, Giovinazzo G, Martin-Gallardo A, Villasante A. Genomic and cytological analysis of the Y chromosome of Drosophila melanogaster:telomere-derived sequences at internal regions. Chromosoma,2004, 113:295-304
    9. Alfenito MR, Birchler JA. Molecular characterization of a maize B chromosome centric sequence. Genetics,1993,135:589-597
    10. Ali SNH, Ramanna M, Jacobsen E, Visser R. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor Appl Genet,2001,103:687-695
    11. Anamthawat-Jonsson K, Reader S. Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome,1995,38:814-816
    12. Azzalin CM, Nergadze SG, Giulotto E. Human intrachromosomal telomeric-like repeats:sequence organization and mechanisms of origin. Chromosoma,2001,110: 75-82
    13. Bauman J, Wiegant J, Borst P, Van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome-labelled RNA. Exp Cell Res,1980,128:485-490
    14. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D. Alignment and sensitive detection of DNA by a moving interface. Science,1994,265: 2096-2098
    15. Berr A, Schubert I. Direct labelling of BAC-DNA by rolling-circle amplification. Plant J,2006,45:857-862
    16. Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R. Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tiss Org,2007,91:179-189
    17. Bolzan A, Bianchi M. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res-Rev Mutat,2006,612:189-214
    18. Bonierbale M, Plaisted R, Tanksley S. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics,1988,120: 1095
    19. Budiman M, Chang S, Lee S, Yang T, Zhang H, Jong H, Wing R. Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet,2004,108:190-196
    20. Busch W, Martin R, Herrmann RG, Hohmann U. Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.). Genome,1995, 38:1082-1090
    21. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot,2003,92:107-127
    22. Chen C, Chen C, Hsu F, Wang C, Yang J, Kao Y. The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theor Appl Genet,2000,101:30-36
    23. Cheng Z, Buell CR, Wing RA, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res,2002,10: 379-387
    24. Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics,2001,157:1749-1757
    25. Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J,2008,53:1027-1034
    26. Cohen Z, Bacharach E, Lavi S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene,2006,25:4515-4524
    27. Cuadrado A, Cardoso M, Jouve N. Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome,2008,51:809-815
    28. Cuadrado A, Jouve N. The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res,2007,15: 711-720
    29. Dong F, Jiang J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res,1998,6:551-558
    30. Dong F, McGrath JM, Helgeson JP, Jiang J. The genetic identity of alien chromosomes in potato breeding lines revealed by sequential GISH and FISH analyses using chromosome-specific cytogenetic DNA markers. Genome,2001,44: 729-734
    31. Dong F, Novy R, Helgeson J, Jiang J. Cytological characterization of potato-Solanum etuberosum somatic hybrids and their backcross progenies by genomic in situ hybridization. Genome,1999,42:987-992
    32. Dong F, Song J, Naess S, Helgeson J, Gebhardt C, Jiang J. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet,2000,101:1001-1007
    33. Dong F, Tek A, Frasca A, McGrath J, Wielgus S, Helgeson J, Jiang J. Development and characterization of potato-Solanum brevidens chromosomal addition/substitution lines. Cytogenet Genome Res,2005,109:368-372
    34. Fauth C, Speicher M. Classifying by colors:FISH-based genome analysis. Cytogenet Genome Res,2001,93:1-10
    35. Fernandez-Suarez M, Ting AY. Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio,2008,9:929-943
    36. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, Jong JH. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J,1996,9:421-430
    37. Fransz PF, Stam M, Montijn B, Hoopen RT, Wiegant J, Kooter JM, Oud O, Nanninga N. Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J,1996,9:767-774
    38. Fuchs J, Pich U, Meister A, Schubert I. Differentiation of field bean heterochromatin byin situ hybridization with a repeatedFokI sequence. Chromosome Res,1994,2: 25-28
    39. Gao Z, Fu S, Dong Q, Han F, Birchler JA. Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res,2011,19:755-761
    40. Garriga-Caldere F, Huigen D, Angrisano A, Jacobsen E, Ramanna M. Transmission of alien tomato chromosomes from BC1 to BC2 progenies derived from backcrossing potato (+) tomato fusion hybrids to potato:the selection of single additions for seven different tomato chromosomes. Theor Appl Genet,1998,96:155-163
    41. Gavrilenko T, Larkka J, Pehu E, Rokka VM. Identification of mitotic chromosomes of tuberous and non-tuberous Solanum species (Solanum tuberosum and Solanum brevidens) by GISH in their interspecific hybrids. Genome,2002,45:442-449
    42. Gavrilenko T, Thieme R, Heimbach U, Thieme T. Fertile somatic hybrids of Solanum etuberosum (+) dihaploid Solanum tuberosum and their backcrossing progenies: relationships of genome dosage with tuber development and resistance to potato virus Y. Euphytica,2003,131:323-332
    43. Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson R, Bonierbale M, Ganal M. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet,1991,83: 49-57
    44. Gebhardt C, Ritter E, Salamini F. RFLP map of the potato. In:Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer Academic Publishers, Dordrecht Boston Londen,1994,271-285
    45. Geigl JB, Uhrig S, Speicher MR. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc,2006,1:1172-1184
    46. Gerlach W, Bedbrook J. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res,1979,7:1869
    47. Gerlach W, Dyer T. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res,1980,8:4851-4865
    48. Gindullis F, Desel C, Galasso I, Schmidt T. The large-scale organization of the centromeric region in Beta species. Genome Res,2001,11:253-265
    49. Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, et al. Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution. Plant Cell,2012,24:3559-3574
    50. Han F, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T. Characterization of six wheat×Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome,2003,46:490-495
    51. Han F, Lamb JC, Birchler JA. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. P Natl Acad Sci USA,2006,103:3238-3243
    52. Hans de Jong J, Fransz P, Zabel P. High resolution FISH in plants-techniques and applications. Trends Plant Sci,1999,4:258-263
    53. Hawkes JG. The potato:evolution, biodiversity and genetic resources. Bellhaven Press, London and Smithsonian Institution Press, Washington,259
    54. He L, Liu J, Torres G, Zhang H, Jiang J, Xie C. Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res, 2012,21:5-13
    55. Henikoff S, Ahmad K, Malik HS. The centromere paradox:stable inheritance with rapidly evolving DNA. Science,2001,293:1098
    56. Hizume M, Shibata F, Matsusaki Y, Garajova Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet,2002,105: 491-497
    57. Horsman K, Gavrilenko T, Bergervoet M, Huigen DJ, Joe A, Jacobsen E. Alteration of the genomic composition of Solanum nigrum (+) potato backcross derivatives by somatic hybridization:selection of fusion hybrids by DNA measurements and GISH. Plant Breeding,2001,120:201-207
    58. Howell E, Armstrong S, Barker G, Jones G, King G, Ryder C, Kearsey M. Physical organization of the major duplication on Brassica oleracea chromosome 06 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome,2005,48:1093-1103
    59. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ. A and C Genome Distinction and Chromosome Identification in Brassica napus by Sequential Fluorescence in Situ Hybridization and Genomic in Situ Hybridization. Genetics, 2008,180:1849-1857
    60. Ijdo J, Baldini A, Ward D, Reeders S, Wells R. Origin of human chromosome 2:an ancestral telomere-telomere fusion. P Natl Acad Sci USA,1991,88:9051
    61. Iovene M, Savarese S, Cardi T, Frusciante L, Scotti N, Simon PW, Carputo D. Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) Solanum tuberosum somatic hybrids. Genome,2007,50:443-450
    62. Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J. Chromatin Structure and Physical Mapping of Chromosome 6 of Potato and Comparative Analyses With Tomato. Genetics,2008,180:1307-1317
    63. Islam-Faridi M, Childs K, Klein P, Hodnett G, Menz M, Klein R, Rooney W, Mullet J, Stelly D, Price H. A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics,2002,161:345-353
    64. Jackson SA, Dong F, Jiang J. Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J,1999,17:581-587
    65. Jasencakova Z, Meister A, Schubert I. Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma,2001, 110:83-92
    66. Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. The Plant Cell Online,2000,12:2087-2100
    67. Jhanwar S, Neel B, Hayward W, Chaganti R. Localization of the cellular oncogenes ABL, SIS, and FES on human germ-line chromosomes. Cytogenet Genome Res,1984, 38:73-75
    68. Ji Y, Pertuze R, Chetelat RT. Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades. Chromosome Res,2004,12: 107-116
    69. Jiang J, Birchler JA, Parrott WA, Kelly Dawe R. A molecular view of plant centromeres. Trends Plant Sci,2003,8:570-575
    70. Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. P Natl Acad Sci USA,1995,92:4487-4491
    71. Jiang J, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome,2006,49:1057-1068
    72. Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell,2005,17:1412-1423
    73. Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J. Maize centromeres:organization and functional adaptation in the genetic background of oat. Plant Cell,2004,16:571-581
    74. John H, Birnstiel M, Jones K. RNA-DNA hybrids at the cytological level. Nature, 1969,9:582-587
    75. Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, Cheng CH, Chung MC. An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet,2006,112: 891-902
    76. Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. P Natl Acad Sci USA,2004,101:13554-13559
    77. Kato A, Vega JM, Han F, Lamb JC, Birchler JA. Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol,2005,8:148-154
    78. Khrustaleva LI, Kik C. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J,2002,25:699-707
    79. Kilian A, Kudrna D, Kleinhofs A. Genetic and molecular characterization of barley chromosome telomeres. Genome,1999,42:412-419
    80. Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome,2002,45:402-412
    81. Kim JS, Islam-Faridi M, Klein PE, Stelly DM, Price H, Klein RR, Mullet JE. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics,2005,171:1963-1976
    82. Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM. Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics,2005,169:955-965
    83. Kim-Lee H, Moon J, Hong Y, Kim M, Cho H. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am J Potato Res,2005,82:129-137
    84. Kimura M, Aviv A. Measurement of telomere DNA content by dot blot analysis. Nucleic Acids Res,2011,39:e84
    85. Kiss T, Kis M, Solymosy F. Nucleotide sequence of a 25S rRNA gene from tomato. Nucleic Acids Res,1989,17:796
    86. Kocsis E, Trus BL, Steer CJ, Bisher ME, Steven AC. Image averaging of flexible fibrous macromolecules:the clathrin triskelion has an elastic proximal segment. J Struct Biol,1991,107:6-14
    87. Komarova NY, Grimm GW, Hemleben V, Volkov RA. Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota. Plant Syst Evol,2008,276:59-71
    88. Koo DH, Choi HW, Cho J, Hur Y, Bang JW. A high-resolution karyotype of cucumber (Cucumis sativus L.'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome,2005,48: 534-540
    89. Koo DH, Han F, Birchler JA, Jiang J. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res,2011, 21:908-914
    90. Koo D-H, Jiang J. Super-stretched pachytene chromosomes for fluorescencein situhybridization mapping and immunodetection of DNA methylation. Plant J,2009, 59:509-516
    91. Koo DH, Plaha P, Lim YP, Hur Y, Bang JW. A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet,2004,109:1346-1352
    92. Koornneef M, Fransz P, de Jong H. Cytogenetic tools for Arabidopsis thaliana. Chromosome Res,2003,11:183-194
    93. Koumbaris GL, Bass HW. A new single-locus cytogenetic mapping system for maize (Zea mays L.):overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J,2003,35:647-659
    94. Laferriere L, Helgeson J, Allen C. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet,1999,98:1272-1278
    95. Lamb JC, Kato A, Birchler JA. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma,2005, 113:337-349
    96. Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA. Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res,2007,15: 33-49
    97. Lee HK, Hanneman Jr R. Identification of the extra chromosomes in Giemsa stained somatic cells of pachytene identified trisomics of Solanum chacoense. Can J Genet Cytol,1976,18:297-302
    98. Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant S, Vyskot B. Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet,2004,108: 1193-1199
    99. Lim KB, Wennekes J, De Jong JH, Jacobsen E, Van Tuyl JM. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridisation. Genome,2001,44:911-918
    100.Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien M, Leitch AR. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol,2007,175:756-763
    101.Lim KY, Matyasek R, Kovarik A, Leitch A. Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot,2007,100:219-224
    102.Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). Plos One,2008,3:e3353
    103.Lin KW, Yan J. Endings in the middle:Current knowledge of interstitial telomeric sequences. Mutat Res-Rev Mutat,2008,658:95-110
    104.Lou Q, Iovene M, Spooner DM, Buell CR, Jiang J. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma,2010,119:435-442
    105.Lysak MA, Fransz PF, Ali HBM, Schubert I. Chromosome painting in Arabidopsis thaliana. Plant J,2002,28:689-697
    106.Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005,15:516-525
    107.Lysak MA, Pecinka A, Schubert I. Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res,2003,11:195-204
    108.Malinska H, Tate J, Matyasek R, Leitch A, Soltis D, Soltis P, Kovarik A. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol,2010,10:291
    109.Mao SF, Han YH, Wu XM, An TT, Tang JL, Shen JJ, Li ZY. Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra. Hereditas,2012,149:86-90
    110.Markova M, Michu E, Vyskot B, Janousek B, Zluvova J. An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique. Chromosome Res,2007,15:1051-1059
    111.Markova M, Vyskot B. New horizons of genomic in situ hybridization. Cytogenet Genome Res,2009,126:368-375
    112.Mendez-Lago M, Wild J, Whitehead SL, Tracey A, de Pablos B, Rogers J, Szybalski W, Villasante A. Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere. Nucleic Acids Res,2009,37:2264-2273
    113.Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics,2007,177:2507-2517
    114.Mlinarec J, Satovic Z, Malenica N, Ivancic-Bace I, Besendorfer V. Evolution of the tetraploid Anemone multifida (2n= 32) and hexaploid A. baldensis (2n= 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann Bot,2012,110:703-712
    115.Mok DWS, Lee HK, Peloquin S. Identification of potato chromosomes with Giesma. Am J Potato Res,1974,51:337-341
    116.Moscone EA, Samuel R, Schwarzacher T, Schweizer D, Pedrosa-Harand A. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res,2007,15:931-943
    117.Moyzis R, Buckingham J, Cram L, Dani M, Deaven L, Jones M, Meyne J, Ratliff R, Wu J. A highly conserved repetitive DNA sequence, (TTAGGG) n, present at the telomeres of human chromosomes. P Natl Acad Sci USA,1988,85:6622
    118.Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993,36:489-494
    119.Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet,2004,36: 138-145
    120.Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics,2003,163:1221
    121.Nasuda S, Hudakova S, Schubert I, Houben A, Endo T. Stable barley chromosomes without centromeric repeats. P Natl Acad Sci USA,2005,102:9842-9847
    122.Navratilova A, Koblizkova A, Macas J. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol,2008,8:90
    123.Navratilova A, Neumann P, MACAS J. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Bot,2003,91:921-926
    124.Nilsson M, Krejci K, Koch J, Kwiatkowski M, Gustavsson P, Landegren U. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet,1997,16: 252-255
    125.Orczyk W, Przetakiewicz J, Nadolska-Orczyk A. Somatic hybrids of Solanum tuberosum-application to genetics and breeding. Plant Cell Tiss Org,2003,74:1-13
    126.Paesold S, Borchardt D, Schmidt T, Dechyeva D. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J,2012,72:600-611
    127.Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. P Natl Acad Sci USA,1969,64:600-604
    128.Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome,1997,40:589-593
    129.Pendinen G, Gavrilenko T, Jiang J, Spooner DM. Allopolyploid speciation of the Mexican tetraploid potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. Genome,2008,51:714-720
    130.Pendinen G, Spooner DM, Jiang J, Gavrilenko T. Genomic in situ hybridization reveals both auto-and allopolyploid origins of different North and Central American hexaploid potato (Solanum sect. Petota) species. Genome,2012,55:407-415
    131.Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RG, Bai Y, de Jong H. Structural homology in the Solanaceae:analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J,2012,71:602-614
    132.Pijnacker L, Ferwerda M. Giemsa C-banding of potato chromosomes. Genome,1984, 26:415-419
    133.Poczai P, Hyvonen J. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol Biol Rep,2010,37:1897-1912
    134.Poggio L, Confalonieri V, Comas C, Cuadrado A, Jouve N, Naranjo C. Genomic in situ hybridization (GISH) of Tripsacum dactyloides and Zea mays ssp. mays with B chromosomes. Genome,1999,42:687-691
    135.Polzerova H, Patzak J, Greplova M. Early characterization of somatic hybrids from symmetric protoplast electrofusion of Solanum pinnatisectum Dun. and Solanum tuberosum L. Plant Cell Tiss Org,2010,104:163-170
    136.Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. P Natl Acad Sci USA,2004,101: 18240-18245
    137.Presting G, Frary A, Pillen K, Tanksley S. Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet,1996,251: 526-531
    138.Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard CS, Murfett J, Furner I. Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell,2004,16:1021-1034
    139.Qi L, Pumphrey M, Friebe B, Chen P, Gill B. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. TheorAppl Genet,2008,117:1155-1166
    140.Raap A, Tanke H. Combined binary ratio fluorescence in situ hybridiziation (COBRA-FISH):development and applications. Cytogenet Genome Res,2006,114: 222-226
    141.Raina S, Rani V. GISH technology in plant genome research. Methods Cell Sci,2001, 23:83-104
    142.Ramanna M, Wagenvoort M. Identification of the trisomic series in diploid Solanum tuberosum L., group tuberosum. I. Chromosome identification. Euphytica,1976,25: 233-240
    143.Rens W, Moderegger K, Skelton H, Clarke O, Trifonov V, Ferguson-Smith M. A procedure for image enhancement in chromosome painting. Chromosome Res,2006, 14:497-503
    144.Richards E, Ausubel F. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell,1988,53:127-136
    145.Rodriguez F, Spooner D. Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst Bot,2009,34: 207-219
    146.Rodriguez F, Wu F, Ane C, Tanksley S, Spooner DM. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol Biol,2009,9:191
    147.Ruiz-Herrera A, Nergadze S, Santagostino M, Giulotto E. Telomeric repeats far from the ends:mechanisms of origin and role in evolution. Cytogenet Genome Res,2009, 122:219-228
    148.Sadder M, Weber G. Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescencein situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol Biol Rep,2001,19:117-123
    149.Sadder MT, Ponelies N, Born U, Weber G Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome,2000,43:1081-1083
    150.Sanchez-Moran E, Benavente E, Orellana J. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives. Heredity, 1999,83:249-252
    151.Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. P Natl Acad Sci USA,2011,108:498-505
    152.Sarkar D, Tiwari JK, Sharma S, Poonam, Sharma S, Gopal J, Singh BP, Luthra SK, Pandey SK, Pattanayak D. Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell Tiss Org,2011, 107:427-440
    153.Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S. Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes. Curr Biol,2012,22:658-667
    154. Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Egholm M. The tomato genome sequence provides insights into fleshy fruit evolution. Nature,2012,485:635-641
    155.Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science,2008,320: 1332-1336
    156.Schnabel E, Kulikova O, Penmetsa R, Bisseling T, Cook D, Frugoli J. An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome,2003,46:665-672
    157.Schubert I, Fransz PF, Fuchs J, De Jong JH. Chromosome painting in plants. Methods Cell Sci,2001,23:57-69
    158.Schwarzacher T, Heslop-Harrison P. Practical in situ hybridization. BIOS Scientific Publishers Ltd,2000
    159.Schwarzacher T, Leitch A, Bennett M, Heslop-Harrison J. In situ localization of parental genomes in a wide hybrid. Ann Bot,1989,64:315-324
    160.Shibata F, Murata M. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci,2004,117: 2963-2970
    161. Smith G. Evolution of repeated DNA sequences by unequal crossover. Science,1976, 191:528-535
    162.Song J, Dong F, Jiang J. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome,2000,43:199-204
    163.Spooner DM, Rodriguez F, Polgar Z, Ballard HE, Jansky SH. Genomic Origins of Potato Polyploids:GBSSI Gene Sequencing Data. Crop Sci,2008,48:S-27
    164.Spooner DM, Sytsma KJ, Conti E. Chloroplast DNA evidence for genome differentiation in wild potatoes (Solanum sect. Petota:Solanaceae). Am J Bot,1991: 1354-1366
    165.Swaminathan M. Nature of polyploidy in some 48-chromosome species of the genus Solanum, section Tuberarium. Genetics,1954,39:59
    166.Swennenhuis JF, Foulk B, Coumans FA, Terstappen LW. Construction of repeat-free fluorescence in situ hybridization probes. Nucleic Acids Res,2012,40:e20
    167.Szinay D, Bai Y, Visser R, de Jong H. FISH Applications for Genomics and Plant Breeding Strategies in Tomato and Other Solanaceous Crops. Cytogenet Genome Res, 2010,129:199-210
    168.Szinay D, Wijnker E, van den Berg R, Visser RGF, de Jong H, Bai Y. Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol,2012,195: 688-698
    169.Szinay D, Chang S-B, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, van Ham RCHJ, de Jong H, Klein Lankhorst RM. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J,2008,56:627-637
    170.Szuhai K, Tanke HJ. COBRA:combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc,2006,1: 264-275
    171.Takahashi C, Marshall J, Bennett M, Leitch I. Genomic relationships between maize and its wild relatives. Genome,1999,42:1201-1207
    172.Tang XM, Szinay D, Lang C, Ramanna M, van der Vossen E, Datema E, Klein Lankhorst R, de Boer J, Peters S, Bachem C. Cross-species BAC-FISH painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics,2008,180:1319-1328
    173.Tang XM, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res,2009,17:899-915
    174.Tanke HJ, Dirks RW, Raap T. FISH and immunocytochemistry:towards visualising single target molecules in living cells. Curr Opin Biotech,2005,16:49-54
    175.Tanksley S, Ganal M. Prince J, De-Vicente M, Bonierbale M, Broun P. Fulton T, Giovannoni J, Grandillo S, Martin G. High density molecular linkage maps of the tomato and potato genomes. Genetics,1992,132:1141
    176.Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res,1984,12:4127-4138
    177.Tek A, Jiang J. The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma,2004,113: 77-83
    178.Tek A, Stevenson W, Helgeson J, Jiang J. Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theor Appl Genet,2004, 109:249-254
    179.Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res,2010, 18:337-347
    180.Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T. Novel somatic hybrids (Solanum tuberosum L.+Solanum tarnii) and their fertile BC 1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet,2008,116:691-700
    181.Thieme R, Rakosy-Tican E, Nachtigall M, Schubert J, Hammann T, Antonova O, Gavrilenko T, Heimbach U, Thieme T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Rep,2010,29:1187-1201
    182.Tiwari JK, Poonam, Sarkar D, Pandey SK, Gopal J, Raj Kumar S. Molecular and morphological characterization of somatic hybrids between Solanum tuberosum L. and S. etuberosum Lindl. Plant Cell Tiss Org,2010,103:175-187
    183.Trask BJ. Fluorescence in situ hybridization:applications in cytogenetics and gene mapping. Trends Genet,1991,7:149
    184.Tsujimoto H, Mukai Y Akagawa K, Nagaki K, Fujigaki J, Yamamoto M, Sasakuma T. Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat. Genes Genet Syst,1997,72:303-309
    185.Uchida W, Matsunaga S, Sugiyama R, Kawano S. Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst,2002,77:63-67
    186.Valarik M, Bartos J, Kovarova P, Kubalakova M, De Jong J, Dolezel J. High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J,2004,37: 940-950
    187.Vischi M, Jurman I, Bianchi G, Morgante M. Karyotype of Norway spruce by multicolor FISH. Theor Appl Genet,2003,107:591-597
    188.Volkov RA, Zanke C, Panchuk I, Hemleben V. Molecular evolution of 5S rDNA of Solanum species (sect. Petota):application for molecular phylogeny and breeding. Theor Appl Genet,2001,103:1273-1282
    189.Volkov RA, Komarova NY, Panchuk II, Hemleben V. Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol Phylogenet Evol,2003,29:187-202
    190.Volpi E, Bridger J. FISH glossary:an overview of the fluorescence in situ hybridization technique. Biotechniques,2008,45:385-409
    191.Wagenvoort M, Rouwendal G, Kuiper-Groenwold Q Vries-van Hulten HPJ. Chromosome identification of potato trisomics (2n= 2x+1+25) by conventional staining, Giemsa C-banding and non-radioactive in situ hybridization. Cytologia, 1995,59:405-417
    192.Wagenvoort M. Spontaneous structural rearrangements in Solanum tuberosum ssp. phureja:1. Chromosome identification at pachytene stage. Euphytica,1988,39: 159-167
    193.Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Fukui K. Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol Biol,2002,49:643-651
    194.Walling JG, Shoemaker R, Young N, Mudge J, Jackson S. Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics,2006,172:1893-1900
    195.Wang CJR, Harper L, Cande WZ. High-Resolution Single-Copy Gene Fluorescence in Situ Hybridization and Its Use in the Construction of a Cytogenetic Map of Maize Chromosome 9. Plant Cell,2006,18:529-544
    196. Wang G, Zhang X, Jin W. An overview of plant centromeres. J Genet Genomics,2009, 36:529-537
    197.Wevrick R, Willard HE Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes:high-frequency array-length polymorphism and meiotic stability. P Natl Acad Sci USA,1989,86:9394
    198.Whelan S, Lio P, Goldman N. Molecular phylogenetics:state-of-the-art methods for looking into the past. Trends Genet,2001,17:262-272
    199.Wiegant J, Bezrookove V, Rosenberg C, Tanke HJ, Raap AK, Zhang H, Bittner M, Trent JM, Meltzer P. Differentially painting human chromosome arms with combined binary ratio-labeling fluorescence in situ hybridization. Genome Res,2000,10: 861-865
    200.Winstead N, Kelman A. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology,1952,42:628-634
    201.Wu F, Tanksley SD. Chromosomal evolution in the plant family Solanaceae. BMC Genomics,2010,11:182
    202.Xingkui C, Jun L, Conghua X. Mesophyll protoplast fusion of Solanum tuberosum and Solanum chacoense and their somatic hybrid analysis. Acta Hortic Sin,2004,31: 623-626
    203.Xiong Z, Pires JC. Karyotype and Identification of All Homoeologous Chromosomes of Allopolyploid Brassica napus and Its Diploid Progenitors. Genetics,2011,187:37
    204.Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J. Genome sequence and analysis of the tuber crop potato. Nature,2011,475:189-195
    205.Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J. Intergenic locations of rice centromeric chromatin. Plos Biol,2008,6:2563-2575
    206.Yang TJ, Lee S, Chang SB, Yu Y, Jong H, Wing RA. In-depth sequence analysis of the tomato chromosome 12 centromeric region:identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma,2005,114: 103-117
    207.Yeh BP, Peloquin S. Pachytene chromosomes of the potato (Solanum tuberosum, group Andigena). Am JBot,1965:1014-1020
    208.Yu Y, Rambo T, Currie J, Saski C, Kim HR, Collura K, Thompson S, Simmons J, Yang TJ, Nah G. In-depth view of structure, activity, and evolution of rice chromosome 10. Science,2003,300:1566-1569
    209.Zhang HQ, Yang RW, Dou QW, Tsujimoto H, Zhou YH. Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Res,2006,14:595-604
    21O.Zhang P, Friebe B, Lukaszewski AJ, Gill BS. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma,2001,110:335-344
    211.Zhang P, Li W, Fellers J, Friebe B, Gill BS. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma,2004,112:288-299
    212.Zhang W, Friebe B, Gill BS, Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma,2010,119:553-563
    213.Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell,2002,14:2825-2836
    214.Zhong X, Lizardi PM, Huang X, Bray-Ward PL, Ward DC. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. P Natl Acad Sci USA,2001,98:3940-3945
    215.Zhu W, Ouyang S, Iovene M, O'Brien K, Vuong H, Jiang J, Buell CR. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics,2008,9: 286
    216.Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janousek B. The inter-specific hybrid Silene latifolia×S. viscosa reveals early events of sex chromosome evolution. Evol Dev,2005,7:327-336
    217.Zwierzykowski Z, Zwierzykowska E, Taciak M, Jones N, Kosmala A, Krajewski P. Chromosome pairing in allotetraploid hybrids of Festuca pratensis x Lolium perenne revealed by genomic in situ hybridization (GISH). Chromosome Res,2008,16: 575-585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700