用户名: 密码: 验证码:
基于固液相变传热介质的动力电池热管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济、社会的不断发展和人们生活水平的不断提高,交通行业节能与减排的重要性也将日益突出。电动汽车因具有低能耗与零排放的双重优势,近年来发展迅速。发展电动汽车,关键是动力电池。无论是传统的铅酸,还是性能先进的镍氢、锂离子电池,温度对电池性能都有非常显著的影响,温度过高或过低均不利于电池性能的发挥。为延长动力电池循环寿命,提升电动汽车整车性能,进而推动电动汽车的发展与应用,本文根据电池的产热规律,通过实验与数值模拟相结合的方法,分别对基于固液相变传热介质/材料(PCM, phase change medium or material)、热管以及热管与PCM耦合传热的电池热管理系统中的热量传递规律进行了研究,并采用分子动力学和耗散粒子动力学的方法,对PCM强化传热的微观机理进行了探讨。主要研究内容与结论如下:
     1、针对圆柱形锂离子动力电池,设计了基于PCM的电池散热系统,并分别建立了单体电池、电池模块散热系统的模型,研究了PCM的导热系数、用量以及环境因素对电池与电池模块热量传递与分布的影响。结果表明:(1)增加PCM导热系数有助于强化PCM内部的热量传递,降低电池与PCM接触界面处的温度梯度以及单体电池和电池模块的最高温度,但PCM导热系数增加至一定值后,对电池最高温度的影响不大。(2) PCM欠量时,电池模块局部温差在PCM熔化后将继续增加,且PCM的导热系数越小,增幅越大。PCM足量时,若环境温度为定值,则PCM相变温度越低,电池模块局部温差越小;若PCM相变温度为定值时,则环境温度越高,电池模块局部温差越小。(3)电池搁置或充电时,电池和PCM中的热量能在许可时间内将热量传递至外部环境;电动汽车停置于高温环境时,PCM能有效阻滞环境热量进入电池;当PCM辅以空冷散热时,风速越大,电池模块局部温差越大,但PCM导热系数较大时,局部温差受风速影响不大。
     2、针对方形锂离子动力电池,分别设计了基于PCM的方形锂离子电池散热、加热/保温系统并建立了模型,研究了PCM和电池导热系数的相关性及其对系统传热的影响;并结合方形电池表面的平整结构,实验研究了基于扁平烧结型热管的电池散热系统热量传递与分布规律。结果表明:(1)提高电池导热系数有助于减小系统热阻,PCM导热系数与电池导热系数(kPCM: kc)相同时,倍增PCM导热系数并不能明显强化系统散热,但能强化热量在PCM中的传递,降低电池模块的局部温差。(2)对于电池的加热/保温,PCM加热与空气加热相比,加热时间短,热量分布更均匀,并能满足电池搁置长时间的保温要求。PCM导热系数低有助于减小保温过程中的热量损失,延长保温时间,但会增加电池再次放电时的温升和局部温差,因此,仍需对PCM进行强化传热。(3)针对扁平烧结型热管的电池散热系统,首次提出了有效散热能力与有效均热能力的概念。电池温升和局部温差的控制,必须同时考虑热管的有效散热能力与有效均热能力。
     3、设计了基于振荡热管(OHP, oscillation heat pipe)的方形电池散热系统,并结合PCM的潜热特性,设计了PCM/OHP耦合传热的电池散热系统,实验研究了各系统中OHP摆放位置和电极朝向与电池降温和均温的协同作用。结果表明:(1)要满足电池降温与热量分布均衡性的要求,OHP的启动温度必须低于目标温度,且不高于电池局部温差达到目标温差时所对应的电池最高温度。(2) PCM/OHP散热系统具有比OHP散热系统更好的降温效果。电池电极靠近热管绝热端时,高温端热量迅速通过热管导出,电池最高温度上升至目标温度的时间变长。电极朝向相同时,电池最高温度上升至目标温度的时间以及放电结束时的最高温度受OHP放置角度影响不大。(3)电池电极远离OHP绝热端时,PCM/OHP散热系统的均温效果最好;而电池电极靠近热管绝热端时,热管散热系统的均温效果最好;但PCM/OHP散热系统的稳定性受电极与热管接触方式的影响较小。对PCM进行强化传热,仍是提高PCM/OHP散热系统降温与均温能力的关键。
     4、针对电池热管理系统PCM传热强化的共同特性,以传热介质为研究对象,基于石蜡类PCM的构成,分别建立了单质烷烃、二元混合烷烃以及烷烃/水混合PCM体系的分子模型,对各体系的热质传递机理进行了分子动力学模拟。结果表明:(1)正十九烷与正二十烷固态时的定压比热容与实验值相差最大不超过20%,液态时最大不超过9.5%;温度为288~318K时,正二十二烷导热系数的模拟值介于0.1~0.4W·m~(-1)·K~(-1),与文献中实验值的波动范围相吻合。(2)开氏温标下,单质烷烃的相变温度与文献值和实验值的偏差不超过1%。正十九烷和正二十四烷按1:1和1:3混合时,其熔化温度按自扩散系数预测分别为308.5K和315.2K,按比热预测分别为308.2K和314.6K,偏差不大。(3)在烷烃/水混合PCM体系中,烷烃的加入会降低体系的自扩散系数,宏观行为上体现为粘度增加和导热系数下降。烷烃发生相变时,C-C键和C-H键的扭转、伸缩等行为较为剧烈,体系需要外界提供更多的能量或向外接释放更多的能量,宏观上体现为蓄热或放热。
     5、以烷烃为基材,建立了烷烃与高导热铝粒子混合的PCM分子模型;以烷烃为芯材,二氧化硅为壳材,分别建立了胶囊PCM模型以及胶囊与水混合的PCM模型;研究了粒子粒径、壳材软硬、厚度等对PCM扩散行为的影响。结果表明:(1)通过添加高导热粒子对石蜡类PCM进行强化传热时,粒子的粒径不宜太大,含量不宜过多,否则易出现沉淀或混合不均甚至无法混合的现象,增大传热热阻或热量传递不均。(2)胶囊壳材材质的软硬会影响胶囊类PCM的自扩散,硬质壳材会限制胶囊芯材的扭转、伸缩、振动等,降低芯材固液相变后的流动性;软质材料伸缩性强,能减小不同胶囊之间的接触热阻。(3)胶囊外壳的厚度也会影响胶囊类PCM的自扩散性能,胶囊外壳过厚时,芯材外侧分子链的扭转、拉伸等行为易受约束,流动性减弱。
     6、以烷烃为芯材,分别以三聚氰胺甲醛树脂、甲基三甲氧基硅烷/3-氨丙基三甲氧基硅为壳材,建立了胶囊PCM体系的粗粒化模型,根据介观模拟的方法与理论,通过耗散粒子动力学模拟,研究了胶囊PCM的形成机理和主要影响因素。结果表明:(1)采用与文献中相似的胶囊PCM芯材与壳材材质,成功模拟出正二十二烷/三聚氰胺甲醛树脂胶囊PCM体系的介观核壳结构,并对胶囊化过程进行了机理分析,模拟出芯材过量时胶囊无法包裹的介观形态。(2)模拟出以烷烃为芯材,甲基三甲氧基硅烷和3-氨丙基三甲氧基硅烷为壳材前驱体的胶囊PCM的演化与形成过程,并根据文献中的实验条件对组分的配比进行了分析,得出了芯材含量为62.5%的模拟值(实验值64%),并指出了芯材含量的理论可能值为70%。
     综上,本文结合实验与数值模拟的方法,从宏观、微观、介观多个尺度对电池热管理系统或系统中关键传热介质的热物性进行了研究,研究结果和方法能为新型传热介质的材料与结构设计、电池热管理系统的模块与成组设计提供理论指导和参考。
With the continuous development of economy and society and improvement of people'sliving standards, the importance of energy-saving and emission reduction in transport sectorwill become increasingly prominent. The electric vehicles, with the dual advantages of lowpower consumption and zero emissions, have developed rapidly in recent years. Theperformance of the batteries, including traditional lead-acid and advanced nickel-metalhydride and lithium-ion battery, are significantly affected by the temperature. Excessive highand low temperature can significantly reduce the performance of battery. For the purpose ofextending the cycle life of power battery and improving the performance of electric vehicle,and then promoting the development and application of electric vehicles, in this thesis, theheat transfer characteristic of the difference battery thermal management systems, includingby using phase change medium or material (PCM), heat pipe and heat pipe coupled with PCMas heat transfer medium, were investigated by experimental and numerical simulation. Inaddition, the heat transfer enhancement mechanisms of PCM on microscopic and mesoscopicscale were simulated and discussed by molecular dynamics and dissipative particle dynamicsmethod. The main research contents and conclusions are summarized as follows:
     1. The PCM-based thermal management system was designed for cooling the cylindricallithium-ion battery. And the single battery and battery module cooling systems were modeled.The effect of the thermal conductivity and content of the PCM and the environmental factorson heat transfer and distribution within single battery and battery module were investigated,respectively. The results showed that:(1) with the increasing of thermal conductivity of PCM,the heat transfer in PCM will be enhanced, the temperature gradient of the interface of batteryand PCM, and the maximum temperature of single battery and battery module were decreased.However, the maximum temperature of battery affected slightly after the thermal conductivityof PCM increased to a certain value.(2) The local temperature difference within the batterymodule will continue to increase if the PCM is insufficient, and the smaller the thermalconductivity of the PCM, the greater the increase. The local temperature difference decreaseswith the decrease of the phase change temperature of PCM when the ambient temperature isconstant and the PCM is sufficient. And the local temperature difference decreases with the increase of the ambient temperature if the phase change temperature of PCM is constant.(3)The heat in the battery and PCM can be transferred to the external environment within desiredtime when the battery during unused or charging condition. The heat from outer can beblocked effectively by PCM when the electric vehicle parked in the high temperatureenvironment. The local temperature difference increases with the increase of the velocitywhen the air was used as auxiliary way for cooling the battery, but the local temperaturedifference affected slightly when the thermal conductivity of PCM is high enough.
     2. The PCM-based cooling and heating systems for rectangular lithium-ion battery weredesigned and modeled. The relativity of the thermal conductivity between PCM and batteryand its effect on the heat transfer of the system were investigated. Based on the smoothsurface structure, the flat sintered heat pipes were used for cooling the rectangular battery andthe related heat transfer and distribution characteristic were studied experimentally. Theresults showed that:(1) the thermal resistance of the system can be reduced by increasing thethermal conductivity of battery. The heat transfer of the system cannot be strengthenedsignificantly with the exponentially increased thermal conductivity of PCM when the thermalconductivity of PCM and battery is same. However, the heat transfer in the PCM can bestrengthened and the local temperature difference of the battery module can be reduced.(2)For the battery heating/insulation condition, compared with air heating, the PCM heatingshowed short heating time, more uniform heat distribution and can meet the insulationrequirements if the battery shelved for a long time. The low thermal conductivity of PCM ishelpful for reducing heat loss in the insulation process and extend the insulated time while notconducive to increase the local temperature difference. Therefore, it is also necessary toenhance the heat transfer of PCM.(3) For the flat sintered heat pipes based battery coolingsystem, the concept of the effective cooling capacity and effective average temperaturecapability were first proposed. The effective cooling capacity and effective averagetemperature capability of the heat pipes must be considered simultaneously for controlling thebattery temperature rise and local temperature difference.
     3. The oscillation heat pipe (OHP)-based cooling system for rectangular lithium-ionbattery was designed. And combined with latent heat characteristics of PCM, the PCM/OHPcoupled battery cooling system was also designed. The effect of OHP placement and electrode direction on heat transfer and distribution of the battery were investigated experimentally. Theresults showed that:(1) to meet the requirements including heat dissipation and distributionevenly of the battery, the start temperature of OHP must be lower than the target temperatureof the cooling system and not higher than the corresponding maximum temperature when thebattery local temperature difference reached the target temperature difference.(2) The coolingeffect of PCM/OHP-based cooling system is better than OHP-based cooling system. Whenthe battery electrode close to the adiabatic end of heat pipe, the time of the maximumtemperature of the battery increased to target temperature becomes longer due to the heatwhich accumulated at high-temperature-side of battery can be conducted rapidly through theheat pipe. The time of the maximum temperature of the battery increased to target temperatureand the maximum temperature in the end of discharge are affected slightly by OHP placementwhen the electrode direction of different cooling systems is same.(3) The heat distributedmore evenly in the PCM/OHP-based cooling system when the battery electrode away fromthe OHP adiabatic end. The heat distributed more evenly in the OHP-based cooling systemwhen the battery electrode close to the OHP adiabatic end. In short, the PCM/OHP-basedcooling system showed a better stability. Heat transfer enhancement for PCM is also a keyfactor for heat dissipation in the PCM/OHP-based cooling system.
     4. Based on the common characteristics such as heat transfer enhancement in thedifference battery thermal management system, the research object in this section is focus onPCM. According to the ingredient of paraffin, the molecular model of pure alkane, binarymixed alkanes and alkane/water mixed PCM system were fabricated, respectively. The heatand mass transfer mechanisms were investigated by molecular dynamics simulation method.The results showed that:(1) the difference of simulated isobaric heat capacity ofn-nonadecane and n-eicosane at solid state with experiment value (from literature) does notexceed20%, and at liquid state, not exceed9.5%. The simulated thermal conductivity ofn-docosane, consistent with the fluctuation range of the experimental values in literature, isabout0.1~0.4W·m~(-1)·K~(-1)when the temperature is288~318K.(2) The difference of simulatedphase change temperature of pure alkane with the values from literature and experiment doesnot exceed1%. The melting temperature of n-nonadecane and n-tetracosane were calculatedas308.5K and315.2K by self-diffusion coefficient, as308.2Kand314.6K, by isobaric heat capacity, when the mixed proportion of n-nonadecane and n-tetracosane is1:1and1:3,respectively.(3) In the alkane/water mixed PCM system, the addition of alkane will reducethe self-diffusion coefficient of the system that reflect the increasing of viscosity anddecreasing of thermal conductivity on macroscopic point of view. The twisting and stretchingof C-C bond and C-H bond become more intense during the phase change process of alkaneand lead to more energy absorbed or released on macro.
     5. The alkane and aluminum particles mixed PCM molecular model was fabricated byusing alkane as substrate material. The models such as encapsulated PCM and capsule mixedwith water composite PCM were fabricated by using alkane as core material and silicondioxide as shell material, respectively. The effect of particle size, hard and soft shell material,and the thickness of the shell on diffusion behavior of PCM was investigated. The resultsshowed that:(1) the particle size should not be too large and the content should not be toomuch, otherwise will prone to precipitation phenomenon, mixed uneven even cannot bemixed, and then increase the thermal resistance or distribute the heat uneven.(2) Theself-diffusion of the PCM capsules was affected by the hardness of shell material. The torsion,stretching and vibration of the core material can be restrict by hard shell material, and thenreducing the mobility of the core material after solid-liquid phase change.(3) Theself-diffusion of the PCM capsules was also affected by the thickness of shell material. Thetorsion, stretching and vibration of the core material can be restricted by excessive thick shelland then leading to weaken the mobility of core material.
     6. The coarse-grained models of different encapsulated PCM by using alkane as corematerial were fabricated. And the shell materials are melamine formaldehyde resin, methyltrimethoxysilane/3-aminopropyl trimethoxysilane, respectively. Based on the mesoscopicsimulation methods and theory, the aggregate mechanism of the PCM capsule and the relatedmain factors were investigated by dissipative particle dynamics simulations. The resultsshowed that:(1) according to the reported PCM capsule core and shell matreials, themesoscopic core-shell structure of n-dodecane/melamine formaldehyde resin-based capsulesPCM system was simulated. The encapsulation process and mechanism was analyzed, and themesoscopic morphology of the capsule with excessive core material was simulated.(2) Theevolution and the formation process of the PCM capsule which using alkane as core material and methyl trimethoxysilane/3-aminopropyl trimethoxysilane as precursor of shell materialwere simulated. With the similar core and shell materials, the content of core material in theDPD simulation is62.5%that the value is very close to the reported as64%. The possibletheoretical content of core material is about70%if the experimental conditions can beoptimized.
     In summary, the heat transfer characteristics in the battery thermal management systemsand the thermophysical properties of the main heat transfer medium in the systems wereinvestigated by experimental and numerical method on macroscopic, mesoscopic andmicroscopic point of view in this thesis. The research methods and results can providetheoretical guidance and reference for the new structure design of heat transfer medium andbattery thermal management system.
引文
[1] Statistical Review of World Energy2012[EB/OL]. www.bp.com.2012.06.
    [2] BP Energy Outlook2030[EB/OL]. www.bp.com.2011.01.
    [3] Andersen P.H., Mathews J.A., Rask M. Integrating private transport into renewable energypolicy: The strategy of creating intelligent recharging grids for electric vehicles[J]. EnergyPolicy,2009,37(7):2481-2486.
    [4] Amjad S., Neelakrishnan S., Rudramoorthy R. Review of design considerations andtechnological challenges for successful development and deployment of plug-in hybridelectric vehicles[J]. Renewable&Sustainable Energy Reviews,2010,14(3):1104-1110.
    [5] Dan Y., Gao D.S., Yu G., et al. Investigation of the treatment of particulate matter fromgasoline engine exhaust using non-thermal plasma[J]. Journal of Hazardous materials,2005,127(1-3):149-155.
    [6] Lin Y.C. L.S.H., Chen Y.M., et al. A new alternative paraffinic-palmbiodiesel fuel forreducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty dieselengines[J]. Journal of Hazardous materials,2011,185:1-7.
    [7] Sandy Thomas C.E. Transportation options in a carbon-constrained world: Hybrids,plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles[J].International Journal of Hydrogen Energy,2009,34(23):9279-9296.
    [8] Ross Morrow W., Gallagher K.S., Collantes G., et al. Analysis of policies to reduce oilconsumption and greenhouse-gas emissions from the US transportation sector[J]. EnergyPolicy,2010,38(3):1305-1320.
    [9] Liu C., Li F., Ma L.-P., et al. Advanced Materials for Energy Storage[J]. AdvancedMaterials,2010,22(8): E28-E62.
    [10] Dutil Y., Rousse D.R., Salah N.B., et al. A review on phase-change materials:Mathematical modeling and simulations[J]. Renewable and Sustainable Energy Reviews,2011,15(1):112-130.
    [11] Yuan C., Liu S., Fang Z., et al. Research on the energy-saving effect of energy policies inChina:1982–2006[J]. Energy Policy,2009,37(7):2475-2480.
    [12] Wang Z., Jin Y., Wang M., et al. New fuel consumption standards for Chinese passengervehicles and their effects on reductions of oil use and CO2emissions of the Chinesepassenger vehicle fleet[J]. Energy Policy,2010,38(9):5242-5250.
    [13] Kromer M.A. Electric powertrains: opportunities and challenges in the US light-dutyvehicle fleet [D]. Cambridge: Massachusetts Institute of Technology,2007.
    [14] Chan C.C., Chau K.T. Modern electric vehicle technology [M]. England: OxfordUniversity Press,2001:1-320.
    [15] Wada M. Research and development of electric vehicles for clean transportation[J].Journal of Environmental Sciences,2009,21(6):745-749.
    [16] Nishihara M. Hybrid or electric vehicles? A real options perspective[J]. OperationsResearch Letters,2010,38(2):87-93.
    [17] Avadikyan A., Llerena P. A real options reasoning approach to hybrid vehicleinvestments[J]. Technological Forecasting and Social Change,2010,77(4):649-661.
    [18] Eaves S., Eaves J. A cost comparison of fuel-cell and battery electric vehicles[J]. Journalof Power Sources,2004,130(1-2):208-212.
    [19] Chau K.T., Wong Y.S., Chan C.C. An overview of energy sources for electric vehicles[J].Energy Conversion and Management,1999,40(10):1021-1039.
    [20] Baptista P., Tomás M., Silva C. Plug-in hybrid fuel cell vehicles market penetrationscenarios[J]. International Journal of Hydrogen Energy,2010,35(18):10024-10030.
    [21] Brown S., Pyke D., Steenhof P. Electric vehicles: The role and importance of standards inan emerging market[J]. Energy Policy,2010,38(7):3797-3806.
    [22] Cooper A. Development of a lead-acid battery for a hybrid electric vehicle[J]. Journal ofPower Sources,2004,133(1):116-125.
    [23] Arai J., Yamaki T., Yamauchi S., et al. Development of a high power lithium secondarybattery for hybrid electric vehicles[J]. Journal of Power Sources,2005,146(1-2):788-792.
    [24] Kohno K., Koishikawa Y., Yagi Y., et al. Development of an Aluminum-laminatedLithium-ion battery for Hybrid electric vehicle application[J]. Journal of Power Sources,2008,185(1):554-558.
    [25] Kojima T., Ishizu T., Horiba T., et al. Development of lithium-ion battery for fuel cellhybrid electric vehicle application[J]. Journal of Power Sources,2009,189(1):859-863.
    [26] Gifford P., Adams J., Corrigan D., et al. Development of advanced nickel metal hydridebatteries for electric and hybrid vehicles[J]. Journal of Power Sources,1999,80(1-2):157-163.
    [27] Iwahori T., Mitsuishi I., Shiraga S., et al. Development of lithium ion and lithiumpolymer batteries for electric vehicle and home-use load leveling system application[J].Electrochimica Acta,2000,45(8-9):1509-1512.
    [28] Terada N., Yanagi T., Arai S., et al. Development of lithium batteries for energy storageand EV applications[J]. Journal of Power Sources,2001,100(1-2):80-92.
    [29] Moseley P.T. Characteristics of a high-performance lead/acid battery for electric vehicles-an ALABC view [J]. Journal of Power Sources,1997,67(1-2):115-119.
    [30] Moseley P.T., Cooper A. Progress towards an advanced lead-acid battery for use inelectric vehicles[J]. Journal of Power Sources,1999,78(1-2):244-250.
    [31] Moseley P.T., Bonnet B., Cooper A., et al. Lead-acid battery chemistry adapted forhybrid electric vehicle duty[J]. Journal of Power Sources,2007,174(1):49-53.
    [32] McAllister S.D., Patankar S.N., Cheng I.F., et al. Lead dioxide coated hollow glassmicrospheres as conductive additives for lead acid batteries[J]. Scripta Materialia,2009,61(4):375-378.
    [33] May G.J., Maleschitz N., Diermaier H., et al. The optimisation of grid designs forvalve-regulated lead/acid batteries for hybrid electric vehicle applications[J]. Journal of PowerSources,2010,195(14):4520-4524.
    [34] Zhan F., Jiang L.J., Wu B.R., et al. Characteristics of Ni/MH power batteries and itsapplication to electric vehicles [J]. Journal of Alloys and Compounds,1999,295:804-808.
    [35] Khateeb S.A., Farid M.M., Selman J.R., et al. Design and simulation of a lithium-ionbattery with a phase change material thermal management system for an electric scooter[J].Journal of Power Sources,2004,128(2):292-307.
    [36] Kitoh K., Nemoto H.100Wh Large size Li-ion batteries and safety tests[J]. Journal ofPower Sources,1999,82:887-890.
    [37]马莉.锂离子电池用微孔型聚合物电解质的研究[D].广州:广东工业大学,2008.
    [38] Maleki H., Deng G.P., Anani A., et al. Thermal stability studies of Li-ion cells andcomponents[J]. Journal of the Electrochemical Society,1999,146(9):3224-3229.
    [39] Zhang Z., Fouchard D., Rea J.R. Differential scanning calorimetry material studies:implications for the safety of lithium-ion cells[J]. Journal of Power Sources,1998,70(1):16-20.
    [40] Richard M.N., Dahn J.R. Predicting electrical and thermal abuse behaviours of practicallithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J].Journal of Power Sources,1999,79(2):135-142.
    [41]黄倩.锂离子电池的热效应及其安全性能的研究[D].上海:复旦大学,2007.
    [42] Schilling O., Dahn J.R. Thermodynamic stability of chemically delithiatedLi(LixMn2-x)O-4[J]. Journal of the Electrochemical Society,1998,145(2):569-575.
    [43] MacNeil D.D., Dahn J.R. Test of reaction kinetics using both differential scanning andaccelerating rate calorimetries as applied to the reaction of LixCoO2in non-aqueouselectrolyte[J]. Journal of Physical Chemistry A,2001,105(18):4430-4439.
    [44] Venkatachalapathy R., Lee C.W., Lu W.Q., et al. Thermal investigations of transitionalmetal oxide cathodes in Li-ion cells[J]. Electrochemistry Communications,2000,2(2):104-107.
    [45] Biensan P., Simon B., Peres J.P., et al. On safety of lithium-ion cells[J]. Journal of PowerSources,1999,82:906-912.
    [46]田爽.锂离子电池的热特性研究[D].天津:天津大学,2007.
    [47]饶中浩.锂离子动力电池强化传热关键技术研究[D].广州:广东工业大学,2010.
    [48] Wang C.Y., Srinivasan V. Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling[J]. Journal of PowerSources,2002,110(2):364-376.
    [49] Pesaran A.A. Battery thermal models for hybrid vehicle simulations[J]. Journal of PowerSources,2002,110(2):377-382.
    [50] Somogye R. An aging model of Ni-MH batteries for use in hybrid-electric vehicles [D].Columbus: The Ohio State University,2004.
    [51] Pesaran A.A. Battery Thermal management in EVs and HEVs: Issues and Solutions [A].Advanced Automotive Battery Conference [C], Nevada,2001.
    [52] Kimoto S.,Kanamaru K.,Ikoma M. Battery cooling technology in Nickel/Metal-Hydridebattery for hybrid electric vehicles [C]. The Thirteenth Annual Battery Conference onApplications and Advances [A]. California,1998.
    [53] Ramadass P., Haran B., White R., et al. Capacity fade of Sony18650cells cycled atelevated temperatures Part II. Capacity fade analysis[J]. Journal of Power Sources,2002,112(2):614-620.
    [54] Sarre G., Blanchard P., Broussely M. Aging of lithium-ion batteries[J]. Journal of PowerSources,2004,127(1-2):65-71.
    [55] Wu M.S., Chiang P.C.J. High-rate capability of lithium-ion batteries after storing atelevated temperature[J]. Electrochimica Acta,2007,52(11):3719-3725.
    [56]黎火林,苏金然.锂离子电池循环寿命预计模型的研究[J].电源技术,2008,32(4):242-246.
    [57] Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybridvehicles[J]. Journal of Power Sources,2001,99(1-2):70-77.
    [58] Williford R.E., Viswanathan V.V., Zhang J.-G. Effects of entropy changes in anodes andcathodes on the thermal behavior of lithium ion batteries[J]. Journal of Power Sources,2009,189(1):101-107.
    [59] Tamura K., Horiba T. Large-scale development of lithium batteries for electric vehiclesand electric power storage applications[J]. Journal of Power Sources,1999,82:156-161.
    [60] Onda K., Ohshima T., Nakayama M., et al. Thermal behavior of small lithium-ion batteryduring rapid charge and discharge cycles[J]. Journal of Power Sources,2006,158(1):535-542.
    [61] Leising R.A., Palazzo M.J., Takeuchi E.S., et al. A study of the overcharge reaction oflithium-ion batteries[J]. Journal of Power Sources,2001,97-8:681-683.
    [62] Huang Q., Yan M.M., Jiang Z.Y. Thermal study on single electrodes in lithium-ionbattery[J]. Journal of Power Sources,2006,156(2):541-546.
    [63] Hande A. Internal battery temperature estimation using series battery resistancemeasurements during cold temperatures[J]. Journal of Power Sources,2006,158(2):1039-1046.
    [64] Stuart T.A., Hande A. HEV battery heating using AC currents[J]. Journal of PowerSources,2004,129(2):368-378.
    [65] Duan X., Naterer G.F. Heat transfer in phase change materials for thermal managementof electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer,2010,53(23-24):5176-5182.
    [66] Pesaran A.A., Vlahinos A., Burch S.D. Thermal Performance of EV and HEV BatteryModules and Packs [A].14th International Electric Vehicle Symposium [C], Florida,1997.
    [67] Pesaran A.A., Burch S., Keyser M. An Approach for designing thermal managementsystems for electric and hybrid vehicle battery packs [A]. Fourth Vehicle ThermalManagement Systems Conference and Exhibition [C], London,1999.
    [68] Gould Inc. Thermal management of battery systems [J].Journal of Power Sources,1984,11(3-4):265-266.
    [69] Eck G. Design of the thermal management systems for sodium-sulphur traction batteriesusing battery models [J]. Journal of Power Sources,1986,17(1-3):226-227.
    [70] Patnaik R.S.M., Ganesh S., Ashok G., et al. Heat management in aluminium/air batteries:sources of heat [J]. Journal of Power Sources,1994,50(3):331-342.
    [71] Gruenstern R.G.,Bast R.J., Julin A., et al. Thermal management of rechargeable batteries[J]. Journal of Power Sources,1997,66(1-2):190.
    [72] Zhang Z.L., Zhong M.H., Liu F.M., et al. Heat dissipation from a Ni-MH battery duringcharge and discharge with a secondary electrode reaction[J]. Journal of Power Sources,1998,70(2):276-280.
    [73] Motorola Inc. Method and apparatus for controlling thermal runaway [J]. Journal ofPower Sources,1998,70(2):301-302.
    [74] Arai J., Matsuo A., Fujisaki T., et al. A novel high temperature stable lithium salt(Li2B12F12) for lithium ion batteries[J]. Journal of Power Sources,2009,193(2):851-854.
    [75] Khateeb S.A., Amiruddin S., Farid M., et al. Thermal management of Li-ion battery withphase change material for electric scooters: experimental validation[J]. Journal of PowerSources,2005,142(1-2):345-353.
    [76] Sabbah R., Kizilel R., Selman J.R., et al. Active (air-cooled) vs. passive (phase changematerial) thermal management of high power lithium-ion packs: Limitation of temperaturerise and uniformity of temperature distribution[J]. Journal of Power Sources,2008,182(2):630-638.
    [77] Kise M., Yoshioka S., Hamano K., et al. Development of new safe electrode for lithiumrechargeable battery[J]. Journal of Power Sources,2005,146(1-2):775-778.
    [78] Kise M., Yoshioka S., Kuriki H. Relation between composition of the positive electrodeand cell performance and safety of lithium-ion PTC batteries[J]. Journal of Power Sources,2007,174(2):861-866.
    [79] Yoshizawa H., Ikoma M. Thermal stabilities of lithium magnesium cobalt oxides for highsafety lithium-ion batteries[J]. Journal of Power Sources,2005,146(1-2):121-124.
    [80] Wang Q.S., Sun J.H. Enhancing the safety of lithium ion batteries by4-isopropyl phenyldiphenyl phosphate[J]. Materials Letters,2007,61(16):3338-3340.
    [81] Botte G.G., White R.E., Zhang Z.M. Thermal stability of LiPF6-EC: EMC electrolytefor lithium ion batteries[J]. Journal of Power Sources,2001,97-8:570-575.
    [82] Ravdel B., Abraham K.M., Gitzendanner R., et al. Thermal stability of lithium-ionbattery electrolytes[J]. Journal of Power Sources,2003,119:805-810.
    [83] Ma S., Noguchi H. High temperature electrochemical behaviors of ramsdellite Li2Ti3O7and its Fe-doped derivatives for lithium ion batteries[J]. Journal of Power Sources,2006,161(2):1297-1301.
    [84] Lackner A.M., Sherman E., Braatz P.O., et al. High performance plastic lithium-ionbattery cells for hybrid vehicles[J]. Journal of Power Sources,2002,104(1):1-6.
    [85] Xu K., Zhang S.S., Allen J.L., et al. Nonflammable electrolytes for Li-ion batteries basedon a fluorinated phosphate[J]. Journal of the Electrochemical Society,2002,149(8):A1079-A1082.
    [86] Arai J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether forlithium secondary batteries[J]. Journal of Applied Electrochemistry,2002,32(10):1071-1079.
    [87] Zhang S.S., Xu K., Jow T.R. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent fornonflammable electrolytes in Li-ion batteries [J]. Journal of Power Sources,2003,113(1):166-172.
    [88] Yoshimoto N., Niida Y., Egashira M., et al. Nonflammable gel electrolyte containingalkyl phosphate for rechargeable lithium batteries[J]. Journal of Power Sources,2006,163(1):238-242.
    [89] Yoshimoto N., Gotoh D., Egashira M., et al. Alkylphosphate-based nonflammable gelelectrolyte for LiMn2O4positive electrode in lithium-ion battery[J]. Journal of PowerSources,2008,185(2):1425-1428.
    [90] Feng J.K., Sun X.J., Ai X.P., et al. Dimethyl methyl phosphate: A new nonflammableelectrolyte solvent for lithium-ion batteries[J]. Journal of Power Sources,2008,184(2):570-573.
    [91] Wu L., Song Z., Liu L., et al. A new phosphate-based nonflammable electrolyte solventfor Li-ion batteries[J]. Journal of Power Sources,2009,188(2):570-573.
    [92] Sazhin S.V., Harrup M.K., Gering K.L. Characterization of low-flammability electrolytesfor lithium-ion batteries☆[J]. Journal of Power Sources,2011,196(7):3433-3438.
    [93] Zahran R.R. Thermal conductivity of copper reinforced carbon electrodes [J]. Journal ofPower Sources,1990,10(3):93-98.
    [94] Zahran R.R. Thermal conductivity of aluminum reinforced graphite electrodes [J].Journal of Power Sources,1990,10(4-5):187-190.
    [95] Maleki H., Selman J.R., Dinwiddie R.B., et al. High thermal conductivity negativeelectrode material for lithium-ion batteries[J]. Journal of Power Sources,2001,94(1):26-35.
    [96] Pesaran A., Vlahinos A., Stuart T. Cooling and Preheating of Batteries in HybridElectric Vehicles [A]. The6th ASME-JSME Thermal Engineering Joint Conference [C],Hawaii,2003.
    [97] Chen Y.F., Song L., Evans J.W. Modeling studies on battery thermal behaviour, thermalrunaway, thermal management, and energy efficiency [A]. Proceedings of the31stIntersociety Energy Conversion Engineering Conference [C], DC,1996.
    [98] Jung D.Y., Lee B.H., Kim S.W. Development of battery management system fornickel-metal hydride batteries in electric vehicle applications[J]. Journal of Power Sources,2002,109(1):1-10.
    [99] Zolot M., Pesaran A.A., Mihalic M. Thermal Evaluation of Toyota Prius Battery Pack
    [A]. Future Car Congress [C]. Hyatt Crystal City,2002.
    [100] Mahamud R., Park C. Reciprocating air flow for Li-ion battery thermal management toimprove temperature uniformity[J]. Journal of Power Sources,2011,196(13):5685-5696.
    [101]焦洪杰,宋健,蔡世芳等.混合动力汽车用镍氢电池组通风冷却装置[P].中国,ZL01270981.6,2002.08.14.
    [102]楼英莺.混合动力车用镍氢电池散热系统研究[D].上海:上海交通大学,2007.
    [103]梁昌杰.混合动力车用镍氢电池组散热性能CFD仿真与试验研究[D].重庆:重庆大学,2010.
    [104]许超.混合动力客车电池包散热系统研究[D].上海:上海交通大学,2010.
    [105] Choi K.W., Yao N.P. Heat transfer in lead-acid batteries designed for electric-vehiclepropulsion application [J]. Journal of the Electrochemical Society,1979,126(8):1321-1328.
    [106] Chen Y.F., Evans J.W. Heat transfer phenomena in lithium/polymer-electrolyte batteriesfor electric vehicle application [J]. Journal of the Electrochemical Society,1993,140(7):1833-1838.
    [107] Nelson P., Dees D., Amine K., et al. Modeling thermal management of lithium-ionPNGV batteries[J]. Journal of Power Sources,2002,110(2):349-356.
    [108] Chen S.C., Wan C.C., Wang Y.Y. Thermal analysis of lithium-ion batteries[J]. Journal ofPower Sources,2005,140(1):111-124.
    [109] Harmel J., Ohms D., Guth U., et al. Investigation of the heat balance of bipolarNiMH-batteries[J]. Journal of Power Sources,2006,155(1):88-93.
    [110] Kim G.H., Pesaran A.A. Battery Thermal Management System Design Modeling [A].22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition[C].Yokohama,2006.
    [111]王建群,南金瑞,孙逢春.一种电动汽车电池风扇网格化控制技术[P].中国,CN1570799A,2001.01.26.
    [112]王坤俊,刘明剑,汪伟等.一种用于串联式混合动力客车的动力电池通风方式与装置[P].中国, CN10136967A,2009.02.18.
    [113] Kuwana Y.M., Chiryu Y.I. Battery cooling apparatus with sufficient cooling capacity[P]. US7152417B2,2006.12.26.
    [114] Kakogawa H.S. Battery array for cooling battery modules with cooling air [P]. US7858220B2,2010.12.28.
    [115] Mottard J.M., Hannay C., Winandy E.L. Experimental study of the thermal behavior ofa water cooled Ni-Cd battery[J]. Journal of Power Sources,2003,117(1-2):212-222.
    [116]张国庆,吴忠杰,张海燕.带液体冷却系统的夹套式混合电动车电池装置[P].中国, CN101222077B,2010.05.19.
    [117]吴忠杰,张国庆.混合动力车用镍氢电池的液体冷却系统[J].广东工业大学学报,2008,25(4):28-31.
    [118] Kimishima M., Echigoya H. Vehicle battery cooling apparatus [P]. US2002/0043413A1,2002.04.18.
    [119] Bitsche O., Bulling M., Duerr W., et al. Liquid-Cooled Battery and Method forOperating Such a Battery [P]. US2009/0220850A1,2009.09.03.
    [120] Karimi G., Culham J.R. Review and assessment of Pulsating Heat Pipe mechanism forhigh heat flux electronic cooling [C]. ISCTP2004,2,2004:52-59.
    [121] Riehl R.R., Dutra T. Development of an experimental loop heat pipe for application infuture space missions[J]. Applied Thermal Engineering,2005,25(1):101-112.
    [122] Yau Y.H., Ahmadzadehtalatapeh M. A review on the application of horizontal heat pipeheat exchangers in air conditioning systems in the tropics[J]. Applied Thermal Engineering,2010,30(2-3):77-84.
    [123] Park Y., Jun S., Kim S., et al. Design optimization of a loop heat pipe to cool a lithiumion battery onboard a military aircraft[J]. Journal of Mechanical Science and Technology,2010,24(2):609-618.
    [124] Wu M.S., Huang Y.H., Wang Y.Y., et al. Heat dissipation behavior of the nickel/meatlhydride battery [J]. Journal of the Electrochemical Society,2000,147(3):930-935..
    [125] Wu M.S., Liu K.H., Wang Y.Y., et al. Heat dissipation design for lithium-ion batteries[J].Journal of Power Sources,2002,109(1):160-166.
    [126]张国庆,吴忠杰,饶中浩等.动力电池热管冷却效果实验[J].化工进展,2009,28(7):1165-1168.
    [127] Swanepoel G. Thermal management of hybrid electrical vehicles using heat pipes [D].Cape Town, University of Stellenbosch,2001.
    [128] Jang J.C., Rhi S.H. Battery thermal management system of future electric vehicles withloop thermosyphon [A]. US-Korea Conference on Science, Technology, and Entrepreneurship(UKC)[C], Seattle,2010.
    [129] Khudhair A.M., Farid M.M. A review on energy conservation in building applicationswith thermal storage by latent heat using phase change materials[J]. Energy Conversion andManagement,2004,45(2):263-275.
    [130] Sharma S.D., Sagara K. Latent heat storage materials and systems: A review[J].International Journal of Green Energy,2005,2(1):1-56.
    [131] Verma P., Varun, Singal S.K. Review of mathematical modeling on latent heat thermalenergy storage systems using phase-change material[J]. Renewable&Sustainable EnergyReviews,2008,12(4):999-1031.
    [132] Jegadheeswaran S., Pohekar S.D. Performance enhancement in latent heat thermalstorage system: A review[J]. Renewable&Sustainable Energy Reviews,2009,13(9):2225-2244.
    [133] Agyenim F., Hewitt N., Eames P., et al. A review of materials, heat transfer and phasechange problem formulation for latent heat thermal energy storage systems (LHTESS)[J].Renewable&Sustainable Energy Reviews,2010,14(2):615-628.
    [134] Shukla A., Buddhi D., Sawhney R.L. Solar water heaters with phase change materialthermal energy storage medium: A review[J]. Renewable&Sustainable Energy Reviews,2009,13(8):2119-2125.
    [135] Agyenim F., Eames P., Smyth M. Experimental study on the melting and solidificationbehaviour of a medium temperature phase change storage material (Erythritol) systemaugmented with fins to power a LiBr/H2O absorption cooling system[J]. Renewable Energy,2011,36(1):108-117.
    [136] Al Hallaj S., Selman J.R. A novel thermal management system for electric vehiclebatteries using phase-change material[J]. Journal of the Electrochemical Society,2000,147(9):3231-3236.
    [137] Al-Hallaj S., Selman J.R. Novel Thermal Management of Battery Systems [P], US,6468689B1,2002.
    [138] Al-Hallaj S., Selman J.R. Battery system thermal management [P]. US,2003/0054230A1,2003.03.20.
    [139] Al-Hallaj S., Selman J.R. Battery system thermal management [P]. US,6942944B2,2005.09.13.
    [140] Al-Hallaj S., Selman J.R. Battery system thermal management [P]. US,2006/0073377A1,2006.04.06..
    [141] Al-Hallaj S., Selman J.R.Battery system thermal management [P]. US,2009/0004556A1,2009.01.01..
    [142] Selman J.R., Al Hallaj S., Uchida I., et al. Cooperative research on safety fundamentalsof lithium batteries[J]. Journal of Power Sources,2001,97-8:726-732.
    [143] Kim G.-H., Pesaran A., Spotnitz R. A three-dimensional thermal abuse model forlithium-ion cells[J]. Journal of Power Sources,2007,170(2):476-489.
    [144] Mills A., Al-Hallaj S. Simulation of passive thermal management system for lithium-ionbattery packs[J]. Journal of Power Sources,2005,141(2):307-315.
    [145] Kizilel R., Lateef A., Sabbah R., et al. Passive control of temperature excursion anduniformity in high-energy Li-ion battery packs at high current and ambient temperature[J].Journal of Power Sources,2008,183(1):370-375.
    [146] Kizilel R., Sabbah R., Selman J.R., et al. An alternative cooling system to enhance thesafety of Li-ion battery packs[J]. Journal of Power Sources,2009,194(2):1105-1112.
    [147]张国庆,饶中浩,吴忠杰等.采用相变材料冷却的动力电池组的散热性能[J].化工进展,2009,28(1):23-26.
    [148] Rao Z.H., Zhang G.Q. Thermal Properties of Paraffin Wax-based CompositesContaining Graphite[J]. Energy Sources Part a-Recovery Utilization and EnvironmentalEffects,2011,33(7):587-593.
    [149]饶中浩,吴忠杰,张国庆.一种带有相变材料冷却系统的动力电池装置[P].中国, ZL200920055746.7,2010.05.05.
    [150] Regin A.F., Solanki S.C., Saini J.S. Heat transfer characteristics of thermal energystorage system using PCM capsules: A review[J]. Renewable&Sustainable Energy Reviews,2008,12(9):2438-2458.
    [151] Fan L.W., Khodadadi J.M. Thermal conductivity enhancement of phase changematerials for thermal energy storage: A review[J]. Renewable&Sustainable Energy Reviews,2011,15(1):24-46.
    [152] Alrashdan A., Mayyas A.T., Al-Hallaj S. Thermo-mechanical behaviors of the expandedgraphite-phase change material matrix used for thermal management of Li-ion batterypacks[J]. Journal of Materials Processing Technology,2010,210(1):174-179.
    [153] Rao Z.H., Zhang G.Q., Wu Z.J. Thermal properties of paraffin/graphite composite phasechange materials in battery thermal management system[J]. Energy Materials: MaterialsScience and Engineering for Energy Systems,2009,4(3):141-144.
    [154] Cosley MR, Garcia MP. Battery thermal management system [A]. INTELEC26thAnnual International Telecommunications Energy Conference [C], Chicago,2004.
    [155] Al-Hallaj S., Selman J.R. Thermal modeling of secondary lithium batteries for electricvehicle/hybrid electric vehicle applications[J]. Journal of Power Sources,2002,110(2):341-348.
    [156] Zhang X. Thermal analysis of a cylindrical lithium-ion battery[J]. Electrochimica Acta,2011,56(3):1246-1255.
    [157] Jarrett A., Kim I.Y. Design optimization of electric vehicle battery cooling plates forthermal performance[J]. Journal of Power Sources,2011,196(23):10359-10368.
    [158] Ramandi M.Y., Dincer I., Naterer G.F. Heat transfer and thermal management ofelectric vehicle batteries with phase change materials[J]. Heat and Mass Transfer,2011,47(7):777-788.
    [159] Chacko S., Chung Y.M. Thermal modelling of Li-ion polymer battery for electricvehicle drive cycles[J]. Journal of Power Sources,2012,213:296-303.
    [160] Siahpush A., O’Brien J., Crepeau J. Phase Change Heat Transfer Enhancement UsingCopper Porous Foam[J]. Journal of Heat Transfer,2008,130(8):082301.
    [161]张涛,余建祖,高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J].太阳能学报,2010,31(5):604-609.
    [162] Wu M.S., Wang Y.Y., Wan C.C. Thermal behaviour of nickel/metal hydride batteriesduring charge and discharge[J]. Journal of Power Sources,1998,74:202-210.
    [163] Guo G.F., Long B., Cheng B., et al. Three-dimensional thermal finite element modelingof lithium-ion battery in thermal abuse application[J]. Journal of Power Sources,2010,195(8):2393-2398.
    [164] Giuliano M.R., Prasad A.K., Advani S.G. Experimental study of an air-cooled thermalmanagement system for high capacity lithium–titanate batteries[J]. Journal of Power Sources,2012,216:345-352.
    [165] Park Y., Jun S., Kim S., et al. Design optimization of a loop heat pipe to cool a lithiumion battery onboard a military aircraft[J]. Journal of Mechanical Science and Technology,2010,24(2):609-618.
    [166]贾进强.烧结式扁形热管热传分析与实验[D].台湾,国立海洋大学,2005.
    [167]李勇,何恒飞,揭志伟,曾志新.压扁厚度对压扁型烧结式微热管性能的影响[J].华南理工大学学报,2012,40(1):40-46.
    [168] Wang S.F., Lin Z.R., Zhang W.B., et al. Experimental study on pulsating heat pipe withfunctional thermal fluids[J]. International Journal of Heat and Mass Transfer,2009,52(21-22):5276-5279.
    [169] Lin Z.R., Wang S.F., Chen J.J., et al. Experimental study on effective range of miniatureoscillating heat pipes[J]. Applied Thermal Engineering,2011,31(5):880-886.
    [170]林梓荣.自激式振荡流热管热输送性能研究[D].广州:华南理工大学,2012.
    [171] Akhilesh R., Narasimhan A., Balaji C. Method to improve geometry for heat transferenhancement in PCM composite heat sinks[J]. International Journal of Heat and MassTransfer,2005,48(13):2759-2770.
    [172] Shatikian V., Ziskind G., Letan R. Numerical investigation of a PCM-based heat sinkwith internal fins[J]. International Journal of Heat and Mass Transfer,2005,48(17):3689-3706.
    [173] Wang X.-Q., Mujumdar A.S., Yap C. Effect of orientation for phase change material(PCM)-based heat sinks for transient thermal management of electric components[J].International Communications in Heat and Mass Transfer,2007,34(7):801-808.
    [174] Wang X.-Q., Yap C., Mujumdar A.S. A parametric study of phase change material(PCM)-based heat sinks[J]. International Journal of Thermal Sciences,2008,47(8):1055-1068.
    [175] Horbaniuc B., Dumitrascu G., Popescu A. Mathematical models for the study ofsolidification within a longitudinally finned heat pipe latent heat thermal storage system[J].Energy Conversion&Management,1999,40:1765-1774.
    [176] Riffat S.B., Omer S.A., Ma X.L. A novel thermoelectric refrigeration system employingheat pipes and a phase change material: an experimental investigation[J]. Renewable Energy,2001,23(2):313-323.
    [177] Nithyanandam K., Pitchumani R. Analysis and optimization of a latent thermal energystorage system with embedded heat pipes[J]. International Journal of Heat and Mass Transfer,2011,54(21-22):4596-4610.
    [178] Shabgard H., Bergman T.L., Sharifi N., et al. High temperature latent heat thermalenergy storage using heat pipes[J]. International Journal of Heat and Mass Transfer,2010,53(15-16):2979-2988.
    [179] Robak C.W., Bergman T.L., Faghri A. Enhancement of latent heat energy storage usingembedded heat pipes[J]. International Journal of Heat and Mass Transfer,2011,54(15-16):3476-3484.
    [180] Weng Y.-C., Cho H.-P., Chang C.-C., et al. Heat pipe with PCM for electroniccooling[J]. Applied Energy,2011,88(5):1825-1833.
    [181]邹复炳.石蜡类相变材料传热特性研究[D].上海:上海海事大学,2006.
    [182] Farid M.M., Khudhair A.M., Razack S.A.K., et al. A review on phase change energystorage: materials and applications[J]. Energy Conversion and Management,2004,45(9-10):1597-1615.
    [183] Sharma A., Tyagi V.V., Chen C.R., et al. Review on thermal energy storage with phasechange materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13(2):318-345.
    [184] Baetens R., Jelle B.P., Gustavsen A. Phase change materials for building applications: Astate-of-the-art review[J]. Energy and Buildings,2010,42(9):1361-1368.
    [185] Zhao C.Y., Zhang G.H. Review on microencapsulated phase change materials(MEPCMs): Fabrication, characterization and applications[J]. Renewable and SustainableEnergy Reviews,2011,15(8):3813-3832.
    [186] Kalaiselvam S., Parameshwaran R., Harikrishnan S. Analytical and experimentalinvestigations of nanoparticles embedded phase change materials for cooling application inmodern buildings[J]. Renewable Energy,2012,39(1):375-387.
    [187] Khodadadi J.M., Hosseinizadeh S.F. Nanoparticle-enhanced phase change materials(NEPCM) with great potential for improved thermal energy storage[J]. InternationalCommunications in Heat and Mass Transfer,2007,34(5):534-543.
    [188] Wu S.Y., Zhu D.S., Zhang X.R., et al. Preparation and Melting/Freezing Characteristicsof Cu/Paraffin Nanofluid as Phase-Change Material (PCM)[J]. Energy&Fuels,2010,24:1894-1898.
    [189] Fukai J., Hamada Y., Morozumi Y., et al. Effect of carbon-fiber brushes on conductiveheat transfer in phase change materials[J]. International Journal of Heat and Mass Transfer,2002,45:4781-4792.
    [190] Yu X., Cui Y.B., Liu C.H., et al. The experimental exploration of carbon nanofiber andcarbon nanotube additives on thermal behavior of phase change materials[J]. Solar EnergyMaterials and Solar Cells,2011,95(4):1208-1212.
    [191] Elgafy A., Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phasechange materials[J]. Carbon,2005,43(15):3067-3074.
    [192] Kim S., Drza L.T. High latent heat storage and high thermal conductive phase changematerials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells,2009,93(1):136-142.
    [193] Xiang J., Drzal L.T. Investigation of exfoliated graphite nanoplatelets (xGnP) inimproving thermal conductivity of paraffin wax-based phase change material[J]. Solar EnergyMaterials and Solar Cells,2011,95(7):1811-1818.
    [194] Mills A., Farid M., Selman J.R., et al. Thermal conductivity enhancement of phasechange materials using a graphite matrix[J]. Applied Thermal Engineering,2006,26(14-15):1652-1661.
    [195] Hawlader M.N.A., Uddin M.S., Khin M.M. Microencapsulated PCM thermal-energystorage system[J]. Applied Energy,2003,74(1-2):195-202.
    [196] Rao Y., Lin G., Luo Y., et al. Preparation and thermal properties of microencapsulatedphase change material for enhancing fluid flow heat transfer[J]. Heat Transfer—AsianResearch,2007,36(1):28-37.
    [197] Fang Y.T., Kuang S.Y., Gao X.N., et al. Preparation and characterization of novelnanoencapsulated phase change materials[J]. Energy Conversion and Management,2008,49(12):3704-3707.
    [198] Wang J.P., Zhang X.X., Wang X.C. Preparation, characterization and permeationkinetics description of calcium alginate macro-capsules containing shape-stabilize phasechange materials[J]. Renewable Energy,2011,36(11):2984-2991.
    [199] Sari A., Karaipekli A. Thermal conductivity and latent heat thermal energy storagecharacteristics of paraffin/expanded graphite composite as phase change material[J]. AppliedThermal Engineering,2007,27(8-9):1271-1277.
    [200] Xia L., Zhang P., Wang R.Z. Preparation and thermal characterization of expandedgraphite/paraffin composite phase change material[J]. Carbon,2010,48(9):2538-2548.
    [201] Zhong Y., Li S., Wei X., et al. Heat transfer enhancement of paraffin wax usingcompressed expanded natural graphite for thermal energy storage[J]. Carbon,2010,48(1):300-304.
    [202]杨春.深过冷液态金属比热的分子动力学模拟及实验研究[D].北京:清华大学,2000.
    [203]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京,化学工业出版社,2007:68-71.
    [204] Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Propertiesof Lennard-Jones Molecules[J]. Physical Review,1967,159(1):98-103.
    [205] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-Overview with details on alkane and benzene compounds[J]. Journal of Physical ChemistryB,1998,102(38):7338-7364.
    [206]刘清芝.反渗透膜及水溶液内扩散过程的分子模拟研究[D].青岛:中国海洋大学,2007.
    [207] Hwang M.J., Stockfisch T.P., Hagler A.T. Derivation of Class II Force Fields.2.Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl FunctionalGroup and Alkane Molecules[J]. Journal of the American Chemical Society,1994,116:2515-2525.
    [208] Sun H., Ren P., Fried J.R. The COMPASS force field: parameterization and validationfor phosphazenes[J]. Computational and Theoretical Polymer Science,1998,8(1-2):229-246.
    [209] Bunte S.W., Sun H. Molecular modeling of energetic materials: The parameterizationand validation of nitrate esters in the COMPASS force field[J]. Journal of Physical ChemistryB,2000,104(11):2477-2489.
    [210] Yang J., Ren Y., Tian A.M., et al. COMPASS force field for14inorganic molecules, He,Ne, Ar, Kr, Xe, H-2, O-2, N-2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases[J].Journal of Physical Chemistry B,2000,104(20):4951-4957.
    [211] McQuaid M.J., Sun H., Rigby D. Development and validation of COMPASS force fieldparameters for molecules with aliphatic azide chains[J]. Journal of Computational Chemistry,2004,25(1):61-71.
    [212] Rigby D. Fluid density predictions using the COMPASS force field[J]. Fluid PhaseEquilibria,2004,217(1):77-87.
    [213] Brooks C.L., Pettitt B.M., Karplus M. Structural and energetic effects of truncating longranged interactions in ionic and polar fluids[J]. The Journal of Chemical Physics,1985,83(11):5897.
    [214]方志平.硅橡胶类渗透蒸发膜及其扩散特性的分子动力学模拟[D].天津:天津大学,2009.
    [215]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007:112-116.
    [216] Hoffmann K.H., Schreiber M. Computational Physics[M]. Berlin Heidelberg:Springer-Verlag,1986:268-326.
    [217] Andersen H.C. Molecular dynamics simulations at constant pressure and/ortemperature[J]. The Journal of Chemical Physics,1980,72(4):2384.
    [218] Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., et al. Molecular dynamics withcoupling to an external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690.
    [219] NoséS. Constant temperature molecular dynamics methods[J]. Prog Theor Phys Suppl,1991,103:1-46.
    [220] Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new moleculardynamics method[J]. Journal of Applied Physics,1981,52:7182-7190.
    [221]高玉凤.典型固液界面热力学与动力学性质的分子动力学研究[D].上海:华东师范大学,2011.
    [222]叶翔.纳米体系结构相变及物性的分子动力学模拟[D].上海:复旦大学,2007.
    [223] Kousksou T., Jamil A., El Rhafiki T., et al. Paraffin wax mixtures as phase changematerials[J]. Solar Energy Materials and Solar Cells,2010,94(12):2158-2165.
    [224] Karasawa N., Goddard W.A. Force fields, structures, and properties of poly (vinylidenefluoride) crystals[J]. Macromolecules,1992,25:7268-7281.
    [225] Eward P.P. Evaluation of optical and electrostatic lattice potentials[J]. Annals of Physics,1921,369:253-287.
    [226] Accelrys. Materials Studio Release Notes, Release5.5, San Diego: Accelrys SoftwareInc.,2010.
    [227] West R.C. Handbook of Chemistry and Physics.58th ed, CRC Press, Inc,1977-1978.
    [228] Zhang C.B., Chen Y.P., Yang L.B., et al. Self-diffusion for Lennard-Jones fluid confinedin a nanoscale space[J]. International Journal of Heat and Mass Transfer,2011,54(21-22):4770-4773.
    [229]殷开梁,徐端钧,夏庆, et al.正十六烷体系凝固过程的分子动力学模[J].物理化学学报,2004,20(3):302-305.
    [230] Tao C.G., Feng H.J., Zhou J., et al. Molecular Simulation of Oxygen Adsorption andDiffusion in Polypropylene[J]. Acta Physico-Chimica Sinica,2009,25(7):1373-1378.
    [231] Allen M.P., Tildesley D.J. Computer Simulation of Liquids[M]. Clarendon Press,Oxford,1987.
    [232] van Miltenburg J.C., Oonk H.A.J., Metivaud V. Heat capacities and derivedthermodynamic functions of n-nonadecane and n-eicosane between10K and390K[J].Journal of Chemical and Engineering Data,1999,44(4):715-720.
    [233] Tanaka Y., ltani Y., Kubota H., et al. Thermal Conductivity of Five Normal Alkanes inthe Temperature Range283-373K at Pressures up to250MPa[J]. International Journal ofThermophysics,,1988,9(3):331-350.
    [234] Li H., Liu X., Fang G.Y. Preparation and characteristics of n-nonadecane/cementcomposites as thermal energy storage materials in buildings[J]. Energy and Buildings,2010,42(10):1661-1665.
    [235] Choi K., Cho G. Physical and mechanical properties of thermostatic fabrics treated withnanoencapsulated phase change materials[J]. Journal of Applied Polymer Science,2011,121(6):3238-3245.
    [236] Liu Z.R., Chung D.D.L. Calorimetric evaluation of phase change materials for use asthermal interface materials[J]. Thermochimica Acta,2001,366(2):135-147.
    [237] Inaba H., Dai C., Horibe A. Natural convection heat transfer of microemulsionphase-change-material slurry in rectangular cavities heated from below and cooled fromabove[J]. International Journal of Heat and Mass Transfer,2003,46(23):4427-4438.
    [238] Hansen J.P., McDonald I.R. Theory of Simple Liquids[M],2nd Edition, Academic Press:London,1990.
    [239] Taetz C., Hanu L.-G., Kappels T., et al. Battery Thermal Management using PhaseChange Slurries[A].10th IIR Conference on Phase-Change Materials and Slurries forRefrigeration and Air Conditioning[C]. Kobe, Japan,2012:355-362.
    [240]杨世铭,陶文铨.传热学(第四版)[M].北京,高等教育出版社,2006:563-564.
    [241] Zhang Z., Fang X. Study on paraffin/expanded graphite composite phase changethermal energy storage material[J]. Energy Conversion and Management,2006,47(3):303-310.
    [242] Tyagi V.V., Kaushik S.C., Tyagi S.K., et al. Development of phase change materialsbased microencapsulated technology for buildings: A review[J]. Renewable&SustainableEnergy Reviews,2011,15(2):1373-1391.
    [243] Parameshwaran R., Kalaiselvam S., Harikrishnan S., et al. Sustainable thermal energystorage technologies for buildings: A review[J]. Renewable and Sustainable Energy Reviews,2012,16(5):2394-2433.
    [244] Salunkhe P.B., Shembekar P.S. A review on effect of phase change materialencapsulation on the thermal performance of a system[J]. Renewable and Sustainable EnergyReviews,2012,16(8):5603-5616.
    [245] Alkan C., Sari A., Karaipekli A. Preparation, thermal properties and thermal reliabilityof microencapsulated n-eicosane as novel phase change material for thermal energy storage[J].Energy Conversion and Management,2011,52(1):687-692.
    [246] Zhang H., Wang X., Wu D. Silica encapsulation of n-octadecane via sol–gel process: Anovel microencapsulated phase-change material with enhanced thermal conductivity andperformance[J]. Journal of Colloid and Interface Science,2010,343(1):246-255.
    [247] Zhang H., Sun S., Wang X., et al. Fabrication of microencapsulated phase changematerials based on n-octadecane core and silica shell through interfacial polycondensation[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,389(1-3):104-117.
    [248] Jin Y., Lee W.P., Musina Z., et al. A one-step method for producing microencapsulatedphase change materials[J]. Particuology,2010,8(6):588-590.
    [249]龙春霞.固体脂质微颗粒载药体系结构与性能关系的探索和介观模拟研究[D].广州:华南理工大学,2006.
    [250]郭云霞.超韧尼龙11结构与性能的研究及其共混合金相容性介观模拟[D].太原:中北大学,2010.
    [251]郭新东.化学产品设计中的结构-性能关系:药物控释系统[D].广州:华南理工大学,2010.
    [252] Qin W, Li X, Bian WW, et al. Density functional theory calculations and moleculardynamics simulations of the adsorption of biomolecules on graphene surfaces[J]. Biomaterials,2010,31(5):1007-1016.
    [253] Hore M.J.A., Laradji M. Dissipative particle dynamics simulation of the interplaybetween spinodal decomposition and wetting in thin film binary fluids[J]. Journal ofChemical Physics,2010,132(2):024908.
    [254]陈汇勇,吴永标,周碧红, et al. SBA215介观相形成过程的耗散粒子动力学模拟[J].化工学报,2009,60(8):2024-2030.
    [255] Choi J.K., Lee J.G., Kim J.H., et al. Preparation of microcapsules containing phasechange materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial andEngineering Chemistry,2001,7(6):358-362.
    [256] Boh B., Knez E., Staresinic M. Microencapsulation of higher hydrocarbon phasechange materials by in situ polymerization[J]. Journal of Microencapsulation,2005,22(7):715-735.
    [257] Cho C.G., Cho J.S., Kwon A. Microencapsulation of octadecane as a phase-changematerial by interfacial polymerization in an emulsion system[J]. Colloid and Polymer Science,2002,280(3):260-266.
    [258] Su J.F., Wang L.X., Ren L., et al. Preparation and characterization of polyurethanemicrocapsules containing n-octadecane with styrene-maleic anhydride as a surfactant byinterfacial polycondensation[J]. Journal of Applied Polymer Science,2006,102(5):4996-5006.
    [259] Chen H., Chang C.C., Tsai Y.L., et al. Preparation of Phase Change MaterialsMicrocapsules by Using PMMA Network-Silica Hybrid Shell Via Sol-Gel Process[J]. Journalof Applied Polymer Science,2009,112(3):1850-1857.
    [260] Hawlader M.N.A., Uddin M.S., Zhu H.J. Encapsulated phase change materials forthermal energy storage: Experiments and simulation[J]. International Journal of EnergyResearch,2002,26(2):159-171.
    [261] Yang R., Zhang Y., Wang X., et al. Preparation of n-tetradecane-containingmicrocapsules with different shell materials by phase separation method[J]. Solar EnergyMaterials and Solar Cells,2009,93(10):1817-1822.
    [262] Hoogerbrugge P. J., Koelman J. M. V. A. Simulating microscopic hydrodynamicphenomena with dissipative particle dynamics[J]. Europhysics Letters,1992,19(3):155-160.
    [263] Espanol P., Warren P. Statistical-mechanics of dissipative particle dynamics[J].Europhysics Letters,1995,30(4):191-196.
    [264] Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation[J]. Journal of Chemical Physics,1997,107(11):4423-4435.
    [265]刘大欢.复杂嵌段共聚物体系微相结构的耗散粒子动力学研究[D].北京:北京化工大学,2006.
    [266] Maiti A., McGrother S. Bead-bead interaction parameters in dissipative particledynamics: Relation to bead-size, solubility parameter, and surface tension[J]. Journal ofChemical Physics,2004,120(3):1594-1601.
    [267] Soto-Figueroa C., Rodriguez-Hidalgo M.D.R., Vicente L. Mesoscopic simulation of thedrug release mechanism on the polymeric vehicle P(ST-DVB) in an acid environment[J]. SoftMatter,2011,7(18):8224-8230.
    [268] Lin S.L., Xu M.Y., Yang Z.R. Dissipative particle dynamics study on the mesostructuresof n-octadecane/water emulsion with alternating styrene–maleic acid copolymers asemulsifier[J]. Soft Matter,2012,8(2):375.
    [269] Li W., Zhang X.-X., Wang X.-C., et al. Preparation and characterization ofmicroencapsulated phase change material with low remnant formaldehyde content[J].Materials Chemistry and Physics,2007,106(2-3):437-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700