用户名: 密码: 验证码:
动圈式磁浮平面电机电磁结构设计与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁浮平面电机是一种平面运动机构,动子通过磁场悬浮在定子表面并实现大行程平面运动。由于磁浮方式没有机械接触,相比于依靠直线电机正交组合驱动的传统平面运动机构,具有运动结构简单、无摩擦磨损和运动质量轻等特点,易于实现高速和高加速,并利于双工件台交换,是新型高性能光刻机的核心驱动部件以及下一代极紫外光刻机的运动必需部件。
     电磁结构是磁浮平面电机的硬件基础,获得驱动效率高、谐波干扰小、工艺性好的平面电机电磁结构,是磁浮平面电机设计的核心。
     论文提出了一种新的永磁阵列结构,研究了基于该结构的动圈式磁浮平面电机。具体进行了电机磁场的建模分析,并推导了更加精确的电机电磁力和力矩计算模型:建立了用于控制的计算模型;进行了动圈式磁浮平面电机的综合设计,以及对电机特性的仿真评估。主要研究内容和成果有:
     对Halbach永磁阵列结构进行改进,提出了一种新的阵列拓扑结构,将截面为等腰梯形的直四棱柱引入到电机永磁阵列的结构设计中。与现有的Halbach永磁阵列相比,该结构使电机获得了更高的磁场强度,同时使磁场分布具有更好的谐波特性。
     采用谐波法,建立了带有梯形永磁体的二维Halbach永磁阵列磁场分布的数学模型。通过采用投影法、傅里叶级数法、磁标量法、分离变量法和待定系数法等方法,推导出了该永磁磁浮平面电机磁场的磁场强度分布公式,并根据电磁场边界条件,计算出了磁场磁通密度分布的谐波模型。
     在电磁力与力矩计算中,提出一种三维磁场中线圈圆弧拐角的力和力矩的精确积分方法,将目前电机线圈使用的矩形简化模型提高到全尺寸精确计算模型,并可用于实时计算。与现有的计算模型相比,该模型有效提高了电机电磁力和力矩的计算精度。
     进行了电机电磁结构的优化分析。从提高磁场强度和降低高次谐波的角度出发,采用遗传优化方法进行了电机磁场的优化,使得永磁阵列在相同材料、极距和厚度的情况下,具有更高的磁场强度和更好的磁场分布特性,由此提高电机的驱动能力;从提高单位质量的线圈产生的驱动力出发,采用二次规划等优化方法,获得线圈的最佳尺寸。
     在动圈式磁浮平面电机电磁结构的设计中,从电机的可控性、端部效应和线圈的排列方式等角度出发,综合分析了电机设计需要考虑的问题,并通过多种设计方案的对比,建立了实现高效率、低功耗的设计过程与方法。
     对新型电机的特性进行了分析和评估。通过对电机的永磁体工作点进行分析,确定了永磁体磁通密度最低点所处的位置,以及永磁体的退磁曲线,选定了合适的永磁材料;通过对涡流损耗进行分析,确定了涡流损耗的来源,建立了降低涡流损耗的方法:通过对线圈阵列的发热进行分析,得到了各种工况下的温度分布情况,为冷却系统的设计提供基础;通过对自感、互感和反向电动势等特性进行分析,确定了线圈端口电压的计算方法;通过对磁场强度、电机驱动力和谐波特性进行评估,得到了样机的具体特性。
     论文通过有限元仿真验证了磁场谐波模型、简化解析模型的正确性,通过全谐波模型验证了线圈全尺寸实时控制模型的精确性。基于以上电磁结构、模型和方法,本文建立的磁浮平面电机的电磁结构设计和优化方法,可为该新型驱动部件的设计、应用和控制提供技术基础。
Magnetically levitated planar actuators, which are planar motion structures, are composed of a stator and a translator. The translator of these planar actuators is suspended above the stator with no support other than magnetic fields, and can realize large range planar motion. Because of the active magnetic bearing the translator can move in six degrees-of-freedom. Compared with the traditional xy-drives with stacked linear motors, this type of planar motors with simple structure, high speed and high precision can be used in ultra violet and extreme ultra violet semiconductor lithography systems as one lynchpin of them.
     Electromagnetic structure is the basis of magnetically levitated planar actuators. Therefore, designing an electromagnetic structure with higher efficiency, lower harmonic interference, and better manufacturability is one lynchpin of improving the performance of a magnetically levitated planar motor.
     This thesis researches on a novel magnetically levitated planar actuator with moving coils. A new2-D Halbach permanent magnet array with higher flux density and lower harmonic components is presented. The flux density distribution of the new array is modeled and analyzed, and the simple analytical model of which for real-time control is built. A more accurate real-time control model for planar motors is solved. The synthesis design method for this motor is established, and the characters of the electromagnetic structure of the motor are analyzed and estimated by simulation. The main research contents and achievements are as follows,
     Firstly, by improving the current Halbach permanent magnet arrays, a new2-D Halbach magnet array with trapezoidal magnets is invented and adopted in the design of the planar motor. The trapezoidal magnets, which have a45°magnetization direction, can reduce the high-order harmonics and increase the intensity of the magnetic field in the air-gap.
     Secondly, the harmonic model of the flux density distribution of the new array is solved by using the Fourier Series Method and the scalar magnetic potential equation.
     Thirdly, a more accurate real-time control model of the magnetically levitated ironless planar motor is solved by deriving the numerical model of the corner segments of the coil with the theory of the composite numerical integral rule and the Newton-Leibniz formula.
     Fourthly, a special optimization method for the electromagnetic structure of this new planar motor is built. The new array has higher magnetic field intensity with low high-order harmonics in the air-gap by minimizing the high-order harmonics in z-component of the flux density distribution between those two models. The coil requires the highest force produced by per unit mass with the sequential quadratic programming optimization method.
     Then, the design method of the new planar motor is built by synthesis considering the controllability of the motor, end effects of the magnet array, and coil arrangement. Subsequently, four planar actuator configurations are designed and compared. The design proposal with the lowest power dissipation is selected.
     Finally, the characters of the electromagnetic structure of the motor such as the work point of the magnet array, the eddy-current damping, the copper loss, and the electromotive force are analyzed and estimated by simulation. By analyzing the work point of the magnet array, the material of the array is selected. By analyzing the eddy-current damping, the method of reducing the damping force is built. By analyzing the thermal distribution of the coil array under different conditions, the design foundation of the cooling system for the motor is established. By analyzing the self-inductance, the mutual inductance, and reverse electromotive force, the calculation method of the port voltage of the coil is derived. And by estimating the flux intensity of the magnet array, the thrust force and the force ripples of the motor, the characters of the electromagnetic structure of the motor is obtained.
     In this thesis, the correctness of the harmonic model and the analytical model of the magnetic flux density of the motor is verified by using the finite-element method, and the accuracy the new real-time control model is checked by the full harmonic model of the planar motor used by Jansen. Based on the electromagnetic structure, the model, the design and the optimization method of the new motor, this thesis presents a fundamental theory of designing and optimizing the electromagnetic structure of the novel magnetically levitated planar actuator.
引文
[1]苏雪莲.新世纪光刻技术及光刻设备的发展趋势.微电子技术,2001,29(2):8-17.
    [2]巩岩,张巍.193nm光刻曝光系统的现状及发展.中国光学与应用光学,2008,1(1):25-35.
    [3]宋文荣,于国飞,王延风等.六维磁悬浮纳米级精密工件台的研究.微细加工技术,2003.03(1):15-20.
    [4]刘丹,程兆谷,高海军等.步进扫描投影光刻机工件台和掩模台的进展.激光与光电子学进展.2003,40(5):14-20.
    [5]周辉,杨海峰.光刻与微纳制造技术的研究现状及展望.微纳电子技术,2012,49(9):613-616.
    [6]金春水.极紫外投影光刻中若干关键技术研究:[博士学位论文].中国科学院长春光学精密机械与物理研究所,2002.
    [7]朱涛.极紫外光刻机工件台精密机械及控制相关技术:[博士后研究工作报告].中国科学院电工研究所,2006.
    [8]穆海华,周云飞,周艳红.步进扫描光刻机扫描运动轨迹规划及误差控制.机械工程学报,2010,46(2):166-171.
    [9]腾伟,柳亦兵,穆海华.光刻机工作台超精密运动与同步控制.机械工程学报,2011,47(11):185-190.
    [10]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备.2004.02(109):25-44.
    [11]董吉洪,田兴志,李志来等.100nm步进扫描投影光刻机工件台、掩膜台的发展.微纳科学与技术,2004,11(5):20-24.
    [12]Jin Lei, Xin Luo, Xuedong Chen, et al. Modeling and Analysis of a 3-DOF Lorentz-Force-driven Planar Motion Stage for NanoPositioning. Mechatronics, 2010,20(5):553-565.
    [13]http://www.asml.com/asml/show.do?lang=EN&ctx=46772&dfp_product_id=822.
    [14]J. W. Jansen, "Magnetically Levitated Planar Actuator with Moving Magnets: Electromechanical Analysis and Design," Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, Nov.2007.
    [15]郝晓红,梅雪松,张东升等.新型磁悬浮精密定位平台的研究.西安交通大学学报,2005,39(9):938-940.
    [16]Hao Jiang, Xueliang Huang, Gan Zhou, et al. Analytical Force Calculations for High-Precision Planar Actuator with Halbach Magnet Array, IEEE Transactions on Magnetics,2009.
    [17]周赣,黄学良,张前等.气磁混合悬浮型六自由度平面电机.中国专利:CN101510745,2009.08.19.
    [18]寇宝泉,张千帆,程树康.短行程多自由度磁悬浮平面电机.中国专利:CN101741289A,2010.06.16.
    [19]朱煜,张鸣,汪劲松等.采用磁悬浮平面电机的硅片台多台交换系统.中国专利:CN101609265,2009.12.23.
    [20]朱煜,张鸣,汪劲松.采用三维永磁阵列的平面电机.中国专利:CN101610054,2009.12.23.
    [21]寇宝泉,张千帆,程树康.长行程高精度多自由度平面电机.中国专利:CN101752983A,2010.06.23.
    [22]Wei Min, Ming Zhang, Yu Zhu, Badong Chen, Guanghong Duan, Jinchun Hu, and Wensheng Yin, Analysis and Optimization of a New 2-D Magnet Array for Planar Motor, IEEE Trans. Magn.46 (2010) 1167-1171.
    [23]Wei Min, Ming Zhang, Yu Zhu, Feng Liu, Guanghong Duan, Jinchun Hu, Wensheng Yin, "Analysis and Design of Novel Overlapping Ironless Windings for Planar Motors, " IEEE Trans. Magn., vol.47, no.11, Nov.2011.
    [24]Zhang Shengguo, Zhu Yu, Yin Wensheng, et al. Building and Verifying the Force/Torque-Decomposing Model of a Magnetically Levitated Stage with Moving-Coils.2010 International Conference on Electrical and Control Engineering,2010.
    [25]Yu Zhu, Shengguo Zhang, Haihua Mu, et al. Augmentation of Propulsion Based on Coil Array Commutation for Magnetically Levitated Stage. IEEE Trans. Magn., Vol. 48, No.1, Jan.2012.
    [26]寇宝泉,张赫,潘东华等.平面电动机的发展现状(Ⅰ).微特电机,2011(1):61-64.
    [27]寇宝泉,张赫,潘东华等.平面电动机的发展现状(Ⅰ).微特电机,2011(2):67-71.
    [28]曹家勇,朱煜,汪劲松等.平面电动机设计、控制与应用综述.电工技术学报,2005,20(4):1-8.
    [29]黄声华.三维电动机及其控制系统.武汉:华中理工大学出版社,1998.
    [30]潘剑飞,曹广忠,张.平面电机设计与控制.北京:科学出版社,2011.
    [31]Fujii N, Kihara T. Surface induction motor for two dimensional drive. Transactions of IEEE of Japan, Part D,1998,118-D (2):221-228.
    [32]Fujii N.; Fujitake M., Hara, K., Two-dimensional motion motor with circular core and plural divided windings supplied separately. IEEE Trans. Magn.35 (1999) 4010-4012.
    [33]Fujii N. Fujitake M., Two-dimensional drive characteristics by circular-shaped motor. IEEE Transactions on Industry Applications,1999,35(4):803-809.
    [34]Ohira Y, Yamamoto Y, Takeuehi K, Magnetic Circuit Analysis of X-Y Linear Induction Motor. Transactions of IEEE of Japan,1989,109-D:675-681.
    [35]Dittrich P.; Radeck D.,3-DOF Planar Induction Motor.2006 IEEE International Conference on Electro/information Technology,2006, Page(s):81-86.
    [36]Pelta E R. Two-axis sawyer motor for motion systems. IEEE Control Systems Magazine,1987,7 (5):20-24.
    [37]Luo R C, Tzou H J. Investigation of a linear 2-D planar motor based rapid tooling system. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, May 11-15,2002:1471-1476.
    [38]Pan J F. A 2D variable reluctance planar motor. Hong Kong:Hong Kong Polytechnic university,2007.
    [39]Jiayong Cao, Yu Zhu, Wensheng Yin, and Wei Xu, Electromagnetic Forces Acting on the Planar Armature of a Core-Type Synchronous Permanent-Magnet Planar Motor. IEEE Trans. Magn., VOL.45, NO.8, AUGUST 2009.
    [40]Ebihara D, Watanobe T, Watada M. Characteristic analysis of surface motor[J]. IEEE Transaction s on magnetics,1992,28 (5):3033-3035.
    [41]W.-J. Kim, High-Precision Planar Magnetic Levitation, Ph.D. thesis, Massachusetts Inst. Technol., Cambridge, Jun.1997.
    [42]Han-Sam Cho, Chang-Hwan Im, and Hyun-Kyo Jung, Magnetic Field Analysis of 2-D Permanent Magnet Array for Planar Motor, IEEE Trans. Magn.37 (2001) 3762-3766.
    [43]I. Etxaniz, A. Izpizua, M. S. Martin, J. Arana, and M. Axpe, "Design of magnetically levitated 2D drive," COMPEL-lnt. J. Comput. & Math. Electr. & Electron. Eng., vol.25, no.3, pp.732-740,2006.
    [44]K. S. Jung and Y. S. Baek, "Precision stage using a non-contact planar actuator based on magnetic suspension technology," Mechatronics, vol.13, no.8-9, pp. 981-999,2003.
    [45]J. C. Compter, Electro-dynamic planar motor, Precision Eng.28 (2004) 171-180.
    [46]J. C. Compter, P. C. M. Frissen, and J. van Eijk, "Displacement device," Patent WO 2006/075 291 A2, Jul.20,2006.
    [47]Jeon J W, Caraiani M, Kim Y J, et al. Development of Magnetic Levitated Stage for Wide Area Movements. International Conference on Electrical Machines and Systems.2007:1486-1491.
    [48]Yasuhito Ueda and Hiroyuki Ohsaki, "Six-Degree-of-Freedom Motion Analysis of a Planar Actuator With a Magnetically Levitated Mover by Six-Phase Current Controls," IEEE TRANSACTIONS ON MAGNETICS, VOL.44, NO.11, NOVEMBER 2008.
    [49]Asakawa, "Two dimensional positioning devices," U.S. Patent 4 626 749, Dec. 1986.
    [50]Chitayat, "Two-axis motor with high density magnetic platen," U.S. Patent 5 777 402, July 1998.
    [51]D. L. Trumper, W. J. Kim, and M. E.Williams, "Magnetic arrays," U.S. Patent 5 631618, May 1997.
    [52]雷勇.磁悬浮式微动工作台的设计与建模研究:[硕士学位论文].浙江理工大学,2006.
    [53]王文,李欣欣,陈子辰等.基于平面电机与超磁致伸缩驱动器的精密定位平台.中国专利:CN101000807,2007.07.18.
    [54]郭宁平.磁悬浮掩膜台的结构设计:[硕士学位论文].中南大学,2011.
    [55]杨显清,赵家升,王园.电磁场与电磁波.北京:国防工业出版社,2005.
    [56]同济大学数学系.高等数学.高等教育出版社.2007.
    [57]Bhag Singh Guru, and Hiiseyin R. Hiziroglu, Electromagnetic field theory fundamentals, Cambridge University Press,2004.
    [58]李景天,宋一得,郑勤红等.用等效磁荷法计算永磁体磁场.云南师范大学学报,1999(2):33-36.
    [59]E. P. Furlani, Permanent magnet and electromechanical devices. San Diego, CA: Academic Press,2001.
    [60]苟晓凡,杨勇,郑晓静.矩形永磁体磁场分布的解析表达式.应用数学和力学,2004(3):271-278.
    [61]D. L. Trumper, W. J. Kim, and M. E. Williams, "Design and analysis framework for linear permanent-magnet machines," IEEE Trans. Ind. Applicat., vol.32, no.2, pp.371-379, Mar./Apr.1996.
    [62]H. S. Cho and H. K. Jung, "Analysis and design of synchronous permanentmagnet planar motors," IEEE Trans. Energy Conversion, vol.17, no.4, pp.492-499, Dec. 2002.
    [63]P. J. McKerrow, Introduction to robotics. Syndney, Australia:Addison-Wesley Publishers Ltd.,1991.
    [64]Zhang Yuqiu, Yu Minghu, Liu Xiao, Ye Yunyue, "Field and Thrust Analysis of linear servo motor with permanent-magnet of different shapes," 2010 International Conference on Electrical Machines and Systems (ICEMS),2010, Page(s):1516-1519.
    [65]Yuqiu Zhang, Zilong Yang, Minghu Yu, Kaiyuan Lu, Yunyue Ye, and Xiao Liu, "Analysis and Design of Double-Sided Air Core Linear Servo Motor With Trapezoidal Permanent Magnets, "IEEE Trans. Magn., Vol.47, No.10, Oct.2011.
    [66]Li Huang, Xueliang Huang, Hao Jiang, and Gan Zhou, "Comparative Study of Magnetic Fields Due to Types of Planar Permanent Magnet Array," International Conference on Electrical and Control Engineering, DOI 10.1109/Icece.2010.844.
    [67]D. Bleecker and G. Csordas, Basic Partial Differential Equations. Boston, MA: International Press,1996.
    [68]"Maxwell 12 User's Guide," Ansoft, Pittsburgh, PA.
    [69]E. M. H. Kamerbeek, "On the theoretical end experimental determination of the electromagnetic torque in electrical machines," Ph.D. dissertation, Technische Hogeschool Eindhoven,1970.
    [70]M. B. Binnard, Six degree of freedom control of planar motors, U.S. Patent Application 2003/0 085 676, May 8,2003.
    [71]T. Teng, T. Ueda, S. Makinouchi, and B. Yuan, "Moving magnet type planar motor control," in Proc. of the 1st Int. Conf. on Positioning Technology, Hamamatsu, Japan, Jun.2004, pp.203-208.
    [72]C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications. Wiley,1971.
    [73]杨明,刘先忠.矩阵论.武汉:华中科技大学出版社,2005.
    [74]Bhag Singh Guru, and Hiiseyin R. Hiziroglu, Electromagnetic field theory fundamentals, Cambridge University Press,2004.
    [75]W. Potze and P. C. M. Frissen, "Method for controlling an electric motor, control unit and electri motor," Patent WO 2006/054 243 A2, May 26,2006.
    [76]C. M. M. van Lierop, "Magnetically levitated planar actuator with moving magnets," Ph.D. dissertation, Eindhoven University of Technology,2008.
    [77]C. M. M. van Lierop, J. W. Jansen, A. A. H. Damen, E. A. Lomonova, P. P. J. van den Bosch, and A. J. A. Vandenput, "Model based commutation of a longstroke magnetically levitated linear actuator," in Conference record of the 2006 IEEE Industry Applications Conference 41st Annual Meeting, Tampa, Florida, Oct.2006.
    [78]C. M. M. van Lierop, J. W. Jansen, A. A. H. Damen, and P. P. J. van den Bosch, "Control of multi-degree-of-freedom planar actuators," in Proc. of the 2006 IEEE International Conference on Control Applications, CCA 2006, Munich, Germany, Oct.2006, pp.2516-2521.
    [79]C. M. M. van Lierop, J. W. Jansen, E. A. Lomonova, A. A. H. Damen, P. P. J. van den Bosch, and A. J. A. Vandenput, "Commutation of a magnetically levitated planar actuator with moving magnets," in Proc. of the 6th international symposium on linear drives for industrial applications, Sep.2007.
    [80]C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications. Wiley,1971.
    [81]J. F. Gieras and M. Wing, Permanent magnet motor technology,2nd ed. New York, NY:Marcel Dekker, Inc,2002.
    [82]D. Hanselmann, Brushless permanent magnet motor design,2nd ed. Cranston, Rhode Island, USA:The writers'collective,2003.
    [83]J. R. Hendershot, jr. and T. J. E. Miller, Design of brushless permanent-magnet motors. Hillsboro, OH:Magna Physics Publishing,1994.
    [84]M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming, theory and algorithms,2nd ed. Hoboken, NJ:John Wiley & Sons,1993.
    [85]Jeroen de Boeij, Elena Lomonova, and Andre Vandenput, "Modeling Ironless Permanent-Magnet Planar Actuator Structures," IEEE Trans. Magn., Vol.42, No.8, August 2006.
    [86]Baoquan Kou, He Zhang,Liyi Li, Analysis and Design of a Novel 3-DOF Lorentz-force-driven DC Planar Motor, IEEE Trans. Magn., Vol.47, No.15, August 2011.
    [87]M. P. Perry, "Eddy current damping due to a linear periodic array of magnetic poles," IEEE Trans. Magn., vol.20, pp.149-155,1984.
    [88]R. L. Stoll, The analysis of eddy currents. Oxford, UK:Oxford University Press, 1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700