用户名: 密码: 验证码:
达尔文氏棉旱胁迫转录组测序、EST-SSR开发及高密度遗传图谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物,在我国国民经济中具有重要的意义。但由于占世界棉花产量90%的陆地棉栽培种的遗传基础过于狭窄,导致目前棉花无论在产量、品质还是抗逆育种上都徘徊不前。因此必须采取多种途径,尤其是从棉属野生种中发掘优良种质资源基因来丰富我国棉花种质资源的遗传多样性是非常必要的。达尔文氏棉属于四倍体野生棉种,它具有纤维细度好、耐干旱及抗枯黄萎病等优点。但是目前针对该棉种的诸多优良特性展开的基础和应用研究还未见任何报道。本文开展了达尔文氏棉旱胁迫转录组测序,EST-SSR功能标记开发及陆达种间高密度遗传图谱构建的研究。研究结果如下:
     1.达尔文氏棉幼苗干旱胁迫条件下Solexa转录组测序
     应用新一代高通量测序技术对达尔文氏棉苗期干旱胁迫后及对照的叶片进行转录组测序(RNA-Seq)。测序后共获得平均长度为95.79bp的有效读长(Valid reads)8.67千万条,经de novo拼接去重复获得58960条序列长度≥500bp的转录本(Transcript),与蛋白质数据库比对后进行了COG、KEGG和GO功能分类。根据基因表达丰度值RPKM进行差异表达分析,检测出干旱胁迫后差异表达基因19165条(32.5%),其中上调基因7392条,下调基因11773条。通过高丰度表达基因分析,找到一些可能参与或介导棉属耐旱胁迫相关生物途径的主要基因。达尔文氏棉旱胁迫转录组测序的成功实施,一方面可以获得大量该棉种的EST序列,进一步充实NCBI数据库中棉属EST的序列信息,另一方面有助于达尔文氏棉耐旱基因的挖掘、规模化旱胁迫响应表达的分析及EST-SSR功能标记的开发。
     2.达尔文氏棉EST-SSR标记开发与利用
     基于达尔文氏棉≥300bp的63762条EST序列经去冗余后得到51049条非冗余序列,查找到SSR位点1388个,从中首次开发780对达尔文氏棉EST-SSR引物,详细分析了EST-SSR位点的特征、引物的多态性及转移性。利用新引物对A111的种性鉴定结果显示,A111是一个独立的新种,和G基因组关系最近。利用在中棉所12-4和达尔文氏棉5-7之间表现多态性的引物135对,对陆达F2群体扩增后获得了141个基因分型位点,其中139个位点被整合到遗传图谱上,使图谱中EST-SSR位点数由1180个增加至1319个,增加了11.8%,实现了对陆达遗传图谱的进一步饱和。
     3.陆地棉×达尔文氏棉种间高密度遗传图谱构建
     以棉花陆达种间(中棉所12-4×达尔文氏棉5-7)的188个F2单株为作图群体,构建了完全基于SSR标记的高密度遗传图谱。该图谱包含26个连锁群(染色体),2763个标记位点,位点间平均距离为1.51cM,共覆盖4176.7cM的遗传距离。染色体上的标记数在49-169之间,平均每条染色体包含106.3个标记;染色体的长度在84.7-238.5cM,平均长度160.6cM。At染色体组全长2160.7cM,平均距离1.6cM; Dt染色体组全长2016cM,平均距离1.4cM。连锁图谱上偏分离标记601个,位于At染色体组偏分离标记位点数明显少于Dt染色体组上的偏分离标记位点数。据我们所知该图谱是目前棉花上最密的三张图谱之一,且是第一张完全基于SSR标记的陆地棉和野生棉种间高密度遗传图谱,不仅在达尔文氏棉基因组研究上具有重要的作用,同时在棉花基因组结构和功能、比较基因组学、野生棉抗逆等优良性状的QTL定位、图位克隆以及标记辅助选择等研究上都具有重要意义。
Cotton is an important economic crop and has great significance in our national economy.Cultivated allotetraploid species Gossypium hirsutum account for90%of the world cotton production.But because of the genetic basis of the cultivated species is too narrow, resulting in cotton in terms ofyield, quality or stress resistance breeding stagnant. So it is very necessary to adopt a variety ofapproaches, in particular explore good genes from wild species of cotton to enrich the genetic diversityof germplasm resources of cotton in China. G. darwinii belongs to tetraploid wild cotton, which hasmany good characteristics like good fibre fineness, drought resistance and verticillium wilt resistance.But there is not any basic and applied research reported which focus on such excellent characteristicsof this cotton species. This paper conducted the transcriptome sequencing under drought stress,EST-SSR function markers development and high density interspecific genetic map construction of G.darwinii. The results are as follows:
     1. Solexa sequencing the transcriptome of G. darwinii seedlings under drought stress
     In this study, we employed RNA-seq to analyse the transcriptomes from leaves of G. darwiniiseedlings with and without drought stress. A total of86.7million valid reads with average lengths of95.79bp were generated from the two samples and58960transcripts with length more than500bpwere assembled. Based on sequence similarity search with known proteins these transcripts wereannotated with COG, KEGG and GO functional categories. According to gene expression abundanceRPKM value we conducted differential expression analysis, obtained19,165differentially expressedgenes (32.5%) between two samples, including7,392up regulated genes and11,773downregulated genes. Through the analysis of the high abundance of gene expression, we found somemajor gene may be involved in mediating Cotton Drought stress resistence biological pathway.Successful implementation of G. darwinii drought stress transcriptome sequencing, on the one handwe can obtain a large amount of the cotton seed EST sequence to further enrich the EST sequenceinformation in NCBI database, on the other hand the data will facilitate genes discovery, large scaledrought stress response genes expression analysis and EST-SSR function markers development.
     2. Development and applicaton of G. darwinii EST-SSR markers
     A total of51,049non-redundant ESTs were obtained after removed redundant from the lengthmore than300bp EST sets of G. darwinii. From these non-redundant ESTs we detected1,388SSRloci, and first time developed780EST-SSR primers from G. darwinii species. Then the characteristicsof EST-SSR loci, polymorphism and transferability among different species of EST-SSR primers wereanalyzed in detail. UPGMA Cluster analysis using new primers revealed that A111is an independentnew species and has a close genetic relationship with G genome. Using135pairs of polymorphismprimers between G. hirsutum CRI12-4and G. darwinii to screen F2population including188individuals,141genotyping loci data were obtained, of which139loci were integrated into the genetic map. The map of EST-SSR Numbers increase from1,180to1,319, increased by11.8%, andimplements the further saturation of our interspecific genetic map.
     3. Construction a high density genetic linkage map in interspecific population of G. hirsutum×G. darwinii
     In this study, an interspecific high density linkage map of allotetraploid cotton was constuctedin F2population (G. hirsutum×G. darwinii). This map was based entirely on genome-wide simplesequence repeat (SSR) markers. A total of2,763markers were maped in26linkage groups(chromosomes) covering a genetic length of4,176.7cM, with the average interval distance betweenloci was1.5cM. The number of markers varied from49to169per chromosome, with the average106.3markers in each chromosome. The length of the chromosomes ranged from84.7to238.5cM,with average160.6cM each chromosome. At genome length was2,160.7cM, with the averagedistance of1.6cM; Dt genome length was2,016cM, with the average distance of1.4cM. Therewere601segregation distortion SSR loci in this map and the numbers of segregation distortion locilocated in At chromosomes was obviously less than the numbers in Dt chromosomes. To ourknowledge, this map is one of the three most dense linkage maps in cotton, and also is the firstinterspecific high density genetic map between upland cotton and wild cotton completely based onSSR markers. This map not only plays an important role on G. darwinii genome research, but alsolays groundwork for further genetic analysis of important stress resistance trait, map-based cloning,marker-assisted selection in wild cotton, and genome organization architecture in cotton as well asfor comparative genomics between cotton and other species.
引文
1.董薇,杜雄明,赖童飞,雷蒙德氏棉和亚洲棉SSR重复序列类型和丰度差异比较.棉花学报,2008,20(6):418-424
    2.方宣钧,吴为人,唐纪良,作物DNA标记辅助育种.北京:科学出版社,2001,7,22~28
    3.冯坤,刘方,蔡小彦等,棉花新材料A111基于cpDNA的种性初步鉴定.中国农业科技导报,2013,15(1):55-64
    4.葛学亮,黄颡鱼(Pelteobagrus fulvidraco)遗传图谱构建及生长相关性状的QTL定位.[博士学位论文],东北林业大学,2010
    5.黄建安,茶树分子遗传图谱构建及多酚氧化酶基因的SNP研究.[博士学位论文],湖南农业大学,2004
    6.来德勇,陆地棉花发育EST测序分析及其相关基因筛选与微卫星标记开发[.硕士学位论文],华中农业大学,2011
    7.李玮,白菜型油菜超高密度遗传图谱的构建和Solexa序列的整合.[博士学位论文],西北农林科技大学,2011
    8.李维明,唐定中,吴为人等,用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼粳交群体的分子图谱的比较(英文),中国水稻科学,2000,14(2):71~78
    9.吕远大,蔡彩平,王磊等,海岛棉EST-SSRs分布特征及新标记的开发与利用.科学通报,2010,55(19):1886-1890
    10.马淑萍,王戈,龙熹,中国棉花生产与政策60年.中国棉花,2009,36(9):5-11
    11.宋莉莉,王秀东,美国世纪大旱引发的思考—农业生产如何应对气候变化.中国农业科技导报,2012,14(6):1-5
    12.宋宪亮,孙学振,张天真,偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286-292
    13.孙钦秒冷静李良璧等,高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展.植物学通,2000,17(4):289-301.
    14.王为,王长彪,刘方等,棉花非冗余性EST-SSR新标记的开发及其评价.作物学报,2012,38(8):1443-1451
    15.王延琴,杨伟华,许红霞等,中国棉花生产中存在的主要问题及建议.中国农学通报,2009,25(14):86-90
    16.王长彪,郭旺珍,蔡彩平等,雷蒙德氏棉EST-SSRs分布特征及开发与利用.科学通报,2006,51(3):316-320
    17.余渝,王志伟,冯常辉等,草棉EST-SSRs的遗传评价.作物学报,2008,34(12):2085-209
    18.俞渝,棉花种间群体配子重组率差异、偏分离研究与高密度分子标记遗传图谱构建.[博士学位论文],武汉:华中农业大学,2010
    19.岳桂东,高强,罗龙海等,高通量测序技术在动植物研究领域中的应用.中国科学,2012,42(2):107-124
    20.张艳欣,林忠旭,李武等,海岛棉EST-SSR引物的开发与应用研究.科学通报,2007,52(15):1779-1787
    21. Adams MD, Kelley JM, Gocayne JD et al., Complementary DNA Sequencing: ExpressedSequence Tags and Human Genome Project. Science,1991,252:1651-1656
    22. Akkaya M, Bhagwata A, Cregan B, Length polymorphisms of simple repeat DNA in soybean.Genetics,1992,132:1131-1139
    23. Anderson JA, Churchill GA, Autrique JE et al., Optimizing parental selection for genetic linkagemaps. Genome,1993,36:181-186
    24. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol,2009,25(4):195-203
    25. Applequist WL, Cronn R, Wendel JF, Comparative development of fiber in wild and cultivatedcotton. Evol. Devel,2001,3:3-17
    26. Aprile A, Mastrangelo AM, De Leonardis AM et al., Transcriptional profiling in response toterminal drought stress reveals differential responses along the wheat genome. BMC Genomics,2009,10:279
    27. Ashraf M, Inducing drought tolerance in plants: Recent advances, Biotechnology Advances,2010,28:169–183
    28. Ashrafi H, Kinkade M, Foolad MR, A new genetic linkage map of tomato based on a Solanumlycopersicum x S. pimpinellifolium RIL population displaying locations of candidate pathogenresponse genes. Genome,2009,52(11):935-956
    29. Bandopadhyay R, Sharma S, Rustgi S et al., DNA polymorphism among18species ofTriticum-Aegilops complex using wheat EST-SSRs. Plant Sci,2004,166:349-356
    30. Basu AK, Current genetic research in cotton in India. Genetica.1996,97:279–290
    31. Bentolia S, Hardy T, Guitton C et al., Similarity of maize and sorghum genomes as revealed bymaize RFLP probes. Theoretical and Applied Genetics,1992,84(l):10-16
    32. Boyer, J.S. Plant productivity and environment. Science,1982,218:443-448
    33. Bozhko M, Riegel R, Schubert R et al., A cyclophilin gene marker confirming geographicaldifferentiation of Norway spruce populations and indicating viability response on excess soil-bornsalinity. Mol Ecol,2003,12:3147-3155
    34. Brubaker CL, Bourland FM, Wendel JF, The origin and domestication of cotton. In: C. Smith J.Cothren eds. Cotton; origin, history, technology and production. New York: John Wiley and Sons,1999:3-31
    35. Buchanan CD, Lim S, Salzman RA et al., Sorghum bicolor’s transcriptome response todehydration, high salinity and ABA. Plant Mol Biol,2005,58:699–720
    36. Cardle L, Ratnsay L, Milbourne D, Computational and experimental characterization of physicallyclustered simple sequence repeats in plants. Genetics,2000,156:847–854
    37. Castillo A, Budak H et al., Transferability and polymorphism of barley EST-SSR markers used forphylogenetic analysis in Hordeum chilense, BMC Plant Biol,2008,8:97
    38. Chaves MM,Maroco JP,Pereira JS, Understanding plant responses to drought-from genes to thewhole plant. Functional Plant Biology,2003,30,239-264
    39. Chen M, Presting G, Barbazuk WB et al., An integrated physical and genetic map of the ricegenome. Plant Cell,2002,14(3):537-545
    40. Choudhary S, Sethy NK, Shokeen B et al., Development of chickpea EST-SSR markers andanalysis of allelic variation across related species. Theor Appl Genet,2009,118(3):591-608
    41. Cloonan N, Forrest AR, Kolle G et al. Stem cell transcriptome profiling via massive-scale mRNAsequencing. Nat Methods,2008,5:613–619
    42. Cloutier S, Cappadocia M, Landry BS, Study of microspore-culture responsiveness in oilseed rape(Brassica napus L.) by comparative mapping of a F2population and two microspore-derivedpopulations. Theoretical Applied genetics,1995,91:841-847
    43. Cohen D, Bogeat-Triboulot MB, Tisserant E et al., Comparative transcriptomics of droughtresponses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves androot apices across two genotypes. BMC Genomics,2010,11:630
    44. Cone KC, McMullen MD, Bi IV et al., Genetic, physical, and informatics resources for maize. Onthe road to an integrated map. Plant Physiol,2002,130(4):1598-1605
    45. Connell JP, Pammi S, Iqbal MJ et al., A high throughput procedure for capturing microsatellitesfrom complex plant genomes. Plant Molecular Biology Reporter,1998,16:341-349
    46. Cordeiro GM, Casu R, McIntyre CL et al., Microsatellite markers from sugarcane (Saccharum spp.)ESTs cross transferable to erianthus and sorghum. Plant Sci,2001,160:1115–1123
    47. Craven L. A, Stewart JD, Brown AHD et al., The Australian wild species of Gossypium. In:Constable GA, Forrester NW (eds) Challellging the future: proceedings of the World CottonResearch Conference. CSIRO, Melbourne,1995:278–28
    48. Cruse-Sanders JM, Hamrick JL, Genetic diversity in harvested and protected populations of wildAmerican ginseng, Panax quinquefollus L.(Araliaceae). Am J Botany,2004,91(4):540-548
    49. Deyholos MK, Making the most of drought and salinity transcriptomics. Plant Cell Environ,2010,33:648–654
    50. Dinneny JR, Long TA, Wang JY et al., Cell identity mediates the response of Arabidopsis roots toabiotic stress. Science,2008,320:942–945
    51. Emebiri LC, An EST-SSR marker tightly linked to the barley male sterility gene (msg6) located onchromosome6H. J Hered,2010,101(6):769-774
    52. Eujayl I, Sorrells ME, Baum M, Isolation of EST-derived microsatellite markers for genotyping theA and B genomes of wheat. Theor Appl Genet,2002,104:399–407
    53. Feingold S, Lloyd J, Norero N. Mapping and characterization of new EST-derived microsatellitesfor potato (Solanum tuberosum L.). Theor Appl Genet,2005,111:456–466
    54. Filichkin SA, Priest HD, Givan SA et al., Genome-wide mapping of alternative splicing inArabidopsis thaliana. Genome Res,2010,20:45–58
    55. Fluch S, Burg A, Kopecky D et al., Characterization of variable EST SSR markers for Norwayspruce (Picea abies L.). BMC Res Notes,2011,4:401
    56. Frelichowski JEJr, Palmer MB, Main D et al., Cotton genome mapping with new microsatellitesfrom Acala 'Maxxa' BAC-ends. Molecular Genetics Genomics,2006,275(5):479-491
    57. Fryxell PA, A revised taxonomic interpretation of Gossypium L.(Malvaceae). Rheedea,1992,2:108–165
    58. Fryxell P, The natural history of the cotton tribe. Texas A&M University Press,1979
    59. Fu Y, Wen TJ, Ronin YI et al., Genetic dissection of intermated recombinant inbred lines using anew genetic map of maize. Genetics,2006,174(3):1671-1683.
    60. Gao LF, Tang JF, Li HW, et al., Analysis of microsatellites in major crops assessed bycomputational and experimental approaches. Mol Breed,2003,12:245-261
    61. Garcia RA, Rangel PN, Brondani C et al., The characterization of a new set of EST-derived simplesequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMCGenet,2011,12:41
    62. Gillham FEM, Bell TM, Arin T et al., Cotton production prospects for the next decade. WorldBank Technical Paper Number287, the World Bank, Washington D.C,1995
    63. Glenn TC, Field guide to next-generation DNA sequencers. Mol Ecol Resour,2011,11(5):759-769
    64. Gong P, Zhang J, Li H et al., Transcriptional profiles of drought-responsive genes in modulatingtranscription signal transduction, and biochemical pathways in tomato. J Exp Bot,2010,61:3563–3575
    65. Grudkowska M, Zagdanska B, Multifunctional role of plant cysteine proteinases. ActaBiochemical Polonica,2004,51(3):609-624
    66. Guan J, Yu H, Xie Y et al., Study of EST-SSR marker system of Cordyceps. Zhongguo Zhong YaoZa Zhi,2011,36(13):1711-1717
    67. Guo B, Chen X, Hong Y et al., Holbrook C, Culbreath A, Analysis of Gene Expression Profiles inLeaf Tissues of Cultivated Peanuts and Development of EST-SSR Markers and Gene Discovery.Int J Plant Genomics,2009, ID:715605
    68. Guo W, Cai C, Wang C et al., A microsatellite-based, gene-rich linkage map reveals genomestructure, function, and evolution in Gossypium. Genetics,2007,176(1):527-541
    69. Guo WZ, Cai CP, Wang CB et al., A microsatellite-based, gene-rich linkage map reveals genomestructure, function, and evolution in Gossypium. Genetics,2007,176:527-541
    70. Guo WZ, Cai CP, Wang CB et al., Apriliminary analysis of genome structure and composition inGossypium hirsutum. BMC Genomics,2008,9:314
    71. Guo WZ, Zhou BL, Yang LM et al., Genetic diversity of land races in Gossypium arboreum L.race sinense assessed with simple sequence repeat markers. J Integr Plant Biol.2006,48:1008–1017
    72. GuoWZ, Wang W, Zhou BL et al., Cross-species transferability of G. arboreum-derived EST-SSRsin the diploid species of Gossypium. Theor Appl Genet,2006,112:1573–1581
    73. Gupta PK, Rustgi S, Sharma S, et al., Transferable EST-SSR markers for the study ofpolymorphism and genetic diversity in bread wheat. Mol Genet Genomics,(2003),270(4):315-323
    74. Gupta PK, Rustgi S, Sharma S et al., Transferable EST-SSR markers for the study ofpolymorphism and genetic diversity in bread wheat. Mol Gen Genomics,2003,270:315-323
    75. Hackauf B, Wehling P. Identification of microsatellite polymorphisms in an expressed portion ofthe rye genome. Plant Breed,2002,121:17–25
    76. Han Z, Wang C, Song X et al., Characteristics, development and mapping of Gossypium hirsutumderived EST-SSRs in allotetraploid cotton. Theor Appl Genet,2006,112:430-439
    77. Han ZG, Guo WZ, Song XL et al., Genetic mapping of EST-derived microsatellites from thediploid. Mol Gen Genomics,2004,272:308-325
    78. Han ZG, Wang CB, Song XL et al., Characteristics, development and mapping of Gossypiumhirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet,2006,112:430-439
    79. Harushima Y, Yano M, Shomura A et al., A high-density rice genetic linkage map with2275markers using a single F2population. Genetics,1998,148(1):479-494
    80. He DH, Lin ZX, Zhang XL et al., Mapping QTLs of traits contributing to yield and analysis ofgenetic effect s in tetraploid cotton. Euphytica,2005,144:141-149
    81. He DH, Lin ZX, Zhang XL et al., QTL mapping for economic t rait s based on a dense genetic mapof cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×Gossypium barbadense. Euphytica,2007,153:181-197
    82. Hoffman SM, Yu JZ, Grum DS et al., Identification of700new microsatellite loci from cotton(G. hirsutum L.). Journal of Cotton Science,2007,11(4):208-241
    83. Hou XG, Guo DL, Wang J, Development and characterization of EST-SSR markers in Paeoniasuffruticosa (Paeoniaceae). Am J Bot,2011,98(11): e303-305
    84. Ingram J, Bartels D, The molecular basis of dehydration tolerance in plants. Annu Rev PlantPhysiol Plant Mol Biol,1996,47:377–403
    85. IPCC2001. Climate change2001: Synthesis report, In R.T. Watson (ed.). A contribution ofWorking Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel onClimate Change. Cambridge: Cambridge University Press, UK
    86. Jena SN, Srivastava A, Rai KM et al., Development and characterization of genomic and expressedSSRs for levant cotton (Gossypium herbaceum L.). Theoretical Applied Genetics,2012,124:565-576
    87. Ji SJ, Lu YC, Feng JX et al., Isolation and analyses of genes preferentially expressed during earlycotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res,2003,31:2534–2543
    88. Jiang C, Yuan Y, Liu GM et al., EST-SSR identification of Lonicera japonica Thunb. Yao XueXue Bao,2012,47(6):803-810
    89. Jiang CX, Wright RJ, El-Zik KM et al., Polyploid formation created unique avenues for responseto selection in Gossypium (cotton). Proc Natl Acad Sci,1998,95:4419-4424
    90. Kawaguchi R, Girke T, Bray EA et al., Differential mRNA translation contributes to generegulation under nonstress and dehydration stress conditions in Arabidopsis thaliana. Plant J,2004,38:823–839
    91. Kohel RJ, Yu J, Park YH et al., Molecular mapping and characterization of traits controlling fiberquality in cotton. Euphytica,2001,121:163-172
    92. Kuleung C, Baenziger PS, Dweikat I, Transferability of SSR markers among wheat, rye, andtriticale. Theor Appl Genet,2004,108:1147–1150
    93. Kumpatla SP, Manley MK, Horne EC et al., An improved enrichment procedure to developmultiple repeat classes of cotton microsatellite markers. Plant Molecular Biology Reporter,2004,22(1):85-86
    94. Lacape JM, Nguyen TB, Thibivilliers S, et al., A combined RFLP-SSR-AFLP map of tetraploidcotton based on a Gossypium hirsutum×Gossypium barbadense backcross population. Genome,2003,46:612-626
    95. Lee J. A, Cotton as a world crop. In: Cotton, R.J. Kohel and C.F. Lewis eds. Agronomy SocietyAmerica. Madison, WI,1984
    96. Li XB, Zhang ML, Cui HR, Data mining for SSRs in ESTs and development of EST-SSR markerin oilseed rape. Fen Zi Xi Bao Sheng Wu Xue Bao,2007,40(2):137-144
    97. Liu S, Saha S, Stelly D et al., Chromosomal assignment of microsatellite loci in cotton. J Hered,2000,91(4):326-332
    98. Lorieux M, GoffinetB, Perrer X et al., Maximum likelihood models for mapping genetic markersshowing segregation distortion.1. Backcross populations. Theoretical and Applied Geneties,1995,90:73-80
    99. Lorieux M, Perrer X, Goffinet B et al., Maximum likelihood models for mapping genetic markersshowing segregation distortion.2. F2Populations. Theoretical and Applied Genetics,1995,90:81-89
    100. Lu JJ, Suo NN, Hu X et al., Development and characterization of110novel EST-SSR markers forDendrobium officinale (Orchidaceae). Am J Bot,2012,99(10):415-420
    101. Lu JJ, Wang S, Zhao HY et al., Genetic linkage map of EST-SSR and SRAP markers in theendangered Chinese endemic herb Dendrobium (Orchidaceae). Genet Mol Res,2013,11(4):4654-4667
    102. Lu T, Lu G, Fan D et al., Function annotation of the rice transcriptome at single-nucleotideresolution by RNA-seq. Genome Res.2010;20:1238–1249
    103. Luo Z B, Janz D, Jiang X et al., Upgrading root physiology for stress tolerance by ectomycorrhizas:insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.Plant Physiol,2009,151:1902–1917
    104. Luro FL, Costantino G, Terol J et al., Transferability of the EST-SSRs developed on Nulesclementine (Citrus clementina Hort extan) to other Citrus species and their effectiveness for geneticmapping. BMC Genomics,2008,9:287
    105. Ly T, Fukuoka H, Otaka A et al., Development of EST-SSR markers of Ipomoea nil. Breed Sci,2012,62(1):99-104
    106. Mangelsdorf PC, Jones DF, The expression of Mendelian factors in the gametophyte of maize.Genetics,1926,11:423-455
    107. Mckersie BD, Senaratna T, Walker MA et al., Deterinration of membranes during aging in plants:evidence for free radical mediation. In Nooden L, Leopold A C ed. Senescence and Aging in Plants.Academic Press New York,1989,441~463
    108. Mei M, Syed NH, Gao W et al., Genetic mapping and QTL analysis of fiber related traits. TheorAppl Genet,2004,108:280-291
    109. Mohammadi M, Taleei A, Zeinali H et al., QTL analysis for phenologic traits in doubled haploidpopulation of barley. Int J Agric Biol,2005,7(5):820–3
    110. Mortazavi A, Williams BA, McCue K et al., Wold B. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nature Methods,2008,5:621–628
    111. Murigneux A, Band S, Beckert M, Molecular and morphological evaluation of doubled-haploidlines in maize.2. Comparison with single seed deseent lines. Theoretical and Applied Genetics,1993,87:278-287
    112. Nakatsuji R, Hashida T, Matsumoto N et al., Development of genomic and EST-SSR markers inradish (Raphanus sativus L.). Breed Sci,2012,61(4):413-419
    113. Nguyen TB, Giband M, Brottier P, et al., Wide coverage of the tetraploid cotton genome usingnewly developed microsatellite markers. Theor Appl Genet,2004,109:167-175
    114. Nguyen TB, Giband M, Brottier P et al., Wide coverage of the tetraploid cotton genome usingnewly developed microsatellite markers. Theoretical and Appllied Genetics,2004,109:167-175
    115. Okoniewski MJ, Miller CJ, Hybridization interactions between probesets in short oligomicroarrays lead to spurious correlations. BMC Bioinformatics,2006,7(1):276
    116. Okubo K, Hori N, Matoba R et al., Large scale cDNA sequencing for analysis of quantitative andqualitative aspects of gene expression. Nature Genet,1992,2:173-179
    117. Oztur ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, et al., Monitoring large-scalechanges in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol,2002,48:551–573
    118. Padmalatha KV, Dhandapani G, Kanakachari M et al., Genome-wide transcriptomic analysis ofcotton under drought stress reveal significant down-regulation of genes and pathways involved infibre elongation and up-regulation of defense responsive genes. Plant Mol Biol,2012,78:223–246
    119. Park YH, Alabady MS, Ulloa M, et al. Genetic mapping of new cotton fiber loci usingEST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol GenGenomics,2005
    120. Park YH, Alabady MS, Ulloa M et al., Genetic mapping of new cotton fiber loci usingEST-derived microsatellites in an interspecific recombinant inbred line (RIL) cottonpopulation. Molecular Genetics and Genomics,2005,274:428-441
    121. Pashley CH, Ellis JR, McCauley DE et al., EST databases as a source for molecular markers:lessons from Helianthus. J Hered,2006,97:381~388
    122. Powell W, Machray GC, Provan J, Polymorphism revealed by simple sequence repeats. TrendsPlant Sci,1996,1:215–222
    123. Qiu L, Yang C, Tian B et al., Exploiting EST databases for the development and characterizationof EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol,2010,10:278
    124. Qureshi SN, Saha S, Kantety RV et al, EST-SSR: A new class of genetic markers in cotton.Journal of Cotton Science,2004,8:112-123
    125. Rabbani MA, Maruyama K, Abe H, Khan MA et al., Monitoring expression profiles of rice genesunder cold, drought, and high-salinity stresses and abscisic acid application using cDNAmicroarray and RNA gel-blot analyses. Plant Physiol.2003,133(4):1755–1767
    126. Rajendran TP, Venugopalan MV, Praharaj CS (2005) Cotton research towards sufficiency toIndian textile industry. Indian J Agric Sci75:699–708
    127. Ranjan A., Nigam D, Asif MH et al., Genome wide expression profiling of two accession of G.herbaceum L. in response to drought. BMC Genomics2012,13:94
    128. Reddy OUK, Pepper AE, Abdurakhmonov I et al., New dinucleotide and trinucleotidemicrosatellite marker resources for cotton genome research. J Cott Sci,2001,5:103–113
    129. Reinisch AJ, Dong JM, Wendel J F et al., A detailed RFL P map of cotton Gossypium hirsutum×Gossypium barbadense chromosome organization and evolution in a disomic polyploid genome.Genetics,1994,138:829-847
    130. Retrieved March12,2013from http://www.ers.usda.gov/media/1056755/cottonandwoo l13c.pdf
    131. Rong JK, Abbey C, Bowers JE et al., A3347-locus genetic recombination map of sequence taggedsites reveals features of genome organization, transmission and evolution of cotton (Gossypium).Genetics,2004,166:389-417
    132. Royce TE, Rozowsky JS, Gerstein MB. Toward a universal microarray: prediction of geneexpression through nearest-neighbor probe sequence identification. Nucleic Acids Res,2007,35(15): e99
    133. Saha MC, Mian MA et al., Tall fescue EST-SSR markers with transferability across several grassspecies. Theor Appl Genet,2004,109(4):783-791
    134. Schlag EM, Mclntosh MS, Ginsenoside content and variation among and within American ginseng(Panax quinquefolius L.) populations. Phytochemistry,2006,67(14):1510-1519
    135. Schlotterer C, The evolution of molecular markers-just a matter of fashion. Nat Rev Genet,2004,5:63-69
    136. Scott K D, Eggler P, Seaton G et al., Analysis of SSRs derived from grape ESTs. Theor ApplGenet,2000,100:723–726
    137. Seki M, Narusaka M, Ishida J et al. Monitoring the expression profiles of7000Arabidopsis genesunder drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J.2002,31(3):279–292
    138. Severin AJ, Woody JL, Bolon Y-T et al. RNA-Seq Atlas of Glycine max: A guide to the soybeantranscriptome.BMC Plant Biology,2010,10:160
    139. Sharopova N, McMullen MD, Schultz L, et al, Development and mapping of SSR markers formaize. Plant molecular biology,2002,48(5-6):463-481
    140. Shiferaw E, Pe ME, Porceddu E et al., Exploring the genetic diversity of Ethiopian grass pea(Lathyrus sativus L.) using EST-SSR markers. Mol Breed,2012,30(2):789-797
    141. Shinozaki K, Yamaguchi-Shinozaki K, Gene networks involved in drought stress response andtolerance. J Exp Bot,2007,58(2):221–227
    142. Shirasawa K, Ishii K, Kim C et al., Development of Capsicum EST-SSR markers for speciesidentification and in silico mapping onto the tomato genome sequence. Mol Breed,2013,31(1):101-110
    143. Sibov ST, de Souza Jr CL, Gareia AAF, et al., Molecular mapping in tropical maize(Zea maysL.)using microsatellite markers.1.Map eonstruction and localization of loci showing distortedsegregation. Hereditas,2003,139(2):96-106
    144. Sim SC, Yu JK et al., Transferability of cereal EST-SSR markers to ryegrass, Genome,(2009),52(5):431-7
    145. Simko I, Development of EST-SSR markers for the study of population structure in lettuce(Lactuca sativa L.). J Hered,2009,100(2):256-62
    146. Skovsted A, Cytological studies in cotton IV chromosome conjugation in interspecifichybrids. JGenet.1937,34:97–134
    147. Somerville, C. and Briscoe, J. Genetic Engineering and Water. Science,2001,292:2217
    148. Song XL, Wang K, Guo WZ et al., A comparison of genetic map s const ructed from haploid andBC1mapping populations from the same crossing between Gossypium hirsutum L. and Gossypiumbarbadense L.. Genome,2005,48:375-389
    149. Sraphet S, Boonchanawiwat A, Thanyasiriwat T et al., Tangphatsornruang S, SSR andEST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet,2011,122(6):1161-1170
    150. Stewart JM et al., Physiology of cotton. Springer Netherlands,2010,1-18
    151. Stewart JM, Potential for crop improvement with exotic germplasm and genetic engineering. In: G.Constable, Forrester N W. Challenging the future. Proceedings of the World Cotton ResearchConference-1. Melbourne, Australia: CSIRO,1995:313-327
    152. Sturtevant AH, The linear arrangement of six sex-linked factors in Drosophila, as shown by theirmode of association. J. Exp.Zool,1913,14:43–59
    153. Sultan M, Schulz MH, Richard H et al. A global view of gene activity and alternative splicing bydeep sequencing of the human transcriptome. Science,2008,321:956–960
    154. Taliercio E, Allen RD, Essenberg M et al., Analysis of ESTs from multiple Gossypium hirsutumtissues and identification of SSRs. Genome,2006,49:306-319
    155. Thi Lang N, Chi Buu B. Fine mapping for drought tolerance in rice (Oryza sativa L.). Omonrice,2008,16:9-15
    156. Thiel T, Michalek W, Varshney RK, Exploiting EST databases for the development andcharacterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet,2003,106:411–422
    157. Umezawa T, Fujita M, Fujita Y et al., Engineering drought tolerance in plants: discovering andtailoring genes to unlock the future. Curr Opin Biotechnol.2006,17(2):113–122
    158. Venter JC, Identification of new human receptor and transporter genes by high throughput cDNA(EST) sequencing. J Pharm Pharmacol (Suppl.1),1993,45:355-360
    159. Waghmare VN, Rong JK, Paterson AH et al., Genetic mapping of a cross between Gossypiumhirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet,2005,111:665-676
    160. Wang CB, Guo WZ, Cai CP et al., Characterization, development and exploitation of EST-derivedmicrosatellites in Gossypium raimondii Ulbrich. Chinese Science Bulletin,2006,51(5):557-561
    161. Wang JY, Chen YY, Liu WL et al., Development and application of EST-derived SSR markers forbananas (Musa nana Lour.). Yi Chuan,2008,30(7):933-40
    162. Wang KB, Wang ZW, Li FG et al., The draft genome of a diploid cotton Gossypium raimondii.Nature Genetics,2012
    163. Wang Z, Fang B, Chen J et al., De novo assembly and characterization of root transcriptome usingIllumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoeabatatas). BMC Genomics,2010,11:726
    164. Wang Z, Gerstein M, Snyder M, RNA-Seq: a revolutionary tool for transcriptomics. Nat RevGenet,2009,10(1):57-63
    165. Wei W, Qi X, Wang L et al., Characterization of the sesame (Sesamum indicum L.) globaltranscriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMCGenomics,2011,12:451
    166. Wendel JF, New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA.1989,86:4132–4136
    167. Wendel JF, Brubaker C, Seelanan T, The Origin and Evolution of Gossypium. Physiology ofCotton,2010, pp1-18
    168. Wendel JF, Percy RG, Allozyme diversity and introgression in the Galapagos Islands endemicGossypium darwinii and its relationship to continental G. barbadense. Biochem. Syst. Ecol.1990,18:517-528
    169. Wendel JF, Schnabel A, Seelanan T, Bidirectional interlocus concertedevolution followingallopolyploid speciation in cotton (Gossypium). Proc. Nat.Acad. Sci. USA,1995,92:280-284
    170. Wilhelm BT, Marguerat S, Watt S et al., Dynamic repertoire of a eukaryotic transcriptomesurveyed at single-nucleotide resolution. Nature,2008,453:1239–1243
    171. Wing RA, Zhang HB, Tanksley SD, Map-based cloning in crop plants. Tomato as a model system:I. Genetic and physical mapping of jointless. Mol Gen Genet,1994,242(6):681-688
    172. Wu X, Zhong G, Findley SD et al., Genetic marker anchoring by six-dimensional pools fordevelopment of a soybean physical map. BMC Genomics,2008,9:28
    173. Xiao J, Wu K, Fang DD et al., New SSR markers for use in cotton (Gossypium spp.)improvement. The Journal of Cotton Science,2009,13:75-157
    174. Yi G, Lee JM, Lee S et al., Exploitation of pepper EST-SSR and an SSR-based linkage map. TheorAppl Genet,2006,114:113130
    175. Yu J, Kohel RJ, Dong RJ, Development of integrative ssr markers from TM-1BACs. Proceedingsof Beltwide Cotton Conference CD-Rom,2002
    176. Yu JK, La RM, Kantety RV et al., EST derived SSR markers for comparative mapping in wheatand rice. Mol Genet Genomics,2004,271(6):742-751
    177. Yu JZ, Kohel RJ, Fang DD et al, A high-density simple sequence repeat and single nucleotidepolymorphism genetic map of the tetraploid cotton genome, G3: Genes|Genomes|Genetics,2012,2(1):43–58
    178. Yu Y, Yuan DJ, Liang SG,et al., Genome structure of cotton revealed by a genome-wide SSRgenetic map constructed from a BC1population between gossypium hirsutum and G. barbadense.BMC Genomics,2011,12:15
    179. Zehr UB, Cotton Biotechnological Advances. In: Biotechnology in Agriculture and Forestry,Springer Heidelberg Dordrecht London New York,2010,65
    180. Zenoni S, Ferrarini A, Giacomelli E et al., Characterization of Transcriptional Complexity duringBerry Development in Vitis vinifera Using RNA-Seq. Plant Physiology,2010,152:1787–1795
    181. Zhang JF, Lu YZ Yu SX, Cleaved AFLP (cAFLP), a modified amplified fragment lengthpolymorphism analysis for cotton. Theoretical and Applied Genetics.2005,111:1385-1395
    182. Zhang JN, Liang S, Duan JL et al., De novo assembly and Characterisation of the Transcriptomeduring seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.).BMC Genomics,2012,13:90
    183. Zhang J, Guo WZ, Zhang TZ, Molecular linkage map of allotet raploid cotton (Gossypiumhirsutum L.×Gossypium barbadense L.) with a haploid population. Theor Appl Genet,2002,105:1166-1173
    184. Zhang XY., Yao DX., Wang QH et al., mRNA-seq Analysis of the Gossypium arboretumtranscriptome Reveals Tissue Selective Signaling in Response to Water Stress during SeedlingStage. PLOS ONE,2013,8
    185. Zhang YX, Lin ZX, Xia QZ et al., Characteristics and analysis of simple sequence repeats in thecotton genome based on a linkage map constructed from a BC1population between Gossypiumhirsutum and G. barbadense. Genome,2008,51:534-546
    186. Yu Y, Yuan D, Liang S et al., Genome structure of cotton revealed by a genome-wide SSR geneticmap constructed from a BC1population between Gossypium hirsutum and G. barbadense, BMCGenomics,2011,12:15
    187. Zhao L, Lv YD, Cai CP et al., Toward allotetraploid cotton genome assemble: integration of ahigh-density molecular genetic linkage map with DNA sequence information. BMC Genomics,2012,13:539
    188. Zhou J, Wang X, Jiao Y et al., Global genome expression analysis of rice in response to droughtand highsalinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol,2007,63:591–608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700