用户名: 密码: 验证码:
水稻秸秆烟雾灰分对蔬菜生长和品质及体内多环芳烃含量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻秸秆是最主要的农作物秸秆之一,焚烧农作物秸秆会产生烟雾和灰分。通过焚烧农作物秸秆获取草木灰作为农家肥进行农业生产,是我国传统农业的生产方式。至今,我国许多农村地区还保留着这种传统生产的方式。焚烧农作物秸秆的现象在我国广大农村地区依然普遍存在;露天焚烧农作物秸秆所产生的烟雾等污染物是多环芳烃(PAHs)的主要来源之一,由于PAHs对环境和人体造成的危害极大而引起世人对它的关注。
     本文对用焚烧水稻秸秆产生的烟雾和灰分中的PAHs种类及含量和亚硝酸盐含量进行分析,研究了水稻秸秆烟雾及其烟雾溶解液和稻草灰对蔬菜生长和品质及蔬菜体内PAHs种类及含量的影响,并初步探讨了几种中草药对用烟雾溶解液制成的人工模拟酸雨酸度的中和作用和对土壤中PAHs净化作用的效果。主要研究结果如下:
     1.将焚烧水稻秸秆产生的烟雾溶解于蒸馏水中,制成烟雾溶解液,烟雾溶解液呈酸性,其酸度随烟雾含量的增加而增强。烟雾溶解液和稻草灰中均含有萘、苊烯、菲、芴、苊、葸、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧葸、苯并(k)荧蒽、苯并(a)芘、茚并(1,2,3-c,d)芘及苯并(g,h,i)二萘嵌苯等15种PAHs,且稻草灰中还含有亚硝酸盐(以NaNO2计),含量为13.9mg/kg。烟雾溶解液中多数PAHs挥发或降解速度较快,尤其是苯并(b)荧葸、苯并(k)荧蒽、茚并(1,2,3-c,d)芘及苯并(g,h,i)二萘嵌苯等4种PAHs的挥发或降解速度特别快。
     2.在实验室条件下,研究了焚烧水稻秸秆产生的烟雾的不同的熏蒸时间(0、2、4、6、8h/d对豌豆芽生长、品质及其体内PAHs种类及含量的影响。结果表明:所有烟雾熏蒸的豌豆芽的株高均显著矮于CK,表明烟雾熏蒸明显抑制豌豆芽的伸长生长。烟雾熏蒸处理对豌豆芽的单株重没有明显的影响;所有烟雾熏蒸时间处理的豌豆芽体内的总糖和蛋白质含量均比CK的高,表明在一定的烟雾熏蒸时间内,烟雾熏蒸在一定程度上能提高豌豆芽体内的总糖和蛋白质的含量。豌豆芽体内粗脂肪含量随着烟雾熏蒸时间的增加而呈减少的趋势;所有烟雾熏蒸处理对豌豆芽粗纤维含量没有明显的影响;较短时间(2、4、6h/d)的烟雾熏蒸有利于豌豆芽体内可溶性固形物含量的提高,较长时间(8h/d)的烟雾熏蒸则抑制豌豆芽体内可溶性固形物的形成。所有烟雾熏蒸处理的豌豆芽中,都检测到15种PAHs,而在CK中只检测到7种PAHs的存在,豌豆芽体内的PAHs总含量和平均PAHs含量随烟雾熏蒸时间的增加呈增加的趋势,表明在烟雾熏蒸胁迫下,有利于豌豆芽对PAHs的吸收,最终导致豌豆芽内PAHs的积累,造成豌豆芽PAHs污染。
     3.在实验室和盆栽试验条件下,研究稻草灰不同施用量对绿豆芽(2、4、6、8g/盘)和菜心(90、180、270、360g/盆)生长、品质及其体内PAHs种类及含量的影响。结果表明:稻草灰施用量能在一定程度上促进绿豆芽的伸长生长,而抑制其增粗生长。随着稻草灰施用量的增大,一定程度上抑制了绿豆芽体内总糖的合成。在稻草灰处理的绿豆芽体内共检测出11种PAHs。稻草灰处理能使绿豆芽体内的菲、芴、苊、葸、荧葸、芘、苯并(a)葸及屈等含量显著增加,使绿豆芽受到PAHs的污染。稻草灰施用量对绿豆芽体内PAHs的总量有显著的影响,当稻草灰施用量为2g/盘时,绿豆芽吸收的PAHs总量最高(37.77μg/kg),而随着稻草灰施用量的增加,绿豆芽体内的PAHs总含量逐渐减少,但仍显著高于CK;稻草灰施用量一定程度上促进菜心的伸长生长,而抑制其增粗生长;随着稻草灰施用量的增大,一定程度上抑制了菜心体内总糖的合成。在稻草灰处理的菜心体内共检测出12种PAHs。稻草灰施用量对菜心体内PAHs的总含量有明显的影响,随着稻草灰施用量增加,菜心体内PAHs的总含量先升后降,当稻草灰施用量为360g/时,菜心体内PAHs的总含量仅为3.22μg/kg,明显低于CK (18.34μg/kg)。以上研究结果表明当土壤中的PAHs的总含量增大到一定限度时,反而阻碍了菜心对PAHs的吸收。
     4.在实验室和盆栽试验条件下,研究水稻秸秆烟雾溶解液浓度对绿豆芽和菜心生长、品质及其体内PAHs种类及含量的影响。结果表明:烟雾溶解液浓度对绿豆芽的生长没有显著影响。当用烟雾溶解液原液处理时,菜心单株重、根重及根冠比与CK呈显著性差异,烟雾溶解液浓度对菜心的茎径和株高无明显影响。所有烟雾溶解液浓度处理的绿豆芽的粗脂肪含量均比CK的高;烟雾溶解液不同浓度能一定程度地增加绿豆芽体内的粗纤维含量。烟雾溶解液浓度对绿豆芽的蛋白质和可溶性固形物等含量无显著影响;烟雾溶解液浓度对绿豆芽体内PAHs的总含量有显著影响,其中以2倍稀释液处理时,绿豆芽体内的PAHs总含量最高(5.96μg/kg)。烟雾溶解液浓度一定程度上抑制菜心体内总糖和粗脂肪的合成,烟雾溶解液不同浓度处理的菜心对各种PAHs的吸收量无明显规律。
     5.在实验室条件下,探讨了中草药对用烟雾溶解液制成的人工模拟酸雨的酸度中和作用和对土壤中PAHs净化作用的效果。对人工模拟酸雨酸度中和作用的试验表明,大青叶煎煮液对人工模拟酸雨的酸度有很好的中和作用,其处理从第0d开始,pH值(6.5)就明显高于CK的pH值(5.2),第4d时的pH值为7.1,达到中性水平,随后逐渐变成弱碱性,第8d到第40d,pH值均维持在7.8左右的弱碱性水平;板蓝根煎煮液对人工模拟酸雨的酸度不但没有中和作用,反而加剧了人工模拟酸雨的酸化,处理过后pH值反而降低,从第O d到第6d,pH值由4.6降到4.1;甘草煎煮液对人工模拟酸雨酸度的中和作用较板蓝根煎煮液的强,但比大青叶煎煮液的弱,且需要较长时间,效果缓慢,处理后40d,pH值才上升到中性状态。研究结果表明大青叶煎煮液能有效中和人工模拟酸雨的酸度,并在短时间内使人工模拟酸雨达到弱碱性状态,是改良和治理酸性土壤的途径之一。
     对土壤中PAHs净化作用的试验结果表明,在金银花煎煮液处理的土壤中,在被检测到的16种PAHs含量中,有11种PAHs均低于CK的含量,这11种PAHs总含量和平均PAHs含量都低于CK,且差异显著,16种PAHs总含量和平均PAHs含量比CK的低,但差异不显著;在丁香煎煮液处理的土壤中,在被检测到的15种PAHs中,有7种PAHs含量明显低于CK,这7种PAHs总含量和平均PAHs含量都比CK的低,且差异显著,16种PAHs总含量和平均PAHs含量比CK的低,但差异不显著。在蒸馏水浸泡处理的土壤中,除3种PAHs的含量低于CK外,其余13种PAHs的含量均等于或高于CK的含量,PAHs总含量和平均PAHs含量均高于CK。研究结果表明,金银花和丁香的煎煮液对土壤中的PAHs有明显的降解和净化作用,而蒸馏水的作用效果则不明显。本研究首次开展了利用中草药煎煮液对人工模拟酸雨的酸度的中和作用和对土壤中PAHs净化作用的研究,并发现有明显的效果,开启了综合治理土壤PAHs污染的新途径和新思路。
Rice straw is one of the most important crop residues. The phenomenon of burning crop residues is widespread in most vast rural areas of China. Organic pollutants generated from burning crop residues are a major source of polycyclic aromatic hydrocarbons (PAHs). PAHs aroused the world's attention because of their harm to environment and human health. In this dissertation, the harmful substances in the artificial simulated acid rain and rice straw ash had been detected. Meanwhile, the effects of the smoke, the artificial simulated acid rain, and ash from burning rice straw on growth, quality, and PAHs contents of vegetable crops were studied. Lastly, the effects of the neutralization of three Chinese herbal decoctions to acid rain and purification of two Chinese herbal decoctions to PAHs in soil were evaluated in laboratory. The main results of the study are summarized as follows.
     1. The smoke from burning rice straw was dissolved in water and made into smoke dissolved liquid(or artificial simulated acid rain). The harmful substances in smoke dissolved liquid and rice straw ash had been detected. The results showed that fifteen kinds of PAHs including naphthalene,acenaphthylene,phenanthrene,fluorene,acenaphthene, anthracene,fluoranthene,pyrene,benzo(a)anthracene,chrysene,benzo(b)fluoranthene,benzo(k) fluoranthene,benzo(a)pyrene,indeno(1.2.3-c.d)pyrene and benzo(g, h, i)perylene were found in smoke dissolved liquid and rice straw ash. And some nitrite (NaNO2) with the concentration of13.9mg/kg were discovered in the rice straw ash. Furthermore, the acidity of smoke dissolved liquid increased with enhance of smoke content. In addition, most of the PAHs in smoke dissolved liquid volatilized easily and degraded fast, and especially benzo (b) fluoranthene, benzo (k) fluoranthene, indeno (1.2.3-c.d) pyrene and benzo (g, h, i) perylene did much fast.
     2. Effects of the different rice straw burning smoke fumigation time (0,2,4,6,8h/d) on growth, quality, and PAHs of peas were studies in laboratory. The results showed that the smoke fumigation time showed no effect on fiber content of pea sprouts. Smoke fumigation had no significant effect on plant weight of pea sprouts.Rice straw burning smoke fumigation (2,4,6,8h/d) obviously inhibited the elongation growth of pea, but could increase the content of total sugar and protein compared with control treatment(0h/d). Crude fat content of pea sprouts decreased with increasing the smoke fumigation time. The less time of smoke fumigation (2,4,6h/d) could improve soluble solids content of the pea sprouts, and more time (8h/d) showed the inhibition on the formation of soluble solid. The results of polycyclic aromatic hydrocarbons (PAHs) contents of pea sprouts detected showed that a total of15kinds of PAHs pollutants were found in the pea sprouts which were fumigated by different smoke fumigation time and7kinds of PAHs found in the pea sprouts which were not fumigated by any smoke fumigation,AHs and average PAHs in pea sprouts decreased with increasing the smoke fumigation time, indicating that the PAHs pollutants were easily absorbed by pea sprouts in continuous rice straw smoke fumigation stress, eventually leading to the accumulation of toxic substances in the pea body, resulting in the PAHs of contamination of vegetable crops leading PAHs polluting.
     3. Effects of different dosages of rice straw ash on growth, quality, and PAHs of mung bean sprout and Chinese flowering cabbage were studies in laboratory. The results showed that rice straw ash could promote elongation of mung bean sprout and flowering Chinese cabbage and inhibit stem diameter to some extent. Along with the increase of dosages of straw ash, straw ash inhibited the synthesis and accumulation of total sugar in mung bean sprout and flowering Chinese cabbage. Dosages of rice straw ash could increase the conents of PHE、FLU、ACE、ANT、FLT、PYR、BaA and CHR in mung bean sprout significantly,polluting mung bean sprout.11and12kinds of PAHs in mung bean sprout and flowering Chinese cabbage which were treated by rice straw ash were detected, respectively. Different dosages of rice straw ash have different effects on total PAHs in mung bean sprout and flowering Chinese cabbage. The content ofAHs was highest (37.77μg/kg) when the mung bean sprout was treated by the dosage of2g rice straw ash per pot. But with the dosage of rice straw ash increasing (from2to8g/pot), theAHs in mung bean sprout decreased (from37.77to11.15μg/kg). Along with increasing dosages of straw ash (from90to360g/pot), theAHs in flowering Chinese cabbage rose at the beginning (22.24μg/kg) and then fell (from24.91to3.22μg/kg). The contents ofAHs in flowering Chinese cabbage under the treatment in straw ash of360g/pot were3.22μg/kg,which were lower than CK(18.34μg/kg) significantly. The above results showed that the PAHs pollutants were not easily absorbed by the plant when the concentration of PAHs in the soil increased to a certain amount. The absorbing of every PAH between mung bean sprout and flowering Chinese cabbage had no obvious rule.
     4. The effects of different concentrations of rice straw smoke dissolved liquid on growth, quality and PAHs content of mung bean sprouts and flowering Chinese cabbage were researched by pot experiments in laboratory. The results showed that different concentrations of the smoke dissolved liquid did not affect on the morphology, protein and soluble solids content of the mung bean sprouts but increased the crude fat and crude fiber content in plants. It also increased the PAHs content in plants. The PAHs content was the highest (5.96μg/kg) under the added2-fold dilution of smoke dissolved solution. The plant weight, root weight and root to shoot ratio of flowering Chinese cabbage showed significant difference with the control but showed no significant effect on the stem diameter and plant height under original smoke dissolved solution treamment. Smoke dissolved solution could inhibit the synthesis of total sugar and crude fat to some extent in flowering Chinese cabbage and increased the crude fiber content in mung bean sprouts. The PAHs content in different treated plants showed no apparent regularity.
     5. The effects of the neutralization of three Chinese herbal decoctions to artificial simulated acid rain acidity(made from smoke dissolved solution) and purification of two Chinese herbal decoctions to PAHs in soil were evaluated in laboratory, the results showed that the Indigowoad leaf boiled liquid could effectively neutralize artificial simulated acid rain acidity in a short time, the pH value of artificial simulated acid rain increased from6.5in the beginning to7.1on the fourth day after artificial simulated acid rain treated by Indigowoad leaf boiled liquid,which were all higher than CK. The pH value of artificial simulated acid rain remained weak alkaline level after the eighth day. Isatis root boiled liquid had no effect on neutralization of artificial simulated acid rain acidity, and could exacerbate acidity of artifical simulated acid rain on the contrary from the beginning to the fortieth day, the pH value getting down from4.6to4.1. The effect of the neutralization of licorice boiled liquid to artificial simulated acid rain acidity was very weak and slow, the pH of artificial simulated acid rain treated by licorice boiled liquid after40days later rose to a neutral state. This study showed that the Indigowoad leaf boiled liquid could effectively neutralize artificial simulated acid rain acidity in a short time, which was one of the effective measures for the improvement and management of acid soils.
     The honeysuckle and clove boiled liquid show obvious effect on degradation and purification of PAHs in the soil, but distilled water is not conducive to degradation of PAHs in the soil. The contents of Σ11PAHs in the soil soaked by honeysuckle boiled liquid and the conents of Σ7PAHs in the soil soaked by clove boiled liquid were all lower than those of CK significantly,and the conents of Σ16PAHs in the soil soaked by honeysuckle and clove boiled liquid were all lower than those of CK insignificantly. Such as the contents of most kinds of PAHs in the soil soaked by distilled water were higher than those of CK. Their contents of the ΣAHs and average PAHs were higher than those of CK. It was first reported that plant decoction was used to study on degradation and purification of PAHs pollutions in the soil, which opened up new ways and new ideas for the comprehensive management of soil pollution in the present studies.
引文
[1]边炳鑫,赵由才.农业固体废物的处理与综合利用.北京:化学工业出版社,2005
    [2]蔡全英,莫测辉,王伯光,等.城市污泥和化肥对水稻土种植的通菜中多环芳烃(PAHs)的影响.生态学报,2002,22(7):1091-1097
    [3]蔡顺香,何盈,兰忠明,等.小白菜叶内叶绿素和抗氧化系统对芘胁迫的动态响应.农业环境科学学报,2009,28(3):460-465
    [4]曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算.资源科学,2006,28(1):9-13
    [5]陈明艳,姜显政,黄汝红.浅析酸雨的形成、危害及防治措施.广东微量元素科学,2009,16(1):15-20
    [6]陈宗懋,阮建云,蔡典雄,等.茶树生态系中的立体污染链与阻控.中国农业科学,2007,40(5):948-958
    [7]丁克强,骆永明,刘世亮,等.黑麦草对土壤中苯并[a]芘动态变化的影响.土壤学报,2004,41(3):348-353
    [8]丁中原,方利江,吴有方,等.兰州地区16种多环芳烃的长距离迁移潜力和总持久性模拟研究.环境科学学报,2012,32(4):916-924
    [9]董钻,沈秀瑛.作物栽培学总论.北京:中国农业出版社,2000
    [10]冯精兰、牛军峰.长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征.环境科学,2007,28(7):1573-1577
    [11]房妮,俱国鹏.多环芳烃污染土壤的微生物修复研究进展.安徽农业科学,2006,34(7):1425-1426
    [12]付修勇.酸雨的形成与危害.聊城师院学报,2000,13(3):67-69
    [13]高彦征,凌婉婷,朱利中,等.黑麦草对多环芳烃污染土壤的修复作用及机制.农业环境科学学报,2005,24(3):498-502
    [14]葛成军,唐文浩,黄占斌,等.土壤中多环芳烃不同前处理分析方法的比较.农业环境科学学报,2009,(4):859-864
    [15]葛成军,俞花美.多环芳烃在土壤中的环境行为研究进展.中国生态农业学报,2006,14(1):162-165
    [16]何耀武,区自清,孙铁珩.多环芳烃类化合物在土壤上的吸附.应用生态学报,1995,6(4):423-427
    [17]戈峰.现代生态学.北京:科学出版社,2008
    [18]龚庆芳,王新桂,郭伦发,等.49种中草药提取物对彩色马蹄莲软腐病的抑菌作用.广东农业科学,2011,38(23):86-89
    [19]韩宏华,陆建飞.农作物秸秆焚烧污染治理的政策分析.生态经济,2009,(12):173-175
    [20]韩阳,李雪梅,朱延姝,等.环境污染与植物功能.北京:化学工业出版社,2005
    [21]郝蓉,宋艳暾,万洪富,等.南亚热带典型地区农业土壤中多环芳烃和有机氯农药研究.生态学报,2007,27(5):2021-2029
    [22]黄曙海,葛宪民,汤俊豪.国产香烟主流烟雾中多环芳烃的含量.环境与健康杂志,2006,23(1):46-48
    [23]焦杏春,介崇禹,丁力军,等.多环芳烃在水稻植株中的分布.应用与环境生物学报,2005,11(6):657-659
    [24]姜永海,韦尚正,席北斗,等.PAHs在我国土壤中的污染现状及其研究进展.生态环境学报,2009,18(3):1176-1181
    [25]金永平,赵多,王正花.浙江省酸雨现状及其对农业可持续发展的影响.环境污染与防治,1997,19(3):18-20,36
    [26]金蕾,徐谦,林安国,等.北京市近二十年(1987-2004)湿沉降特征变化趋势分析.环境科学学报,2006,26(7):1195-1202
    [27]匡海学.中药化学图表解.人民卫生出版社,2008
    [28]李家邦.中药学.人民卫生出版社,1983
    [29]李久海,董元华,曹志洪.稻草焚烧产生的多环芳烃排放特征研究.中国环境科学,2008,28(1):23-26
    [30]李军,张干,祁士华.麓湖中具生物有效性多环芳烃的特征和季节变化.重庆环境科学,2003,25(11):108-111
    [31]李梅,万红友.多环芳烃污染土壤的微生物修复.环保科技,2008,14(4):35-37,46
    [32]李秋玲,凌婉婷,高彦征,等.丛枝菌根对有机污染土壤的修复作用及机理.应用生态学报,2006,17(11):2217-2221
    [33]李世峰.生态农业技术与产业化.北京:中国轻工业出版社,2008
    [34]李焱鑫.被污染肆虐的乡村.南方,2011,136(16):12-14
    [35]李云辉,莫测辉.不同施肥条件对菜心中PAHs含量的影响.广东农业科学,2008(2):47-49
    [36]李志国,姜卫兵,翁忙玲,等.常绿阔叶园林6树种(品种)对模拟酸雨的生理响应及敏感性.园艺学报,2011,38(3):512-518
    [37]林财得,谢清禄,谢钦城.不同前处理对稻秆吸水性之影响及以稻秆与禽畜粪制作堆肥可行性探讨.农业机械学刊,2004,13(4):1-12
    [38]林道辉.茶叶中多环芳烃的浓度水平、源解析及风险[博士学位论文].浙江大学,浙江杭州,2005
    [39]林道辉,朱利中,王静.小冶炼地区PAHs污染及其风险评价.生态学报,2005,25(2):261-267
    [40]凌婉婷.植物根对土壤中PAHs的吸收及预测.生态学报,2005,25(9):2320-2325
    [41]刘彬.酸雨的形成、危害及防治对策.环境科学与技术,2001,(4):21-23
    [42]刘泓,叶媛蓓,唐玲,等.植物对PAHs胁迫响应及植物修复研究进展.华侨大学学报,2008,29(1):1-5
    [43]刘建武,林逢凯,王郁,等.多环芳烃(萘)污染对水生植物生理指标的影响.华东理工大学学报:自然科学版,2002,28(10):520-524
    [44]刘克锋,刘建斌,贾月慧.土壤、植物营养与施肥.北京:气象出版社,2006
    [45]刘天学,常加忠,李敏,等.秸秆焚烧土壤提取液对小麦种子萌发和幼苗生长的影响.农业环境科学学报,2005,24(2):252-255
    [46]刘天学,牛天岭,常加忠,等.焚烧秸秆不利于玉米幼苗和根际微生物的生长.植物生理学通讯,2004,40(5):564-566
    [47]刘宛,李培军,周启星,等.短期菲胁迫对大豆幼苗超氧化物歧化酶活性及丙二醛含量的影响.应用生态学报,2003,14(4):581-584
    [48]刘宛,孙铁珩,周启星,等.氯苯胁迫对大豆种子萌发的伤害.应用生态学报,2002,13(2):141-144
    [49]陆红梅,章海风.烹饪食品中多环芳烃的污染及控制.扬州大学烹饪学报,2008,25(2):40-42
    [50]陆继龙,赵玉岩,郝立波,等.吉林省中部农业土壤中PAHs的分布及风险评价.吉林大学学报(地球科学版),2010,40(3):683-688
    [51]卢丹,李平亚.丁香属植物的化学成分和药理作用研究进展.长春中医学院学报,2001,17(4):58-59
    [52]卢晓丹,高彦征,凌婉婷,等.多环芳烃对黑麦草体内过氧化物酶和多酚氧化酶的影响.农业环境科学学报,2008,27(5):1969-1973
    [53]陆志强,郑文教,马丽,等.不同浓度萘和芘处理对红树植物秋茄胚轴萌发和幼苗生长的影响.厦门大学学报(自然科学版),2005,44(4):581-583
    [54]罗孝俊,陈社军,余梅,等.多环芳烃在珠江口表层水体中的分布与分配.环境科学,2008,29(9):2385-2391
    [55]马骥.我国农户秸秆就地焚烧的原因:成本收益比较与约束条件分析.农业技术经济,2009,(2):77-84
    [56]麦博儒,郑有飞,梁骏,等.模拟酸雨对小麦叶片同化物、生长和产量的影响.应用生态学报,2008,19(10):2227-2233
    [57]麦博儒,郑有飞,吴荣军,等.不同pH模拟酸雨对冬小麦籽粒营养品质的影响.生态学报,2010,30(14):3883-3891
    [58]梅付春.秸杆焚烧污染问题的成本-效益分析.环境科学与管理,2008,33(1):30-32,37
    [59]彭彩霞,彭长连,林桂珠,等.模拟酸雨对农作物种子萌发和幼苗生长的影响.热带亚热带植物学报,2003,11(4):400-404
    [60]彭驰,王美娥,廖晓兰.城市土壤中多环芳烃分布和风险评价研究进展.应用生态学报,2010,21(2):514-522
    [61]彭钢,田大伦,闫文德,等.4种城市绿化叶片PAHs含量特征与叶面结构的关系.生态学报,2010,30(14):3700-3706
    [62]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展.土壤,2005,37(4):362-369
    [63]齐峰,李烨,杨卫芳.北方城市酸雨形成过程的影响因素及防治对策分析.环境与可持续发展,2011,(5):42-45
    [64]任海,刘庆,李凌浩.恢复生态学导论.北京:科学出版社,2008
    [65]沈志谦.卫生学.北京:人民卫生出版社,1986
    [66]孙成芬,马丽,盛连喜,等.土壤荼污染对玉米苗期生长和生理的影响,农业环境科学学报,2009,28(3):443448
    [67]孙铁珩,宋玉芳,许华夏,等.植物法生物修复PAHs和矿物油污染土壤的调控研究.应 用生态学报,1999,10(2):225-229
    [68]孙铁珩,周启星,李培军.污染生态学.北京:科学出版社,2001
    [69]孙秀兰,姚卫蓉.食品安全化学污染防治.北京:化学工业出版社,2009
    [70]童贯和,梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响.应用生态学报,2005,16(8):1487-1492
    [71]陶丽华,周青.农业环境保护中的酸雨监测技术.中国生态农业学报,2006,14(4):34-37
    [72]王戎,何杞双,王雁,等.可溶性有机物对玉米根部菲与芴吸着与吸收过程的影响.农业环境科学学报,2009(1):35-39
    [73]王新,李培军,宋守志,等.固定化引进菌降解土壤中芘和苯并(a)芘的效果比较.应用生态学报,2006,17(11):2226-2228
    [74]王泽港,葛才林,万定珍,等.1,2,4-三氯苯和萘对水稻幼苗生长的影响.农业环境科学学报,2006,25(6):1402-1407
    [75]王忠.植物生理学.北京:中国农业出版社,2000
    [76]吴飞华,刘廷武,裴真明,等.酸雨引起森林生态系统钙流失研究进展.生态学报,2010,30(4):1081-1088
    [77]吴兑.近十年我国灰霾天气研究综述.环境科学学报,2012,32(2):257-269
    [78]吴甫成,吴君维,王晓燕,等.湖南酸雨污染特征.环境科学学报,2000,20(6):807-809
    [79]邬莉,陈静,朱晓东,等.农村秸秆焚烧的原因及对策研究.中国人口资源与环境,2001,11(51):110-112
    [80]邢维芹,骆永明,吴龙华,等.多环芳烃对冬小麦早期生长的影响研究.土壤学报,2008,45(6):1170-1173
    [81]许超,夏北成,黄雄飞.玉米幼苗对芘污染土壤微生物活性及多样性的影响.农业环境科学学报,2009(6):1106-1114
    [82]许建新,张金像,许涵,等.深山含笑对酸雨协迫的适应性研究.广东林业科技,2007,23(1):22-27
    [83]徐圣友,陈英旭,林琦,等.玉米对土壤中菲芘修复作用的初步研究.土壤学报,2006,43(2):226-232
    [84]徐玉宏.我国秸秆焚烧污染与防治对策.环境与可持续发展,2007,(3):21-24
    [85]薛建辉.森林生态学.北京:中国林业出版社,2006
    [86]闫文德,田大伦,康文星,等.樟树林生态系统水文学过程中多环芳烃的迁移与转化机理.生态学报,2006,26(6):1882-1888
    [87]杨本宏.我国酸雨危害现状及防治对策.合肥联合大学学报,2000,10(6):102-106
    [88]杨金凤,李鹤,刘素花,等.三种中药提取物对桃褐腐菌CMonilinia fructicola)的抑菌作用.中国农学通报,2009,25(12):188-194
    [89]杨旭曙,王正萍,宋艳涛.城市交通干道区颗粒物中多环芳烃的源析研究.环境科学与技术,2004,27(6):50-51
    [90]杨胜远,邓卫利,熊德远,等.中草药成份对芒果病原菌的抑菌作用.药物生物技术,2001,8(6):335-338
    [91]姚广龙,侯晓东,王小星,等.中草药提取物抑菌作用的研究进展.食品科技,2007,32(8):16-18
    [92]姚志麒.环境卫生学.北京:人民卫生出版社,1993
    [93]尹春芹,蒋新,杨兴伦,等.多环芳烃在土壤-蔬菜界面上的迁移与积累特征.环境科学,2008,29(11):3240-3244
    [94]尹春芹,蒋新,杨兴伦,等.施肥对花红苋菜吸收和积累土壤中PAHs的影响.中国环境科学,2008,28(8):742-747
    [95]尹颖,孙媛媛,郭红岩,等.芘对苦草的生物毒性效应.应用生态学报,2007,18(7):1528-1533
    [96]俞大祥.中药学概要.人民卫生出版社,1986
    [97]于建光,李辉信,陈小云,等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响.应用生态学报,2007,18(4):818-824
    [98]张芳,王思明.中国农业科技史.北京:中国农业出版社,2001
    [99]张杰,刘永生,孟玲,等.多环芳烃降解菌筛选及其降解特性.应用生态学报,2003,14(10):1783-1786
    [100]张红安,汤洁,于晓岚,等.侯马市酸雨长期变化趋势分析.环境科学学报,2010,30(5):1069-1078
    [101]张利红,陈忠林,徐成斌,等.表层土壤中菲的紫外光降解研究.农业环境科学学报,2009(6):1115-1119
    [102]张娜,陈步峰,粟娟.广州市帽峰山常绿阔叶林生态系统对降水PAHs的生态效应.东北 林业大学学报,2010,38(4):22-24
    [103]张其仔.新经济社会学.北京:中国社会科学出版社,2001
    [104]张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展.生态环境,2003,12(1):76-80
    [105]张天彬,杨国义,万洪富,等.东莞市土壤中多环芳烃的含量、代表物及其来源.土壤,2005,37(3):265-271
    [106]张天彬,万洪富,杨国义,等.珠江三角洲典型城市农业土壤及蔬菜中的多环芳烃分布.环境科学学报,2008,28(11):2375-2384
    [107]张新民,柴发合,王淑兰,等.中国酸雨研究现状.环境科学研究,2010,23(5):527-532
    [108]郑有飞,李璐,梁骏,等.模拟酸雨及其S042-离子对油菜生长及其品质的影响.中国油料作物学报,2008,30(2):185-190.
    [109]郑威,闫文德,田大伦,等.PAHs对栾树幼苗生长及其土壤微生物数量的影响.中南林业科技大学学报,2008,28(2):19-23
    [110]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62-67
    [111]钟磊,周立祥,王世梅.菲降解菌的分离鉴定及其在污染土壤生物修复中的应用.农业环境科学学报,2010(3):465-470
    [112]周爱儒,黄如彬.医学生物化学.北京:北京大学医学出版社,2004
    [113]朱捍华,黄道友,刘守龙,等.稻草易地还土对丘陵红壤有机质和主要物理性质的影响.应用生态学报,2007,18(11):2497-2502
    [114]祝儒刚,钟鸣,周启星,等.一株菲降解细菌的分离鉴定及其特性.应用生态学报,2006,17(11):2117-2120
    [115]诸卫平,龙明华.焚烧稻草产生的多环芳烃及其他有害物的检测.安徽农业科学,2011,39(9):5201-5202
    [116]诸卫平.焚烧稻草对生态环境的危害研究.清远职业技术学院学报,2009,2(3):22-24
    [117]Amthor J S. Does acid rain directly influence plant growth? Some comments and observations. Environmental Pollution Series A, Ecological and Biological,1984,36(1):1-6
    [118]Baek K H, Kim H S,Oh H M,et al. Effects of crude oil,oil components,and bioremediation on plant growth. Environ Sci Health a Tox Hazard Subst Environ Eng,2004,39(9):2465-2472
    [119]Banks M K, Lee E, Schwab A P. Evaluation of dissipation mechanisms for B[a]P in the rhizoshoere of tall fescue. Journal Environment Quality,1999,28:294-298
    [120]Bin X H, Sheng G Y, Tan J H, et al. Phase partitioning of polycyclic aromatic hydrocabons(PAHs) in the atmosphere. Acta Scientiae Scientiae Circumstantiae, 2004,24(1):101-106
    [121]Binet P, Poral J M, Leyval C. Disspation of 3-6-ring polycyclic aromatic hydrocarbon in rhizosphere of ryegrass. Soil Biology & Biochemistry,2000,32:2011-2017
    [122]Brandt J. Multifunctional landscapes-perspectives for the future. Journal of Environment Sciences,2003,15(2):187-192
    [123]Cai Q Y, Mo C H,Li Y H,et al. Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere,2007,68(1): 159-168
    [124]Cai Q Y, Mo C H, WuQT, et al. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China:a review. Science Total Environment,2008,389:209-224
    [125]Camargo M C R, Toledo M C F. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control,2003,14:49-53
    [126]Cameron J A. Water Pollution.北京:高等教育出版社,1980
    [127]Cheema S A.PAHs污染土壤植物修复机理研究[博士学位论文].浙江大学,浙江杭州,2009
    [128]Chen B L, Zhu L Z. Partition of polycyclic aromatic hydrocarbons on organobentonites from water. Journal of Environment Sciences,2001,13(2):129-136
    [129]Chen B L, Zhu L Z, Tao S. Thermodynamics of phenanthrene partition into solid organic matter from water. Journal of Environment Sciences,2005,17(2):185-189
    [130]Chiou C T, McGroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science & Technology,1998,32(2):264-269
    [131]Chiou C T, Sheng G Y, Manes M. A partition-limited model for plant uptake of organic comtaminants from soil and water. Environmental Science & Technology,2001,35:1437-1444
    [132]Chung S Y, Yettella R R, Kima J S, et al. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chemistry,2011,129(4):1420-1426
    [133]Cui Y J, Lue H S, Zhu Y G, et al. Ecological footprint of Shandong, China. Journal of Environment Sciences,2004,16(1):167-172
    [134]Dai Z H, Liao B H, Wang Z H, et al. Effect of acid precipitation on leaching of nutritions and aluminium from forest soils. Journal of Environment Sciences,1995,7(3):338-345
    [135]Dhammapala R, Claiborn C, Jimenez J, et al. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubbles burns. Atmospheric Environment,2007,41:2660-2669
    [136]Duare-Davidson R, Jones K C. Screening the environmental fate of organic contaminants in sewage sludge applied to agricultural soils:Ⅱ. The potential for transfers to plants and grazing animals. Sci Total Environ,1996,185:59-70
    [137]Fang J Y, Liu GH, Xu S L. Soil carbon pool in China and its global significance. Journal of Environment Sciences,1996,8(2):249-254
    [138]Feng Z W, Miao H, Zhang F Z, et al. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China. Journal of Environment Sciences,2002,14(2):227-233
    [139]Feng Z W, Tao F L. Effects of acid deposition on forests in south China. Journal of Environment Sciences,1998,10(4):505-509
    [140]Flavio Soares Silva, Joyce Cristale, Maria Lucia Ribeiro, et al. Polycyclic aromatic hydrocarbons (PAHs) in raw cane sugar (rapadura) in Brazil. Journal of Food Composition and Analysis,2011,24 (3):346-350
    [141]Franzaring J, Vander Eerder. L J M. Accumulation of airborne persistent organic pollutants(POPS) in plants. Basic and Applied Ecology,2000, 1(1):25-30
    [142]Gao S H, Ding Y H, Pan Y R, et al. Influences of greenhouse effect on agricultural production in China. Journal of Environment Sciences,1990,2(4):3-10
    [143]Gao Y Z, Zhu L Z. Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Sciences,2005,17(1):14-18
    [144]Gao Y Z, Zhu L Z. Phytoremediation and its models for organic contaminated soils. Journal of Environment Sciences,2003,15(3):302-310
    [145]Gustafsson O, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot-phase:implication for PAH speciation and bioavailability. Environmental Science & Technology,1997,31(1):203-209
    [146]Hao F H, Chang Y, Ning D T. Assessment of China's economic loss resulting from the degradation of agricultural land in the end of 20th century. Journal of Environment Sciences, 2004,16(2):199-203
    [147]Harms W B. Landscape fragmenttation by urbanization in the Netherlands options and ecological consequences. Journal of Environment Sciences,1999,11(2):141-148
    [148]Henner P, Schiavon M, Drueli E V, et al. Phytotoxicity of ancient gaswork soils:Effect of polycyclic aromatic hydrocarbons PAHs on plant germination. Org Geochem,1999,30:275-284
    [149]Hessen D D. Acidification of the Humax Lake:effects on epilimnetie Pools and fluxes of carbon. Environ. Intern,1998,18(6):649-659
    [150]Jiang B, Zheng H L, Huang G Q, et al. Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin, China. Journal of Environment Sciences, 2007,19(3):306-311
    [151]Jiries A J, Hussein H H, Lintelmann J. Polycyclic aromatic hydrocarbon in rain and street runoff in Amman, Jordan. Journal of Environment Sciences,2003,15(6):848-853
    [152]Jones K C, Grimmer G, Jacob J, et al. Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland over the last century from one site in the UK. Science of The Total Environment,1989, (78):117-130
    [153]Jones K C, Stratford J A, Waterhouse K S, et al. Increases in the polycyclic aromatic hydrocarbons content of an agricultural soil over the last century. Environmental Science & Technology,1989,78:95-101
    [154]Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environment Pollution,1999,106:369-380
    [155]Kleineidam S, Rugner H, Ligouis B, et al. Organic matter facies and equilibrium of phenanthrene. Environmental Science & Technology,1999,33(10):1637-1644
    [156]Korenaga T, Liu X, Huang Z, et al. The influence of moisture content on polycyclic aromatic hydrocarbons emission during rice straw burning. Chemosphere-Global changes science,2001,3: 117-122
    [157]Lai C H, Chen K S, Wang H K. Influence of rice straw burning on the levels of polycyclic aromatic hydrocarbons in agricultural county of Taiwan. Journal of Environment Sciences,2009, 21(9):1200-1207
    [158]Larsson B, Sahlberg G Polycyclic aromatic hydrocarbons in lettuce. Influence of a Highway and Aluminum Smelter (Abstract)[C]. Sixth International Symposium on PAH,1981, Battelle Colum bus Laboratory, Colum bus, OH
    [159]Lei Z H, Liang X M, Xu X Q, et al. Chemical characteristics of acidified waters in southwest China, Journal of Environment Sciences,1995,7(1):36-43
    [160]Lemieus P M, Lutes C C, Santoianni D A. Emission of organic air toxics from open biomass burning:a comprehensive review. Progress in Energy and Combustion Science,2004,30:1-32
    [161]Li P, Li X, Frank Stagnittid, et al. Studies on the sources of benzo[a]pyrene in grain and aboveground tissues of rice plants. Journal of Hazardous Materials.2009.162 (1):463-468
    [162]Li X H, Ma L L, Liu X F, et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China. Journal of Environment Sciences,2006,18(5):944-950
    [163]Li P, Li X, Stagnittid F, et al. Studies on the sources of benzo[a]pyrene in grain and aboveground tissues of rice plants. Journal of Hazardous Materials,2009,162(1):463-468
    [164]Lin H, Tao S, Zuo Q, et al. Uptake of polycyclic aromatic hydrocarbons by maize plants. Environmental Pollution,2007,148(2):614-619
    [165]Lin. P, Engling G, Yu J Z. HULIS in emissions of fresh rice straw burning and in ambient aerosols in the pearl river delta region, China. Atmospheric Chemistry and Physics Discussions, 2010,10:7185-7214
    [166]Liu G Q, Zhang G, Liu X, et al. Gaseous PAHs distribution in pine needles and SPMDs. Environmental Chemistry,2005,24(1):81-85
    [167]Liu G S, Xu DM, Wang L M, et al. Effect of organic/inorganic compounds on the enzymes in soil under acid rain stress. Journal of Environment Sciences,2004,16(2):177-180
    [168]Luo Y J, Lin T F, Zhang S F, et al. Metabolism of benzo[a]pyrene in peroxynitrite/Fe (III) porphyrin system. Journal of Environment Sciences,2007,19(4):385-386
    [169]Martine I. Bakker, Berta Casado, Judith W. Koerselman, et al. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of The Total Environment,2000,263 (1-3):91-100
    [170]Means J. C., Susanne G Wood, John J. Hassett, et al. Sorption of polycyclic aromatic hydrocarbons by sediments and soils. Environ. Environmental Science & Technology,1980,14 (12):1524-1528
    [171]Memon R A, Leung D Y C, Liu C. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environment Sciences,2008,20(1):120-128
    [172]Nadal M, Schuhm acher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragon a County, Spain. Environmental Pollution,2004,132:1-11
    [173]Nakajima D, Yoshida Y, Suzuki J, et al. Seasonal changes in the concentration of polycyclic aromatic hydrocarbons in azalea leaves and relationship to atmospheric concentration. Chemosphere,1994,30(3):409-418
    [174]Oanh N T K, Bich T L, Tipayarom D, et al. Characterization of particulate matter emission from open burning of rice straw. Atmospheric Environment,2011,45(2):493-502
    [175]Olsson M. Wheat straw and peat for fuel pillets-organic compounds from combustion. Biomass and Bioenergy,2006,30:555-564
    [176]Peijun Li, Xiaojun Li, Frank Stagnitti, et al. Studies on the sources of benzo[a]pyrene in grain and aboveground tissues of rice plants. Journal of Hazardous Materials.2009,162 (1):463-468
    [177]Qiu R L, Wang S Z, Qiu H, et al. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China. Journal of Environment Sciences,2009, 21(8):1108-1117
    [178]Quan X C, Tang Q, He M C, et al. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China. Journal of Environment Sciences,2009, 21(7):865-871
    [179]Ren L,Huang X D, Mcconkey B J, et al. Photoinduced toxicity of three polycyclic aromatic hydrocarbons(fluoranthene,pyrene,and naphthalene)to the duckweed Lemna gibba L. G-3. Ecotoxicol Environ Saf,1994,28(2):160-171
    [180]Ren L, Zeiler L F, Dixon D G Photoinduced effects of polycyclic aromatic hydrocarbons on Brassica napus(Canola)during germination and early seedling development. Ecotoxicol Environ Saf,1996,33:73-80
    [181]Russell E W. Soil Conditions and Plant Growth. Beijing:Science Press,1979:206-250
    [182]Simonich S L, Hites R A. Organic pollutant accumulation in vegetation. Environmental Science and Technology,1995,29(12):2905-2914
    [183]Simonich S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol,1994,28:939-943
    [184]Smith,K E C,Jones K C. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation. Science and Total Environment,2000,246:207-236
    [185]Song Y F, Gong P, Zhou Q X, et al. Phytotoxicity assessment of phenanthrene, pyrene and their mixtures by a soilbased seedling emergence test. Journal of Environment Sciences,2005,17(4): 580-583
    [186]Sum M C, Hills P. Interpreting sustainable development. Journal of Environment Sciences, 1998,10(2):129-143
    [187]Tanimoto S, Nakagoshi N. Landscape ecological characteristic in temporal changes of riverside open space in urbanized area. Journal of Environment Sciences,1999,11(2):155-159
    [188]Tao S, Cui Y H, Xu F L, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science Total Environment,2004,320:11-24
    [189]Tao S, Jiao X C, Chen S H, et al. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environmental Pollution,2006,140(3):406-415
    [190]Tao T, C u i Y H, Xu F L, et al. Polycyclic aromatic hydrocarbons(PAHs) in agricultural soil and vegetables from Tianjin. The Science of the Total Environment,2004,320:11-24
    [191]Tao Z Y, Hornbuckle K C. Uptake of polycyclic aromatic hydrocarbons by broad leaves:analysis of kinetic limitations. Water, Air & soil Pollution:Focus.2001, 1(5/6):275-283
    [192]Tipayarom D, Oanh N T K . Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan Region. Science Asia,2007,33:339-345
    [193]Voundi Nkana.J.C, Demeyer. A,Verloo.M.G Chemical effects of wood ash on plant growth in tropical acid soils. Bioresource Technology,1998,63(3):251-260
    [194]Wang J, Zhu L Z, Liu Y J. Pattern of polycyclic aromatic hydrocarbons (PAHs) pollution in communication air of Hangzhou, China. Journal of Environment Sciences,2002,14(2):145-150
    [195]Weissenfels W. D, Klewe r H. J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles:Influence on biodegradability and biotoxicity.Appl. Microbiol Biotechnol,1992,36:689-696
    [196]Wieczorek J K, Wieczorek Z J. Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants. Ecotoxicology and Environmental Safety,2007,66(3):369-377
    [197]Wild S R, Jones K C. Polycyclic aromatic hydrocarbons in the United Kingdom environment:a preliminary source in inventory and budget. Environment Pollution,1995.88:91-108
    [198]Wild S R, Berrowb M L, McGrath S P, et al. Polynuclear aromatic hydrocarbons in crops from long-term field experiments amended with sewage sludge. Environmental Pollution,1992,76(1): 25-32
    [199]Wild S R, Jones K C. The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the UK. Waste Manage Res,1994,12(1):49-59
    [200]Winchester AM. Chlorophyll and Photosynthesis (第三册).北京:高等教育出版社,1980
    [201]Wu Q, Qiu R L, Lu Y N. Effects of simulated acid rain on cation releasing in soil of South China. Journal of Environment Sciences,1998,10(3):309-315
    [202]Xu S Y, Chen Y X, Lin Q, et al. Uptake and accumlation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perennel L.). Journal of Environment Sciences,2005,17(5):817-822
    [203]Xu S, Liu W, Tao S, et al. Emission of polycyclic aromatic hydrocarbons in China. Environment Science Technology,2005,40:702-708
    [204]Yang H Y, Gao L J, Wang X F, et al. Effects of cultivation conditions on the diversity of microbes involved in the conversion of rice straw to fodder. Journal of Environment Sciences, 2007,19(1):67-73
    [205]Yang J G, Liu X, Long T, et al. Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene. Journal of Environment Sciences,2003,15(6):859-862
    [206]Yin C Q, Bemhardt H. A case study of shallow and eutrophic lakes in China. Journal of Environment Sciences,1992,4(2):5-16
    [207]Zakia D. Parrish, Jason C. White,Mehmet Isleyen,et al. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere,2006,64 (4): 609-618
    [208]Zhan X H, Wu W Z, Zhou L X, et al. Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities. Journal of Environment Sciences,2010,22(4): 607-614
    [209]Zhang Y X, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment,2009,43(4):812-819
    [210]Zhang J H, Zeng J H, He M C. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil. Journal of Environment Sciences,2009,21(5):667-674
    [211]Zhang P, Song J M, Fang J, et al. One century record of contamination by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in core sediments from the southern Yellow sea. Journal of Environment Sciences,2009,21(8):1080-1088
    [212]Zhang Y X, Shao M, Zhang Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environment Sciences,2007,19(2):167-175
    [213]Zhao T Q, Xu H S, He Y X, et al. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands:A case study in the Yellow River wetland in China. Journal of Environment Sciences,2009,21(7):933-939
    [214]Zhou H C, Jin B S, Zhong Z P, et al. Investigation of polycyclic aromatic hydrocarbons from coal gasification. Journal of Environment Sciences,2005,17(1):141-145
    [215]Zhu L Z, Liu Y J. Survey of polycyclic aromatic hydrocarbons (PAHs) in arterial street air of Hangzhou. Journal of Environment Sciences,2001,13(1):8-13
    [216]Zhu L Z, Wang J. PAHs pollution from traffic sources in air of Hangzhou, China:Trend and influencing factors. Journal of Environment Sciences,2005,17(3):365-370
    [217]Zhu L Z, Zhang J Y, Li Y M, et al. Organobentonites as adsorbents for some organic pollutants and its application in wastewater treatment. Journal of Environment Sciences,1996,8(3): 378-383
    [218]Zhu X F, Zheng J L, Guo Q X, et al. Pyrolysis of rice husk and sawdust for liquid fuel. Journal of Environment Sciences,2006,18(2):392-396
    [219]Zhu Y H, Zhang S Z, Huang H L, et al. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. Journal of Environment Sciences,2009,21(7):920-926

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700