用户名: 密码: 验证码:
大蒜秸秆腐解物化感作用研究及化感物质鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蒜秸秆是大蒜生产中的副产品,通常被作为废弃物丢弃或者焚烧。有效合理地利用这一自然生物资源对减少环境污染和实现农业的可持续性发展是十分必要的。本试验主要研究了不同腐解条件下大蒜秸秆腐解物的化感作用及大蒜秸秆腐解物对不用受体作物的化感作用,并鉴定了大蒜秸秆腐解物中的化感物质,主要结果如下:
     1.大蒜秸秆腐解后对土壤理化特性有显著影响,能显著提高土壤pH和EC值。腐解温度为40℃、蒜土比例5︰100或腐解60d获得的大蒜秸秆腐解物能显著增加土壤中全氮和有机碳的含量。低温(10℃)、高浓度(5︰100)或短时间(10或20d)腐解的腐解物使土壤蔗糖酶、脲酶和碱性磷酸酶活性达到最大值。短时间(10d)、低温(10℃)或高浓度(5︰100)腐解的大蒜秸秆对土壤特性表现出最强的化感促进效应。
     2.以小麦和莴苣为受体作物,研究不同腐解时间的大蒜秸秆腐解物的化感作用。结果表明,短时间(10或20d)腐解的大蒜秸秆腐解物能够显著抑制小麦和莴苣的生长,30或40d腐解则促进受体生长。较长和长时间(30、40、50和60d)腐解显著增加小麦和莴苣的地上部和根系的鲜重,而短时间(10或20d)腐解显著降低其鲜重。腐解30d的大蒜秸秆腐解物显著增加小麦和莴苣叶片中叶绿素和蛋白质含量,并提高超氧化物歧化酶(SOD)和过氧化物酶(POD)活性。不同时间腐解的腐解物均显著提高种植小麦和莴苣的土壤脲酶,蔗糖酶和碱性磷酸酶活性。腐解30d的大蒜秸秆对小麦和莴苣的生长发育及种植二者的土壤特性均表现出最强的化感促进作用。
     3.不同温度腐解的大蒜秸秆腐解物对受体作物小麦和莴苣有明显的化感作用。高温(40℃)条件下的腐解物显著促进小麦和莴苣根系和地上部的生长,增加其鲜重,但低温(10℃)条件下的腐解物表现显著的抑制作用。40℃腐解的腐解物显著降低小麦和莴苣叶片中丙二醛(MDA)含量,但却提高SOD活性。10℃腐解的腐解物显著提高小麦和莴苣叶片中苯丙氨酸解氨酶(PAL)活性及其土壤EC值和蔗糖酶活性,但40℃腐解的腐解物显著提高种植小麦和莴苣土壤的pH值。高温(40℃)腐解的大蒜秸秆对莴苣和小麦的生长发育表现出化感促进作用,但低温(10℃)腐解的则为化感抑制作用。
     4.以小麦和莴苣为受体作物,研究大蒜秸秆与土壤不同比例(0︰100,1︰100,3︰100和5︰100)条件下腐解物的化感作用。结果表明,低浓度的大蒜秸秆腐解物显著促进小麦和莴苣的生长,而高浓度却抑制其生长。高浓度(5︰100)的大蒜秸秆腐解物显著促进莴苣的根系生长和鲜重的增加,但对地上部的生长和鲜重表现强抑制作用。低浓度的大蒜秸秆腐解物显著提高小麦和莴苣叶片中叶绿素和蛋白质含量以及抗氧化酶的活性。随着大蒜秸秆浓度的增加,种植小麦和莴苣土壤蔗糖酶、脲酶和碱性磷酸酶的活性不断增加。蒜土比例为3︰100的大蒜秸秆腐解物对小麦和莴苣的生长发育表现最强的化感促进作用,但5︰100的腐解物则对二者产生化感抑制作用。
     5.大蒜秸秆腐解物对不同受体作物表现不同的化感促进或抑制作用。大蒜秸秆腐解物显著促进大白菜根系和地上部的生长,增加其地上部鲜重和叶片中SOD活性;显著促进番茄叶片叶绿素含量和SOD活性,而显著抑制其根系和地上部的生长及鲜重,并降低叶片中POD和PAL活性;显著促进黄瓜和豇豆的根系和地上部的生长,显著提高二者叶片的SOD活性;显著抑制玉米根系的生长,并降低其叶片SOD和POD活性。大蒜秸秆腐解物对大白菜、黄瓜和豇豆的生长发育表现为化感促进作用,但对番茄和玉米的生长发育则表现为化感抑制作用。
     6.通过GC-MS方法鉴定出大蒜秸秆在腐解的过程中能够分解或者产生新的化感物质。大蒜秸秆腐解物的石油醚、乙酸乙酯和氯仿提取物中有新的物质咖啡碱、N-叔丁氧羰基-L-缬氨酸和二氟尼酸生成。石油醚和乙酸乙酯提取物对莴苣的生物检测表现出化感促进作用,而氯仿提取物则表现为抑制作用。外源化学标准品的验证结果显示,高浓度的咖啡碱、N-叔丁氧羰基-L-缬氨酸和二氟尼酸生物检测均对莴苣表现出化感抑制作用。这些结果与腐解物原不同组分提取物的作用结果相似,并符合化感作用的一般规律,证明这3种物质为大蒜秸秆腐解物中有效的化感物质。
Garlic (Allium sativum L.) stalk is a byproduct of garlic production that is normallythought of as waste but is now considered to be a useful biological resource. It is necessary toutilise this resource efficiently and reasonably to reduce environmental pollution and achievesustainable agricultural development. This paper manily studied allelopathy of garlic stalkdecomposition under various decomposied conditions, and researched the allelopathic effectof garlic stalk decomposition on different tested plants. Allelochemicals of garlic stalkdecomposition were identified and verified in this study. The results of allelopathy of garlicstalk decomposition and identification of allelochemicals are as follows:
     1. Garlic stalk decomposition could significantly affect the physical and chemicalproperties of the soil. The values of soil pH and electrical conductivity were significantlyincreased by garlic stalk decomposition. In addition, total nitrogen and organic carbonconcentration were significantly increased by decomposing stalks at40°C, with a5:100ratioand for10or60days. The highest activities of sucrase, urease and alkaline phosphatase insoil were detected when stalk decomposition was performed at the lowest temperature (10°C),the highest concentration (5:100), and the shortest duration (10or20d). The favorable effectof garlic stalk decomposition allelopathy was performed at shortest duration (10d), the lowesttemperature (10°C), the highest concentration (5:100).
     2. The allelopathic effect of decomposed garlic stalk over different durations ofdecomposing (10,20,30,40,50and60d) was investigated in this study using wheat(Tricicum aestivum L.) and lettuce (Lactuca sativa var. crispa L.) as test plants. Garlic stalk inearly stages of decomposition (10and20d) inhibited the growth of wheat and lettuce plants,but promoted plant growth in later stages (30and40d). Longer durations of garlic stalkdecomposition (30,40,50and60d) significantly increased the shoot and root fresh weight ofwheat and lettuce, whereas shorter decomposing durations (10and20d) significantlydecreased the shoot and root fresh weight. Garlic stalk decomposed for30days significantlyincreased the content of chlorophyll and protein, and significantly promoted the activities ofSOD and POD. Garlic stalk at different decomposition durations increased the activities ofurease, sucrase and alkaline phosphatase in the soil in which wheat or lettuce was planted. The greatest favorable allelopathy on the growth and development of wheat and lettuce andthe soil properties with planting them was performed at30d of garlic stalk decomposition.
     3. The allelopathic effect of decomposed garlic stalk at different temperatures wasinvestigated in this study using wheat and lettuce as the allelopathic test plants. Highertemperature (40℃) of decomposed garlic stalk significantly increased roots and shoots lengthof wheat and lettuce, however, lower temperature (10℃) significantly decreased their growth.Garlic stalk decomposed at40℃significantly inhibited the content of MDA of wheat andlettuce leaves, but promoted the activity of SOD. Nevertheless, garlic stalk decomposed at10℃significantly promoted the activity of PAL of wheat and lettuce leaves. Garlic stalkdecomposed at10℃significantly increased the soil EC value and activity of soil sucrasewith wheat and lettuce planted. The greatest favorable allelopathy on the growth anddevelopment of wheat and lettuce was performed at highest temperature (40℃). But thegreatest inhibitive allelopathy was performed at lowest temperature (10℃).
     4. The allelopathy of decomposed garlic stalk at different ratios (0:100,1:100,3:100and5:100) was investigated in this study using wheat and lettuce as the allelopathic test plants.Lower concentration of decomposed garlic stalk promoted wheat and lettuce plant growth, buthigher concentration inhibited growth. The highest ratio of stalk to soil (5:100) significantlyincreased the root length and fresh weight of lettuce but decreased the shoot length and freshweight. Lower ratio of stalk to soil significantly increased the content of protein andchlorophyll and the activity of plant enzymes of wheat and lettuce leaves. Increasing theconcentration of decomposed garlic stalk increased the activity of soil sucrase, urease andalkaline phosphatase with wheat and lettuce planted. The greatest favorable allelopathy on thegrowth and development of wheat and lettuce was performed at3:100(ratio of stalk to soil).But the greatest inhibitive allelopathy was performed at5:100(ratio of stalk to soil).
     5. The promoted or inhibited allelopathy of garlic stalk decomposition on various testedplants. Garlic stalk decomposition significantly increased the length of root and shoot, thefresh weight of shoot, and the activity of SOD of Chinese cabbage. Garlic stalkdecomposition significantly promoted the content of chlorophyll and the activity of SOD oftomato. However, garlic stalk decomposition significantly inhibited the length and freshweight of root and shoot and the activities of POD and PAL of tomato. Garlic stalkdecomposition significantly increased the length of root and shoot and the activity of SOD ofcucumber and cowpea. Garlic stalk decomposition significantly decreased the length of rootand the activities of SOD and POD of maize. The garlic stalk decomposition had favorableallelopathy on Chinese cabbage, cucumber and cowpea, but had inhibitive allelopathy ontomato and maize.
     6. Garlic stalk resolved or created new allelochemicals during it decomposing whichwere identified by the method of GC-MS. Caffeine, N-à-(tert-Butoxycarbonyl)-L-Valine anddiflunisal were detected from petroleum ether, ethyl acetate and chloroform extractions ofgarlic stalk decomposition, respectively. The petroleum ether and ethyl acetate extractions hadthe favorable allelopathy on lettuce bioassay, but the chloroform extractions had the inhibitiveallelopathy. The results of bioassays of exogenous chemical reference substance showed thathigher concentration of caffeine, N-à-(tert-Butoxycarbonyl)-L-Valine and diflunisal had theinhibitive allelopathy on lettuce bioassay. The results were the similar as the results ofdifferent organic reagent extractions and the general rule of allelopathy. And the threesubstances were verified the effective allelochemicals of garlic stalk decomposition.
引文
鲍士旦.2000.土壤农化分析(第三版).中国农业出版社.
    蔡秋锦,罗婉珍,陈长雄.1998.植物渗出物和植物杀虫剂效应的研究.福建林学院学报,18(4):291~293
    曹潘荣,骆世明.1996.柠檬桉的他感作用研究.华南农业大学学报,17(2):7~11
    陈龙池,廖利平,汪思龙,黄志群,肖复明.2002.香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响.应用生态学报,13(10):1291~1294
    陈芝兰,张涪平,蔡晓布,何建清,彭岳林.2005.秸秆还田对西藏中部退化农田土壤微生物的影响.土壤学报,42(4):696~699
    高卫东,赵林萍.2001.中国种植业大观-肥料卷.北京:中国农业科技出版社
    郭鸿儒,沈慧敏,杨顺义,黄高宝等.2008.黄花蒿化感物质对受体燕麦化感作用机理的初步研究.甘肃农业大学,43(1):102~104
    韩庆华,马永清.1994.小麦秸秆中生化他感化合物的研究概况.生态农业研究,2(4):71~75
    何华勤,林文雄.2001.水稻化感作用生理生化特性研究.中国生态农业学报,9(3):56~57
    胡江春,薛德林,王书锦.1998.大豆连作障碍研究Ⅱ.大豆连作减产机理及对土壤紫青霉菌毒素的调控对策.应用生态学报,9(4):429~434
    贾黎明,翟明普,冯长红.2003.化感作用物对油松幼苗生长及光合作用的影响.北京林业大学学报,25(4):6~10
    姜丽,孙玉文,刘景安.2007.分葱对黄瓜、萝卜和白菜的化感作用.中国农学通报,(2):263~266
    孔垂华,胡飞.2001.植物化感作用(相生相克)及其应用.北京:中国农业出版社
    李全起,陈雨海,于舜章,吴巍,周勋波,董庆裕,余松烈.2006.覆盖与灌溉条件下农田耕层土壤养分含量的动态变化.水土保持学报,20(1):37~40
    李彦斌,刘建国,程相儒,张伟,孙艳艳.2009.秸秆还田对棉花生长的化感效应.生态学报,29(9):4942~4948
    梁静.2011.白三叶(Trifolium repens L.)植株腐解物的化感作用研究.西北农林科技大学硕士论文.
    刘定辉,蒲波,陈尚洪,朱钟麟,舒丽.2008.秸秆还田循环利用对土壤碳库的影响研究.西南农业学报.21(5):1316~1319
    刘世平,聂新涛,张洪程,戴其根,霍中洋,许轲.2006.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析.农业工程学报,22(7):48~51
    刘武仁,刘凤成,冯艳春,郑金玉,丘贵春,罗洋,蔡洪岩.2004.玉米秸秆还田技术研究与示范.玉米科学,12:118~119
    刘秀芬,胡小军.2001.化感物质阿魏酸对小麦幼苗内源激素水平的影响.中国生态农业学报,9(1):86~88
    马永良,郝晋珉,崔四平.2000.玉米秸秆整株还田技术研究.河北农业科学,4(1):1~81
    马永良,师宏奎,张书奎,吕润海.2003.玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响.中国农业大学学报,8(增刊):42~46
    马永清,韩庆华.1993.不同玉米品种对麦秸覆盖引起的生化他感作用的差异性分析.生态农业研究,1(4):65~69
    马永清,毛仁钊,刘孟雨,刘小京,张玉铭.1993.小麦秸秆的生化他感效应.生态学杂志,12(5):36~38
    强学彩,袁红莉,高旺盛.2004.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,15(3):469~472
    秦嗣军,吕德国,赵德英,刘国成.2008.本溪山樱桃根系酚酸类分泌物及其化感效应研究.沈阳农业大学学报,39(2):56~160
    宋君.1990.植物间的他感作用.生态学杂志,9(6):43~47
    宋亮,潘开文,王进闯,马玉红.2006.酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响.生态学报,26(10):3394~3403
    孙群,胡锦江.2005.植物生理学研究技术.西北农林科技大学出版社,171~172.
    孙文浩,余叔文.1992.相生相克效应及其应用.植物生理学通讯,28(2):81~87
    王改兰,段建南,贾宁凤,廖建平.2006.长期施肥对黄土丘陵区土壤理化性质的影响.水土保持学报,20(4):82~89
    王宏立,张祖立,白晓虎.2003.秸秆饲料资源开发利用的研究进展.沈阳农业大学学报,34(3):228~231
    王倩,李晓林.2003.甲酸和肉桂酸对西瓜幼苗生长及枯萎病发生的作用.中国农业大学学报,8(1):83~86
    吴凤芝,黄彩红,赵凤艳.2002.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响.中国农业科学,35(7):821~825
    武术,林先贵,尹睿,毛婷婷,胡君利,冯有智,朱建国.2009.大气CO2浓度升高对稻季土壤中麦秸降解及氮素分趋的影响.生态学报,29(5):2535~2540
    徐祖祥.2003.连续秸秆还田对作物产量和土壤养分的影响.浙江农业科学,1:35~36
    阎飞,杨振明,韩丽梅.2000.植物化感作用及其作用物的研究.生态学报,20(4):692~696
    颜丽,宋杨,贺靖,陈盈,张昀,鲍艳宇,关连珠.2004.玉米秸秆还田时间贺还田方式对土壤肥力和作物产量的影响.土壤通报,35(2):143~148
    杨立学.2006.落叶松水浸提液对胡桃楸种子萌发和幼苗生长的影响.应用生态学报,17(6):1145~1147
    杨瑞吉.2006.油菜根系分泌物对不同作物幼苗生长的化感效应.生态环境,5:1062~1066
    于凤兰,马茂华,孔令韶.1999.油蒿挥发油的化感作用研究.植物生态学,23(4):345~350
    郁继华,张韵,牛彩霞,李建建.2006.两种化感物质对茄子幼苗光合作用及叶绿素荧光参数的影响.应用生态学报,17(9):1629~1632
    原慧芳,武绍波.2006.柿树化感作用的初步研究.西南园艺,6:1~3,9
    张电学,韩志卿,刘微,高书国,常连生,侯东军,李国防.2006.不同促腐条件下秸秆直接还田对土壤酶活性动态变化的影响.土壤通报,37(3):475~478
    张凤云,翟梅枝,贾彩霞,孙百虎.2005.核桃鲜叶挥发油化感作用初步研究.西北林学院学报,20(2):144~146
    张新慧,张恩和,柴强,何庆祥,任宝仓.2006.2,4-二叔丁基苯酚对啤酒花幼苗光合特性的影响.甘肃农业大学学报,41(5):50~54
    张振江.1988.有机肥和化肥单施及配合施对培肥地力增产效应的研究.黑龙江农业科学,3:22~25
    赵建刚,王学勤,祈江燕.2008.玉米秸秆覆盖在培肥地力作用上的初探.山西农业科学,36(6):68~69
    赵勇,李武,周志华,张晓君,潘迎捷,赵立平.2005.秸秆还田后土壤微生物群落结构变化的初步研究.农业环境科学学报,24(6):1114~1118
    周江明,徐大连,薛才余.2002.稻草还田综合效益研究.中国农学通报,18(4):35~37
    周志红,骆世明,牟子平.1997.番茄的化感作用研究.应用生态学报,8(4):445~449
    Aerts R, Chapin F S.2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes andpatterns. Adv Ecol Res,30:1~67
    Aliotta G, Cafeiro G, Fiorentino A.1993. Inhibition of radish germination and root growth by coumarinand phenylpropanoids. J Chem Ecol,19(2):175~183
    Arino I, Martikainen P J.1994. Mineralization of carbon and nitrogen in acid forest soil treated with forestand slow release nurtients. Plant Soil,164:187~193
    Barnes J P and Putnam A P.1983. Rye residues contribuute weed suppression in no-tillage croppingsystems. J Chem Ecol,9:1045~1058
    Bastian F, Bouziri L, Nicolardot B, Ranjard L.2009. Impact of wheat straw decomposition on successionalpatterns of soil microbial community structure. Soil Biol Biochem,41:262~275
    Batish D R, Kaur M, Singh H P and Kohli RK.2006. Phytotoxicity of a medicinal plant, Anisomeles indica,against Phalaris minor and its potential use as natural herbicide in wheat fields. Crop Prot,26:948~952
    Baumann K, Marschner P, Smernik R J, Baldock J A.2009. Residue chemistry and microbial communitystructure during decomposition of eucalypt, wheat and vetch residues. Soil Biol Biochem,41:1966~1975
    Bazivamakenga R R, Leroux G D and Simard R R.1995. Effects of benzonic and cinnamic on membranepermeability of soybean roots. J Chem Ecol,21:1271~1285
    Bazivamakenga R R, Simard R R and Leroux G D.1995. Determination of organic acids in soil extracts byion chromatography. Soil Biol Biochem,27(3):349~356
    Belyea L R.1996. Separating the effects of litter quality and microenvironment on decomposition rates in apatterned peatland. Oikos,77:529~539
    Blmu U.1996. Allelopathic interactions involving phenolic acids. J Nematol,28:259~267
    Bonanomi G, Antignani V, Pane C, Scala E.2007. Suppression of soil borne fungal diseases with organicamendments. J Plant Pathol,89(3):311~324
    Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzoth V, Scala F, Mazzoleni S.2011. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidencefrom solid-state13C NMR spectroscopy. New Phytol,191:1018~1030
    Bonanomi G, Sicurezza M G, Caporaso S, Esposito A, Mazzoleni S.2006. Phytotoxicity dynamics ofdecaying plant materials. New Phytol,169:571~578
    Cheng L, Zhu J, Chen G, Zheng X, Oh N H, Ruffy T W, Richter deB D, Hu S.2010. Atmospheric CO2enrichment facilitates cation release from soil. Ecol Lett,13:284~291
    Chou C H and H J Lin.1976. Autointoxication mechanisms of oryza sativa. I phytotoxic effects ofdecomposing rice residues in soil. J Chem Ecol,2:353~367
    Chung I M and Miller D A.1995. Natural herbicide potential of alfalfa residue on selected weed species.Agron J,87:920~925
    Conn C, Dighton J.2000. Litter quality influences on decomposition, ectomycorrhizal community structureand mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem,32:489~496
    Cruz R, Anaya A L, Hernández-Bautista B E, Laguna-Hermández G.1998. Effect of allelochemical stressproduced by Sicyos deppei on seedling root ultrastructure of phaseolus vulgaris and Cucurbita ficifolia.J Chem Ecol,24(12):2039~2057
    David S S.1996. Chemistry and mechanisms of Allelopathic interactions. Agron J,88:876~885
    Davidson E A, Verchot L V, Cattanio J H, Ackerman I, Carvalho J E M.2000. Effect of soil water contenton soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry,48:53~59
    Dayan F E, Romagni JG and Duke S O.2000. Investigating the mode of action of natural phytotoxins. J.Chem Ecol,26:2079~2094
    Dilly O, Munch J C, Pfeiffer E M.2007. Enzyme activities and litter decomposition in agricultural soils innorthern, central, and southern Germany. J Plant Nutr Soil Sci,70:197~204
    Dilly O, Nannipieri P.2001. Response of ATP content, respiration rate and enzyme activities in an arableand a forest soil to nutrient addition. Biol Fertil Soils,34:64~72
    Duke S O, Dayan F E, Romagni J G and Rimando A M.2000. Natural products as sources of herbicides:current status and future trends. Weed Res.,10:99~111
    Einhellig F A.1996. Interaction involving allelopathy in cropping system. Agron J,88:886~893
    Einhellig F A.2004. Mode of allelochemical action of phenolic compounds. In: Mac as F A, Galindo J C G,Molinillo J M G and Cutler H G (Eds.), Allelopathy, chemistry and mode of action of allelochemicals.BocaRaton: CRC Press:217~239
    Elijarrat E and Barcelo D.2001. Sample handling and analysis of allelochemical compounds in plants.Trends Anal Chem,20:584~590
    Eskelinen A.2008. Herbivore and neighbour effects on tundra plants depend on species identity, nutrientavailability and local environmental conditions. J Ecol,96:155~165
    Eskelinen A, Stark S, M nnist M.2009. Links between plant community composition, soil organic matterquality and microbial communities in contrasting tundra habitats. Oecologia,161:113~123
    Fang Q.1987. Effect of continuously planted fir on forestry growth and soil fertility. Forestry Seience.,4:7~11
    Fisher N H, Williamson G B, Weidenhamer J D, Richardson DR.1994. In search of allelopathy in Floridascrub: The role of terpenoids. J Chem Ecol,20:1355~1380
    Gliek B R, Shah S, Li J, Penrose D M, Moffat B A.1998. Isolation and characterization of ACC demainasegenes from two plnat-growth promoting rhizobacteria. Can J Microbiol,44:833~843
    Gough L, Shaver G R, Carroll J, Royer D L, Laundre J A.2000. Vascular plant species richness in Alaskanarctic tundra: the importance of soil pH. J Ecol,88:54~66
    Gu Y, Wang P and Kong C H.2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities inpaddy soil influenced by allelopathic rice variety. Eur J Soil Biol,45:436~441
    Guan S Y, Shen G Q.1984. Enzyme activities in main soil in China. Tu Rang Xue Bao21(4):368~381
    Guo D P, Guo Y P, Zhao J P, Liu H, Peng Y, Wang Q M, Chen J S, Rao G Z.2005. Photosynthesis rateand chlorophyll fluorescence in leaves of stem mustard (B rassica junceavar. tsatsai) after turnipmosaic virus infection. Plant Science,168(1):57~63
    Guo R Y, Li X L, Christie P, Chen Q, Jiang R F, Zhang F.2008. Influence of root zone nitrogenmanagement and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics inintensive production systems. Plant Soil,313:55~70
    Guo T, Zhang G, Zhou M, Wu F and Chen J.2004. Effect of aluminumand cadmium toxicity on growthand antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil,258(1):241~248
    Han C M, Pan K W, Wu N, Wang J C and Li W.2008. Allelopathic effect of ginger on seed germinationand seedling growth of soybean and chive. Sci Hortic,116:330~336
    Hartenstein R.1982. Eeffet of aromatic compounds humic acids and lignins on growth of earthworm(Eisenia foetida). Biochemistry,14:595~599
    Hejl A M, Einhellig F A, Rasmussen J A.1993. Effects of juglone on growth,photosynthesis,andrespiration. J Chem Ecol,19(3):559~568
    Hodge H.2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol,162:9~24
    Hodge H, Stewart J, Robinson D, Griffiths B S and Fitter A H.1998. Root proliferation, soil fauna andplant nitrogen capture from nutrient-rich patches in soil. New Phytol.,139:479~494
    Hollapa L D, Blum U.1991. Effect of exogenously applid ferulaic acid, a potential allelopathic compound,on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber and bean. JChem Ecol,17(3):865~886
    Hollnad M A, Polacco J C.1994. PPFMs and other covert contaminants: is there more to plnat physiologythan just plant? Plant Mol Biol,45:197~209
    Holmgren M, Scheffer M and Huston M A.1997. The interplay of facilitation and competition in plantcommunities. Ecology,78:1966~1975
    Ibewiro B, Sanginga N, Vanlauwe B, Merckx R.2000. Nitrogen contributions from decomposing covercrop residues to maize in a tropical derived savanna. Nutr Cycl Agroecosys,57:131~140
    Icoz I, Stotzky G.2008. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem,40:559~586
    Ilieva-Makulec K, Olejniczak I, Szanser M.2006. Response of soil micro-and mesofauna to diversity andquality of plant litter. Eur J Soil Biol,42: S244~S249
    Inderjit.1996. Plant phenolics in allelopathy. Bot Rev,62:186~202
    Inderjit and Dakshini K M M.1992. Interference potential of Pluchea lanceolata(Asteraceae): growth andphysiological responses of asparagus bean, Vigna unguiculata Var sesquipedalis. Amer J Bot,79:977~981
    Jackson R B, Caldwell M M.1989. The timing and degree of root proliferation in fertile-soil microsites forthree cold-desert perennials. Oecologia,81:149~153
    Jacobson C B, Pastemka J J, Glick B R.1994. Partial purification and characterization of ACC demainasefrom plnat-gorwth promoting rhizobacterium pseudomonas putida GR12-2. Can J Microbiol,40:1019~1025
    Jacobson T K B, Bustamante M M C, Kozovits A R.2011. Diversity of shrub tree layer, leaf litterdecomposition and N release in a Brazilian Cerrado under N, P and N plus P additions. Environ Pollut,159:2236~2242
    Jarvis S C, Stockdale E A, Shepherd M A.1996. Nitrogen mineralization in temperate agricultural soils:processes and measurements. Adv Agron,57:187~235
    Jimenez Osornil J J and Gliessman S R.1987. Allelopathic interference in a wild mustard and broccoliintercrop agroecosystem [A]. In: Waller G Red. Allelochemicals L Roleinagriculture and forestry.ACS Symp.Ser.330.Am. Chem, Soc. Washington, D C.,262~274
    Jiménez J J, Sckultz K, Anaya A L, Hemández J, Espejo O.1983. Allelopathic potential of corn pollen. J.Chem Ecol.,9:1011~1025
    Jordan T E, Whigham D F, Correll D L.1989. The role of litter in nutrient cycling in a brackish tidal marsh.Ecol,70:1906~1915
    Kang H, Freeman C.2009. Soil Enzyme Analysis for Leaf Litter Decomposition in Global Wetlands.Commun Soil Sci Plant Anal,40:3323~3334
    Kong C H, Hu F.2001. Plant allelopathy and Its Application. Beijing: China Agricultural Press
    Wink M, Schmeller T and Latz-bruning B.1998. Modes of action of allelochemicals alkaloida: Interactionwith neuroreceptors DNA,and other molecular targets. J Chem Ecol,24:1881~1937
    Kong C H, Wang P, Xu X H.2007. Allelopathic interference of Ambrosia trifida with wheat(Triticumaestivum). Agr Ecosyst Environ,119(3-4):416~420
    Kuo S, Jellum E J.2002. Influence of winter cover crop residue management on soil nitrogen availabilityand corn. Agron J,94:501~508
    Lagomarsin A, Benedetti A, Marinari S, Pompili L, Moscatelli MC, Roggero P P, Lai R, Ledda L, Gergo S.2011. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem.Biolo. Fertil. Soils,47:283~291
    Laiho R.2006. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts oflowered water levels. Soil Biol Biochem,38:2011~2024
    Laker MC.2004. Advances in soil erosion, soil conservation, land suitability evaluation and land useplanning research in South Africa1978–2003. S Afr J Plant Soil21(5):345~368
    Laosinwattana C, Phuwiwat W and Charoenying P.2007. Assessment of allelopathic potential ofVetivergrass (Vetiveria spp.) ecotypes. Allelopathy J,19:469~478
    Laosinwattana C, Poonpaiboonpipat T, Teererak M, Phuwiwat W, Mongkolaussavaratana T andCharoenying P.2009. Allelopathic potential of Chinese rice flower (Aglaia odorata Lour.) as organicherbicide. Allelopathy J,24:45~54
    Larcher W.2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups,4thedn. Springer, Berlin.
    Leather G R, Einhelling F A.1986. Bioassays in the study of allelopathy, Putnam AR, Tang CS(EDS).TheScience of allelopathy. New York: John willey and Sons:133~145
    Leslie C A, Romani R J.1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol,88:833~837
    Levitt J, Lovett J V, Garlick P R.1984. Datura stramonium allelochemicals: longvevity in soil, andultrastructural effects on root tip cells of Helianthus anuus L. New Phytologist,97(2):213~218
    Liu D L.1993. Biologically active secondary metabolites of barleyⅡ. Phytotoxicity of barleyallelochemicals. J Chem Ecol,19(10):2231~2244
    Lorber P, Muller W H.1976. Volatile growth inhibitors produced by Salvia leucophylla: effects onseedling root tip ultrastructure. Am J Bot,63(2):195~211
    MacDonald N W, Zak D R, Pregitzer K S.1995. Temperature effects on kinetics of microbial respirationand net nitrogen and sulphur mineralization. Soil Sci Soc Am J,59:233~240
    Magdi T A, Takatsugu H, Shinya O.2004. Composting of rice straw with oilseedrape cake and poultry manure and its effects on faba bean (Vicia faba L.)growth and soil properties. Bioresource Technol,93(2):183~189
    Marschener P, Romheld V.1994. Strategies of Plants of the acquisition of iron. Palnt soil,165:261~274
    Marschner H.1995. Mineral nutrition of higher plants,2nd edn. New York: Academic Press.
    Martin V L, Mc Coy E L and Dick W A.1990. Allelopathy of crop residues influences corn seedgermination and early growth. Agron J,82:555~560
    McSorley R, Gallaher RN.1994. Effect of tillage and crop residue management on nematode densities oncorn. J Nematol,26:669~674
    Meier C L, Keyserling K and Bowman W D.2009. Fine root inputs to soil reduce growth of a neighbouringplant via distinct mechanisms dependent on root carbon chemistry. J Ecol,97:941~949
    Miguez F E, Bollero G A.2005. A review of corn yield response under winter cover cropping systemsusing metaanalytic methods. Crop Sci,45:2318~2329
    Miller D A.1996. Allelopathy in forage crops systems. Agrion J,88:854~859
    Mills A J, Fey M V.2004. Declining soil quality in South Africa: effects of land use on soil organic matterand surface crusting. S Afr J Plant Soil,21:388~398
    Molisch H.1937. Der einfluss einer Pflanze auf die andere–allelopathic. Jena: Gustav Fischer
    Ortega R C, Anaya A L, Ramos L.1988. Effects of allelopathic compounds of corn pollen on respirationand cell division of watermelon. J Chem Ecol,14:71~86
    Muller C H, Muller W H and Haines B L.1964. Volatile Growth inhibitors Production by Shrubs. Science,143:471~473
    Muthukaruppan G, Janardhanan S, Vijayalakshmi G.2004. Sublethal toxicity of the herbicide butachlor onthe earthworm Perionyx sansibaricus and its histological changes. J Soils Sediments5:82~86
    Mutlu S and Atici.2009. Allelopathic effect of Nepeta meyeri Benth. extracts on seed germination andseedling of some crop plants. Acta Physiol. Plant,31:89~93
    Nair M G,Whiteneck C J and Putnam A R.1990.2,2’-oxo-l,l’-azobenzene, a microbially transformedallelochemical from2,3-benzoxazorinone:I.J Chem Ecol,16:353~364
    Nilsson M C.1998. Separation of allelopathy and resource competition by the boroal dwarf shrub:Empetrum hermaphrodium. Hagerup Oecologia:1~7
    North G B, Nobel P S.1998. Water uptake and structural plasticity along roots of a desert succulent duringprolonged drought. Plant Cell Env21:705~713
    Oleszek W, and Jurzysta M.1987. The allelopathic of alfalfa root medicagenic acid glycosides and theirfate in soil environment. Plant Soil,98:67~80
    Overland L.1966. The role of allelopathic substances in the “smother crop” barley. Am J Bot,53:423~432
    Patten C L, Gliek B R.1996. Bacterial biosynthesis of indole-3-acetie acid. Can J Microbiol,42:207~220
    Peirce L C and Miller H G.1993. Asparagus emergence on Fusarium-treated and sterile media followingexposure of seeds or radicals to one or more cinnamic acids. J Amer Soc Hort Sci,118:23~28
    Politycka B.1996. Peroxidase activity and lidid peroxidation in roots of cucumber seedlings influenced byderivatives of cinnamic and benzoic acids. Acta physiol plant,18(4):365~370
    Putnam A R.1994. Phytotoxicity of plant residues. In: Unger PW.(Ed.), Managing agricultural residues.USA, Boca Raton, FL, Lewis Publishers:285~314
    Putnam R.1984. Weed AlleloPathy, ReProduetion and Ecophysilogy, l, CRC Press, Inc. US.,131-150
    Qasern J R and Abu-Irrnaileh B E.1985. Allelopathic effect of salvia syriaca L.(Syrian saga) in wheat.Weed res,25:47~52
    Ranganna S.1986. Handbook of analysis and quality control for fruits and vegetables.(2ndEd) McGrawHill, New Delhi.
    Ray S D, Laloraya M M.1984. Interaction of gibberellic acid, abscisic acid, and phenolic compounds in thecontrol of hypocotyl growth of Amaranthus caudatus seedlings. J Bot,62:2047~2052
    Rice E L.1984. Allelopathy (2ndEd). Orlando, FL: Academic Press
    Rice E L.1995. Biological control of weeds and plant diseases: Advances in applied allelopathy. Oklahma:University of Oklahoma Press
    Romagni J G, Allen S N, Dayan F E.2000. Allelopathic effects of volatile cineoles on two weedy plant. JChem Ecol,26(1):303~314
    R mbke J, F rster B, J nsch S, Scheffczyk A, Garcia M.2005. Terrestrische kotoxikologischeTestmethoden für die Tropen d Teil2: Halbfreiland-und Freilandtests sowie Risikobeurteilung. UWSF,17:85~93
    Roshchina V V and Roshchina V D.1993. The excretory function of higher plant. New York:Spinger-verlag:213~215
    Ruffo M L, Bollero G A.2003. Modeling rye and hairy vetch residue decomposition as a function ofdegree days and decomposition days. Agron J,95:900~907
    Saik H and Yoneda K.1981. Possible deal roles of an allelopathic compound, cis-dehydromatricaria ester. JChem Ecol,8:185~193
    Saura-Masa S, Estiarte M, Pe uelasb J, Lloret F.2012. Effects of climate change on leaf litterdecomposition across post-fire plant regenerative groups. Environ Exp Bot,77:274~282
    Schmeller T, El-Shazly A, Wink M.1997. Allelochemical Activities of Pyrrolizidine Alkaloids:Interactions with Neuroreceptors and Acetylcholine Related Enzymes. J Chem Ecol,23(2):399~416
    Shaver G R, Giblin A E, Nadelhoffer K J, Thieler K K, Downs M R, Laundre J A, Rastetter E B.2006.Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture andfertilizer. J Ecol,94:740~753
    Siddiqui Z S.2007. Allelopathic effects of black pepper leachings on Vigna mungo (L.) Hepper. ActaPhysiol Plant,29:303~308
    Singh Y, Gupta R K, Singh J, Singh G, Singh G, Ladha J K.2010. Placement effects on rice residuedecomposition and nutrient dynamics on two soil types during wheat cropping in rice–wheat system innorthwestern India. Nutr Cycl Agroecosys,88:471~480
    Strakova P, Penttila T, Laine J, Laiho R.2012. Disentangling direct and indirect effects of water tabledrawdown on above-and belowground plant litter decomposition: consequences for accumulation oforganic matter in boreal peatlands. Glob Chang Biol,18:322~335
    Tamura Y, Hattori M, Konno K, Kono Y, Honda H, Ono H, Yoshida M.2004. Triterpenoid and caffeicacid derivatives in the leaves of ragweed, Ambrosia artemisiifolia L.(Asterales: Asteraceae), asfeeding stimulants of Ophraella communa LeSage (Coleoptera: Chrysomelidae). Chemoecology,14(2):113~118
    Thijs H, Shnna J D, Weidehnmaer J D.1994. The ecffet of phytotoxins on competitive outcome in a modelsystem. Ecol,75:1959~1964
    Thomaszewishi M, Thimann K V.1996. Interaction of phemolic acids,metabllicions and chlating agentsonauxin-induced growth[J]. Plant physiol,41:1443~1454
    Tu C, Ristaino J B, Hu S J.2006. Soil microbial biomass and activity in organic tomato farming systems:Effects of organic inputs and straw mulching. Soil Biol Biochem,38:247~255
    Vitousek P M and Sanford R L Jr.1986. Nutrient cycling in moist tropical forest. Annu. Rev Ecol Syst,17:137~167
    Wallenstein M D, Hess A M, Lewis M R, Steltzer H, Ayres E.2010. Decomposition of aspen leaf litterresults in unique metabolomes when decomposed under different tree species. Soil Biol Biochem,42:484~490
    Waller, G R, Kmnari D, Friedman N.1986. Caffeine autotoxicity in coffee arabica [A]. In the Science ofAllelopathy (by Pumam, A. R., and Tang, C. S., John Wiley&Sons). New York:243~265
    Wang C H, Cheng Z H, Niu Q, Liang J N and Xue S H.2009. J. Northwest A&F Univ Natur Sci Edit,37(7):103~109
    Wang P, Liang W J, Kong C H.2005. Allelopathic potentials of volatile allelochemicals of Ambrosiatrifida L. on other plants. Allelopathy J,15(1):131~136
    Wang Y, Brown H N, Crowley D E, Szaniszlo P J.1993. Evidence of the direct utilization of a siderophore,ferioaximine B in axenically grown cucumber. Plant Cell Environ,16:579~585
    Wei L, Cheng Z H and Zhang L.2008. J. Northwest A&F Univ Natur Sci Edit,36(10):139~145
    Weller D M.1988. Biological control of soilborne plnat pathogens in the rhtizosphere with bacteria.Phytopathology,26:379~407
    Weston L A.1996. Ultilization of allelopathy for weed management in agroecosystems. Agron J,8:860~866
    Whittaker R H and Feeny P P.1971. Allelochemicals:Chemical interactions between species. Science,171(3937):757~770
    Williams S M, Weil R R.2004. Crop cover root channels may alleviate soil compaction effects on soybeancrop. Soil Sci Soc Am J,68:1403~1409
    Williamson G, Richardson D.1988. Bioassay for allelopathy: Measuring treatment response withindependent controls. J Chem Ecol,14:181-188
    Williamson G B,Obee E M, Weisenhamer J D.1992. Inhibition of Schizachyrium scoparium by theallelochemical hydrocinnamic acid. J Chem Ecol,18:2095~2205
    Wu A P, Yu H, Gao S Q, Huang Z Y, He W M, Miao S L and Dong M.2009. Differential belowgroundallelopathic effects of leaf and root of Mikania micrantha. Trees Struct Funct,23:11~17
    Xu H, Griffith M, Patten C L, Glick B R.1998. Isolation of an antifreeze protein with ice nucleationactivity from the plnat growth promoting rhizobacterium pseudomonas putida GR12-2.Can JMicrobiol,44:64~73
    Yakle G A and. Cruse K M.1983. Complant residue age and placement effects upon early corn growth.Can J Plant Sci,63:871~877
    Yakle G A and Cruse R M.1984. Effects of fresh and decomposing corn plant residues extracts on cornseedling development. Soil Sci Soc Am J,48:1143~1146
    Yamashi H.1986. Effects of resistant plants a catch crop on the reduction of resting spores of clubroot insoil. J Jan Soc Hortic Sci,54:460~466
    Yao H Y, Jiao X D, Wu F Z.2008. Effects of continuous cucumber cropping and alternative rotationsunder protected cultivation on soil microbial community diversity. Plant Soil,284:195~203
    Yu J Q.1999. Allelopathic suppression of Pseudononas solanacearum infection of tomato in atomato-chinese-chive intercropping system. J Chem Ecol,25(11):2409~2417
    Yu J Q, Ye S F, Zhang M F, Wen H H.2003. Effects of root exudates and aqueous root extracts ofcucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes incucumber. Biochem Syst Ecol,31:129~139
    Yu J Q, Yoshihisa M.1993. Extract and identification of phytotoxic substances accumulated in nutrientsolution for hydroponic culture of tomato. Soil Science and plant Nutrition,39(4):691~700
    Zak D R, Kling G W.2006. Microbial community composition and function across an arctic tundralandscape. Ecol,87:1659~1670
    Zeng R S.2008. Allelopathy in Chinese ancient and modern agriculture. In: Zeng R S, Azim U, Mallik andLuo S M (Eds), Allelopathy in Sustainable Agriculture and Forestry. America: Springer Press:37~59
    Zibilske L M, Materon L.2005. Biochemical properties of decomposing cotton and corn stem and rootresidues. Soil Sci Soc Am J,69:375~386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700