用户名: 密码: 验证码:
基于频率特征的振荡识别及双回线零序问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业的高速发展在带来巨大经济效益的同时使电网日趋复杂,系统振荡发生的概率也大大增加。在系统发生振荡时,失步解列装置和继电保护装置的正确动作对于避免事故进一步扩大具有重要意义,振荡识别则是其核心技术之一。同时,随着电网建设的快速发展和土地资源的日益紧缺,双回线路日益增多,线路走廊也日趋紧密,因此有必要对双回线零序问题进行研究。本文以振荡过程中的电气量频率特征分析为基础,对基于频率特征的振荡识别原理进行了研究;同时以平行双回线对零序保护的影响分析为基础,对改进算法进行了研究。论文的主要内容和成果如下:
     研究了电力系统振荡过程中电流频率和电压频率的特征。对振荡中心和非振荡中心的电流频率和电压频率的表达式进行了推导,并根据其表达式对系统振荡过程中的频率特征进行了总结和分析。同时研究了两侧电动势幅值不等和系统内各元件阻抗角不等对频率特征的影响。研究表明当系统发生振荡时,只有振荡中心的电压频率等于电流频率;非振荡中心的电压频率在两侧电动势频率范围内随功角变化呈周期性变化。两侧电动势幅值是否相等或系统内各元件阻抗角是否相等均不对上述频率特征造成影响。
     提出了一种基于电气量频率差异的振荡识别原理。首先对系统振荡过程中电气量频率差异的特征进行了进一步的研究,引入了振荡因子的概念,用以表征某点电压频率和电流频率的比较情况。在此基础上,提出了基于电气量频率差异的振荡及振荡中心的识别原理。该原理可以判别系统是否发生振荡,并判断振荡中心是否在元件内部。同时该原理能够自适应于系统结构和运行方式的变化,且不受中间负荷变化的影响。
     提出了一种基于电压频率特征的振荡识别原理。首先对系统振荡过程中电压频率的特征进行了进一步的研究。对系统内任意点电压频率的导数进行推导,并对其特征进行了分析和总结,同时研究了两侧电动势幅值不等和系统内各元件阻抗角不等对电压频率导数特征的影响。以此为基础,提出了基于电压频率特征的振荡识别原理。根据其原理,该判据能够在振荡发生的首半个周期即判断出振荡中心是否位于元件内部;即使由于某种原因导致没能在振荡的首半个周期作出判别,该判据仍然可以在振荡的后半个周期再次作出判别。同时该原理也不受系统结构变化、运行方式变化及中间负荷变化的影响。
     研究了平行双回线对纵联零序方向保护的影响。采用互感线路的一般模型进行了故障计算,使研究具有通用性。以此为基础,分析了互感线路内部故障和外部故障时,其各端零序方向元件的动作行为,使零序方向元件受相邻线路电气联系强弱影响的现象更加直观化。同时根据一般模型的推导结果对互感线路的几种常见形式进行了进一步的研究。研究表明,故障线路纵联零序方向保护不受零序互感的影响,能够正确动作;对于与其存在互感的非故障线路而言,电气联系越紧密,零序方向元件误动的可能性越小;反之,误动可能性越大。因此在强磁弱电的情况下,可以采用纵联负序方向保护与纵联零序方向保护相结合的策略以防止零序方向保护的误动。
     提出了一种引入修正因子的反时限零序电流保护改进算法。首先分析了平行双回线对反时限零序电流保护的影响。对双回线内部接地故障时,零序电流的分布情况和保护元件的动作行为进行了分析。分析表明当故障点位置和系统零序参数满足一定条件时,非故障线路上的零序电流将大于故障线路上的零序电流,此时保护可能无法满足选择性的要求。为了解决这一问题,提出了引入修正因子的反时限零序电流保护改进算法,该算法可以同时提高反时限零序电流保护的选择性和速动性。
The high-speed development of electric power industry, when bringing tremendous economic benefits, has made power grid become increasingly complicated and raised the probability of power system oscillation greatly. In case of system oscillation, the correct action of out-of-step splitting device and relay protection device has great significance for avoiding the further expansion of accidents, and oscillation identification is just one of the core technologies. Meanwhile, along with the fast development of power grid construction and the increasingly severe shortage of land resources, parallel transmission lines have increased day by day, and line corridor has become dense gradually, so it's necessary to research zero-sequence problems of parallel transmission lines. Based on analyzing the frequency characteristics of electrical quantities during oscillation process, the criterion of oscillation identification based on frequency characteristics is proposed; and meanwhile, based on analyzing the influences of parallel transmission lines on zero-sequence protection, the improved algorithm is proposed. The main contents and achievements are as shown below:
     The characteristics of current frequency and voltage frequency during power system oscillation are studied. The expressions of current frequency and voltage frequency at oscillation center and non-oscillation center are dedeuced, and the frequency characteristics during system oscillation are analyzed. Meanwhile, the influences of unequal amplitudes of electromotive forces at both sides and of unequal impedance angles of each component inside the system on frequency characteristics are studied. The study has shown that, in case of system oscillation, only the voltage frequency at oscillation center is equal to the current frequency; while the voltage frequency at non-oscillation center changes cyclically along with the change of power angle within the frequency range of electromotive force at both sides. It has no influence on the above-mentioned frequency characteristics no matter whether the amplitude of electromotive force at both sides is equal, or whether the impedance angle of each component inside the system is equal.
     An oscillation identification criterion based on frequency difference of electrical quantities is proposed. Oscillation factor is defined to token the comparison of voltage frequency and current frequency. This criterion can judge whether the system oscillates, and whether the oscillation center is inside the component. Meanwhile, the criterion can self-adapt to the change of system structure and operating mode, without being affected by change of middle loads.
     An oscillation identification criterion based on the characteristics of voltage frequency change rate is proposed. The derivate of voltage frequency at any point inside the system is deduced, then its characteristics are summarized and analyzed. According to the theory, the criterion can judge whether the oscillation center is inside the component in the first half cycle of oscillation; even not, it can still make judgment in the second half cycle of oscillation. Meanwhile, the criterion is not affected by the change of system structure, operating mode, and middle load.
     To prevent the influences of parallel transmission lines on pilot zero sequence directional protection, improvement measures based on negative-sequence directional protection are proposed. The action of zero-sequence directional components at each end in case of internal and external faults of mutual inductance lines is studied. Study shows that, the protection of the fault line is not affected by zero-sequence mutual inductance, and can act correctly; for the non-fault line with mutual inductance, the closer the electric connection is, the smaller the probability of zero-sequence directional components misoperation will be. Therefore, in condition of strong magnetic and weak electric connection, the misoperation of pilot zero sequence directional protection can be prevented with the policy of combining negative-sequence directional protection and zero-sequence directional protection.
     To prevent the influences of parallel transmission lines on inverse-time zero-sequence current protection, an improved algorithm based on modifying factor is proposed. The distribution of zero-sequence current and the action of protection components in case of internal grounding fault are studied. The study shows that, when the position of fault point and the zero-sequence parameter of system meet certain conditions, the zero-sequence current of non-fault line will be greater than that of fault line, and here, the protection will probably not meet selective requirements. Meanwhile, the improved algorithm can raise the selectivity and the speed of inverse-time zero-sequence current protection simultaneously.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [2]朱声石.高压电网继电保护原理与技术(第三版)[M].北京:中国水利出版社,2005
    [3]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996
    [4]刘振亚.中国特高压交流输电技术创新[J].电网技术,2013,37(3):1-8
    [5]张宁,刘静琨.影响特高压电网运行的因素及应对策略[J].电力系统保护与控制,2013,41(1):109-114
    [6]丁道齐.深入研究复杂电网动态行为特征构建中国特高压电网安全保障[J].中国电力,2008,41(8):1-7
    [7]Zhao Q. H., Sun K., Zheng D. H., et al. A study of system splitting strategies for island operation of power system:a two-phase method based on OBDD[J]. IEEE Transactions on Power Systems,2013,18(4):1556-1665
    [8]Liu Y. Q., Zhang W., Yu Z. C.. Measures to keep islands stable after power oscillation or out of step islanding[C]. APSCOM Advances in Power System Control, Operation and Management,2009:371-374
    [9]Sun K., Zheng D. H., LU Q.. Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods[J]. IEEE Transactions on Power Systems,2003,18(2):912-923
    [10]Farantatos E., Huang R. K., Cokkinides G. J., Meliopoulos A. S.. A predictive out of step protection scheme based on PMU enabled dynamic state estimation[C]. IEEE Power and Energy Society General Meeting,2011: 241-248
    [11]Liu Y. Q., Zhang W., Yu Z. C.. Measures to keep islands stable after power oscillation or out of step islanding[C]. APSCOM Advances in Power System Control, Operation and Management,2009:371-374
    [12]Wang Y. T., Yin Y. H., Hou J. X.. Coordinated out-of-step protection system based on WAMS[C]. IEEE PES Transmission and Distribution Conference and Exhibition,2005:1-4
    [13]毛晓明,张尧,管霖,吴小辰,彭显刚.南方交直流混电网区振的调控策略[J].电力系统自动化,2005,29(20):55-59
    [14]Anju M., Rajasekaran R.. Co-ordination of SMES with STATCOM for mitigating SSR and damping power system oscillations in a series compensated wind power system[C]. ICCCI Computer Communication and Informatics, 2013:1-6
    [15]You H. B., Vittal V., Wang X. M.. Slow coherency-based islanding[J]. IEEE Transactions on Power Systems,2004,19(1):483-491
    [16]Despa D., Mitani Y., Li C. S., Watanabe M. S.. PMU based monitoring and estimation of inter-area power oscillation for Singapore-Malaysia interconnection power system[C]. IPEC,2010:476-480
    [17]Qudaih Y. S., Mitani Y., Mohamed T. H.. Wide-area power system oscillation damping using robust control technique[C]. APPEEC Power and Energy Engineering Conference,2010:571-584
    [18]陈海鸥.海南电网“8.5”事故分析[J].电网技术,1995,19(7):64-66
    [19]马平,陈祖斌.浅析南方互联电网“3.26”振荡事故[J].广西电力技术,1997,1:55-62
    [20]闫贺群.“5.28”华北电网事故随想[J].华北电力技术,1996,12:21-23
    [21]才洪全,杨滨.黑龙江省两起局部电网的振荡事故分析[J].黑龙江电力,2001,23(1):40-42
    [22]Andersson G, Donalek P., Farmer R., et al. Causes of the 2003 major grid blackouts in North America and Europe and recommended means to improve system dynamic performance. IEEE Transactions on Power Systems.2005, 20(4):1922-1928
    [23]Kurita A., Sakurai T.. The power system failure on July 23,1987 in Tokyo[C]. IEEE Conference Proceedings on Decision and Control,1988:2093-2097
    [24]Taylor C. W., Erickson D. C.. Recording and analyzing the July 2 cascading outage[J]. IEEE Computer Applications in Power,1997,10(1):26-30
    [25]Carreras B. A., Lynch V. E., Dobson I., et al. Dynamics criticality and self-organization in a model for blackouts in power transmission systems[C]. Hawaii International Conference on System Sciences, Hawaii,2002
    [26]Dobson I., Carreras B. A., Newman D. E.. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C]. Hawaii International Conference on System Sciences, Hawaii,2003.
    [27]Carreras A., Lynch V. E., Dobson I., et al. Complex dynamics of blackouts in power transmission system[J]. Chaos,2004,14(3):643-652
    [28]Albert R., Albert I., Nakarado G. L.. Structural vulnerability of the North American power grid[J]. Physical Review E,2004,69(2):1-6.
    [29]Andersson G., Donalek P., Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems,2005, 20(4):1922-1928
    [30]Chen J., Thorp J. S., Dobson I.. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[J]. Electrical Power and Energy Systems,2005,27:318-326.
    [31]Genesi C., Granelli G., Innorta M., et al. Identification of critical outages leading to cascading failures in electrical power systems[C]. Power Tech, IEEE Lausanne,2007.
    [32]李小滨,刘凯,陈巨升,徐刚,陈淑芝.系统振荡时距离保护的对策[J].电力系统保护与控制,2010,38(3):86-89
    [33]俞波.超高压同杆并架双回线路微机保护的研究[D].北京:华北电力大学博士学位论文,2002
    [34]徐习东,黄旭聪,王全,方愉冬.同走廊线路零序互感对线路等值零序阻抗的影响[J].电力系统保护与控制,2011,39(4):1-5
    [35]康小宁,梁振锋,索南加乐.相邻线路零序互感对平行双回线电流平衡保护的影响及改进措施[J].继电器,2005,33(20):6-9
    [36]郭建全,郭建新,胡志坚,湛锋,等.基于GPS的互感输电线路零序分布参数带电测量研究与实现[J].继电器,2005,33(19):19-22
    [37]朱景富.零序互感对线路接地距离保护的影响分析[J].电力系统保护与控制,2009,37(9):113-115
    [38]胡宁,郑罡,胡志坚.基于积分方程的互感线路参数带电测量研究[J].继电器,2005,33(16):22-25
    [39]Sargent M. A., Darveniza M.. Lightning performance of double circuit transmission line[J]. IEEE Transaction on Power Apparatus and Systems,1970, 89(5):913-924
    [40]Gilany M. I., Malik O. P., Hope Gordon S.. A laboratory investigation of a digital protection technique for parallel transmission line[J]. IEEE Transaction on Power Apparatus and Systems,1995,10(1):187-193
    [41]Xu P., Wang G., Li H. F., Liang Y. S., Zhang P.. A short-circuit fault calculation scheme for four-parallel transmission lines[C]. APPEEC Power and Energy Engineering Conference,2010:811-814
    [42]法伊比索维奇著,李声权译.日本东京电力公司[J].水电科技进展,2002,2:17-21
    [43]张文亮,谷定燮,等.洪龙500kV带高抗同杆双回线路间的感应作用研究[J].高电压技术,2002,28(2):10-12
    [44]Xu Z. L., Guo J. M., Wang G., Liang Y. S.. Single-terminal fault location scheme based on the fault transient characteristic of arc for four-parallel transmission lines on the same tower[C]. APAP Advanced Power System Automation and Protection,2011:440-444
    [45]Bhalja B. R., Maheshwari R. P.. High-resistance faults on two terminal parallel transmission line:analysis, simulation studies, and an adaptive distance relaying scheme[J]. IEEE Transaction on Power Apparatus and Systems,2007,22(2): 801-812
    [46]黄志明.我国超高压输电线路的建设和发展[J].中国电力,1996,29(12):9-12
    [47]孙立山,孙晓友,陈学允.平行双回线故障测距算法的研究[J].电力系统自动化,1999,23(2):28-30
    [48]俞波.超高压同杆并架双回线路微机保护的研究[D].北京:华北电力大学博士学位论文,2002
    [49]索南加乐,孟祥来,陈勇,等.基于故障类型的零序方向元件[J].电机工程学报,2007,27(1):25-30
    [50]丁晓兵,赵曼勇,徐振宇.接地故障零序方向元件拒动保护改进方案[J].电力系统自动化,2006,30(9):88-90
    [51]崔家佩,孟庆英,陈永芳,等.电力系统继电保护与安全自动装置整定计算.北京:水利电力出版社,1993
    [52]赖庆辉,陈福锋,许庆强,等.纵联零序方向元件的特殊问题分析及解决方案[J].电力自动化设备,2010,30(12):88-91
    [53]宋国兵,刘志良,粟小华,张健康,索南加乐.西北330kV线路弱电强磁问题的分析及采取的措施[J].电力系统保护与控制,2010,38(12):121-125
    [54]樊占峰,叶东印,李瑞生,等.平行线弱电强磁模型下零序方向元件改进[J].电力系统自动化,2008,32(17):100-103
    [55]国家电力调度通信中心.国家电网公司继电保护培训教材(下册)[M].北京:中国电力出版社,2009
    [56]继电保护和安全自动装置技术规程(GB/T 14285—2006)[S].中华人民共和国国家标准,2006
    [57]沈国荣,隋凤海.输电线反时限零序电流保护[J].电力系统自动化,1990,14(2):11-13
    [58]微机反时限电流保护通用技术条件(DL823—2002)[S].中华人民共和国国家标准,2002
    [59]220—500 kV电网继电保护装置运行整定规程(DL559—1994)[S].中华人民共和国国家标准,1994
    [60]孔伟彬,朱晓彤.同杆双回线上零序功率方向继电器的误判问题[J].电力系统自动化,2002,26(22):45-48
    [61]刘千宽,李永斌,黄少锋.基于双端电气量的同杆平行双回线单线故障测距[J].电网技术,2008,32(3):27-30
    [62]臧睿,廖晓玉,张予鄂.对输电线反时限零序电流保护选择性的分析[J].继电器,2006,34(22):12-13,59
    [63]王焯,闫奇,戴志辉,焦彦军.零序电流保护运行风险评估模型[J].电力系统保护与控制,2012,40(5):16-20
    [64]John H.. Zero sequence impedance of overhead transmission lines[J]. IEEE 59th Annual Conference for Protective Relay Engineers,2006
    [65]Mansour M. M., Talaat H. E., Hajjar A. A.. Ultra high speed relaying approach for six-phase transmission lines[J]. IEEE Power Engineering Review,2002, 22(9):50-51
    [66]Jin M., Sidhu T. S., Sun K.. A new system splitting scheme based on the unified stability control framework[J]. IEEE Transactions on Power Systems,2007, 22(1):433-441
    [67]Sun K., Zheng D. Z., Lu Q.. Searching for feasible splitting strategies of controlled system islanding[J]. IEE Proceedings Generation, Transmission and Distribution,2006,153(1):89-98
    [68]袁季修.试论防止电力系统大面积停电的紧急控制——电力系统安全稳定运行的第三道防[J].电网技术,1999,23(4):1-4
    [69]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6
    [70]宗洪良,孙光辉,刘志,王荣.大型电力系统失步解列装置的协调方案[J].电力系统自动化,2003,27(22):72-75
    [71]高鹏,王建全,周文平,袁洪,奚汉江.捕捉失步断面的实现方案及其仿真[J].电力系统自动化,2005,29(12):38-43
    [72]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,1996
    [73]丛伟,潘贞存,战杰,孙十柱.基于功率变化量的电网振荡解列判据与算法研究[J].继电器,2004,32(18):20-23,28
    [74]Vittal V., Oh T., Fouad A. A.. Apparent impedance correlation of transient energy margin and time simulation[J]. IEEE Transactions on Power Systems, 1988,3(2):455-461
    [75]吴启仁,尹项根.三峡左岸电站水轮发电机失步保护[J].继电器,2004,32(23):58-61,71
    [76]王梅义.电网继电保护应用[M].北京:中国电力出版社,1999
    [77]林湘宁,刘沛.自适应振荡闭锁判据的实现[J].电力系统自动化,2004,28(7):49-53,85
    [78]林湘宁,刘沛,冯兴学.自适应振荡闭锁判据的理论基础[J].电力系统自动化,2004,28(6):45-50
    [79]金华烽,何奔腾.电力系统振荡闭锁判别方法的研究[J].继电器,1999,27(2):24-25,31
    [80]Haner J. M., Laughlin T. D., Tylor C. W.. Experience with the out-of-step relay[J]. IEEE Transactions on Power Systems,1986,21(2):35-39
    [81]王增平,高中德,毕天姝,等.基于能量原理的新型发电机失步预测及失步保护的研究[J].电力系统自动化,1997,21(11):35-38
    [82]张毅刚,张保会,哈恒旭.基于本地量的振荡解列装置原理的研究[C].全国高等学校电力系统及其自动化专业第十六届学术年论文集,东北电力学院,2000:378-386
    [83]张保会,张毅刚.基于本地量的振荡解列装置原理研究[J].中国电机工程学报,2001,21(12):69-72
    [84]李莉,刘玉田.一种系统断面自适应复合解列判据[J].电力系统自动化,2009,33(22):40-43
    [85]南京南瑞继保电气有限公司.RCS-993A(B)型失步解列装置技术及使用说明书(V.1.05)[J].2002,11
    [86]宗洪良,任祖怡,郑玉平,等.基于ucosΨ的失步解列装置[J].电力系统自动化,2003,27(19):83-85
    [87]邓华,高鹏,王建全.关于振荡角的振荡中心电压和ucoscφ的变化特征[J].电力系统及其自动化学报,2007,19(1):68-73
    [88]高鹏,王建全,周文平,邹宇.关于振荡中心的研究[J].电力系统及其自动化学报,2005,17(2):48-53
    [89]张艳霞,陈超英.自适应振荡过程的Ucoscφ精确算法[J].电力系统自动化, 2003,27(15):63-66
    [90]荆平,王广延,张尔桦.基于dUcosφ/dt原理的振荡闭锁电路[J].电力系统及其自动化学报,1992,4(1):64-70
    [91]包磊,熊为军,吴学娟.电网解列的研究现状[J].电力学报,2007,22(3):336-340
    [92]孙光辉,白杨,鲁国刚.基于相位角原理的失步解列判据的研究[C].第六届全国继电保护学术研讨会,1996:159-165
    [93]沈国荣,邓绍龙.区分振荡与短路的新原理[J].电力系统自动化,1990,14(1):7-12
    [94]任建锋,丁亚伟,付磊,陈汹,等.基于相位角原理的特高压电网失步解列改进方案[J].电力系统自动化,2011,35(10):104-107
    [95]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996
    [96]孙光辉,吴小辰,曾勇刚,等.电网第三道防线问题分析及失步解列解决方案构想[J].电力系统自动化,2008,2(3):7-11
    [97]国电自动化研究院稳定技术研究所,南京南瑞集团公司.UFV—2F型失步解列及频率电压紧急控制装置技术及使用说明书[Z].2004,4
    [98]于洪波.UFV—200F型失步解列装置应用[J].民营科技,2009,5:28-29
    [99]董希建,赵杰,凌超,等.基于相位角原理的失步振荡解列判据机理研究[J].电力系统保护与控制,2010,38(7):1-6
    [100]DL/T 993—2006电力系统失步解列通用技术条件[S].北京:中国电力出版社,2006
    [101]陈西颖,李卫星,郭志忠.电力系统失步解列研究[J].电力系统保护与控制,2006,34(8):30-34,66
    [102]高鹏,王建全,周文平.视在阻抗角失步解列判据的改进[J].电力系统自动化,2004,28(24):36-40,60
    [103]高鹏,王建全,甘德强,韩祯祥.电力系统失步解列综述[J].电力系统自动化,2005,29(19):90-96
    [104]Ahmed S. S., S arkor N. C., Khairuddin A. B., et al. A scheme for controlled islanding to prevent subsequent blackout[J]. IEEE Transactions on Power Systems,2003,18(1):136-143
    [105]蔡国伟,孟祥霞,李晓峰,王孟夏.基于网络结构及暂态能量的失步解列方案的研究[J].中国电力,2006,39(12):7-10
    [106]卢芳,于继来.基于网络能量的电力系统失步解列方案[J].哈尔滨工程大学学报,2011,32(6):780-785
    [107]张荣.电力系统自动解列装置的研究[D].山东工业大学硕士学位论文,1999,12
    [108]白杨.电力系统失步振荡过程的分析及新判据的研究[D].电力自动化研究院硕士学位论文,1997
    [109]邵俊松.基于补偿原理的失步解列判据的研究[D].华北电力大学硕士学位论文,2001
    [110]BeHИKOB B. A..电力系统过渡状态控制[M].杨笑石,张金锷译.北京:科学出版社,1989
    [111]#12
    [112]林金波,单凯.BSB—1型失步保护装置剖析[J].继电器,2008,28(10):34-37
    [113]潘贞存,桑在中,戴方涛,等.电网自动解列的新判据[J].电力系统自动化,1995,19(7):34-37
    [114]丛伟,潘贞存,肖静,张荣.电力系统振荡解列原理的分析与研究[J].继电器,2003,31(10):51-55,69
    [115]Nersesov S. G., Haddad W. M.. On the stability and control of nonlinear dynamical systems via vector Lyapunov functions[J]. IEEE Transactions on Automatic Control,2006,51(2):203-215
    [116]Tanaka K., Ohtake H., Yamaguchi T.. Stability analysis of nonlinear systems via multiple mixed max-min based Lyapunov functions[C]. FUZZ IEEE International Conference on Fuzzy Systems,2010:201-207
    [117]Ambrosino R., Ariola M., Amato F.. Stability and instability conditions using polyhedral Lyapunov functions[J]. IET Control Theory and Applications,2010, 4(7):1179-1187
    [118]Nersesov S. G., Haddad W. M.. On the stability and control of nonlinear systems via vector Lyapunov functions[J]. CDC 43rd IEEE Conference on Decision and Control,2004,4:4107-4112
    [119]Jacques J., Slotine E., Li W. P.. Applied Nonlinear Control[M]. Beijing:China machine Press,2004
    [120]张雪焱.基于WAMS信息提高电力系统稳定性的若干控制措施研究[D].华北电力大学博士学位论文,2010
    [121]Stewert E., Stanton E., et al. Application of phasor measurements and partial energy analysis in stabilizing large disturbances[J]. IEEE Transactions on Power Systems,1995,18(4):297-302
    [122]Kosterev D. N., Esztergalyos J., Stigers C. A.. Feasibility study of using synchronized phasor measurements for generator dropping controls in the Colstrip system[J]. IEEE Transactions on Power system,1998,13(3): 755-761.
    [123]Burnett R. O.. Synchronized phasor measurements of a power system event[J]. IEEE Transactions on Power System,1994,9(3):1643-1650
    [124]Romyak S., et al. Predicting future behavior of transient events rapidly enough to evaluate remedial control options in real time[J]. IEEE Transactions on Power System,1995,10(3):1195-1203
    [125]高厚磊,贺家李.基于GPS的同步采样及在保护与控制中的应用[J].电网技术,1995,19(7):30-32
    [126]Ohno T., Yasuda T., Takahashi O., Kaminaga M., et al. Islanding protection system based on synchronized phasor measurements and its operational experiences [C]. IEEE Power and Energy Society General Meeting— Conversion and Delivery of Electrical Energy in the 21st Century,2008: 1001-1005
    [127]Zhao L., Abur A.. Multi area state estimation using synchronized phasor measurements[J]. IEEE Transactions on Power System,2005,20(2): 611-617
    [128]李钢,路洁,白晶,李华春.一起平行运行线路纵联零序方向保护误动分析[J].电力系统自动化,2008,32(14):104-107
    [129]郭润生,何彩红,郅建杰.相邻线路零序互感对线路零序纵联方向保护的影响[J].继电器,2004,32(9):71-73
    [130]汪萍,陈久林.纵联零序方向保护误动原因分析及其对策[J].电力自动化设备,2007,27(7):122-125
    [131]曾耿晖,黄明辉,刘之尧,等.同杆线路纵联零序保护误动分析及措施[J].电力系统自动化,2006,30(20):103-107
    [132]张雄伟,戴向峰,史栋媛,谢晖.一起同杆并架零序保护误动的分析及解决方案[J].电力系统自动化,2011,30(1):46-49
    [133]李钢,冯辰虎,孙集伟,等.平行运行线路互感对纵联零序方向保护的影响[J].华北电力技术,2007,12:1-4
    [134]李一泉,焦邵麟,张弛,等.平行线路纵联零序方向保护安全性分析[J].电力系统自动化,2008,32(6):104-107
    [135]臧睿,廖晓玉,张予鄂.对输电线反时限零序电流保护选择性的分析[J].继电器,2006,34(22):12-13,59
    [136]Verma H. K. , Rao T. S. M.. Inverse time over current relays using linear components[J]. IEEE Transactions on Power Apparatus and Systems,1976. 95(5):1738-1743
    [137]Tan J. C., McLaren P. G. M., Jayasinghe R. P., et al. Software model for inverse time over current relays incorporating IEC and IEEE standard curves[C]. IEEE CCECE Electrical and Computer Engineering,2002,1:137-41
    [138]严支斌,尹项根,邵德军,刘革明.新型微机反时限过流保护曲线特性及算法研究[J].继电器,2005,33(8):44-46,63
    [139]高翔.零序反时限保护应用相关问题研究[J].电工技术,2007,22(2):15-16
    [140]赵黎丽,高昌培,林虎.线路和变压器零序反时限保护及其整定配合[J].电力系统自动化,2011,35(17):107-110
    [141]张延鹏.东北电网500kV线路零序反时限保护应用研究[J].东北电网技术,2010,5:18-20
    [142]IEEE Standard Inverse-Time Characteristic Equations for Over-current Relays (IEEE Std C37.112-1996) [S]. IEEE STANDARDS,1997
    [143]严琪,肖万芳.反时限电流保护整定计算相关问题研究[J].电力自动化设备,2008,28(7):77-80
    [144]李永丽,金强,李博通,李中洲.低电压加速反时限过电流保护在微电网中的应用[J].天津大学学报,2011,44(11):955-960
    [145]张旭俊,上官帖,唐建洪,等.采用零序功率绝对值构成反时限零序电流保护的方案探讨[J].电力系统保护与控制,2009,37(23):41-44
    [146]牟龙华,邢锦磊.基于傅里叶变换的精确频率测量算法[J].电力系统自动化,2008,32(23):67-70
    [147]欧立权,黄纯,刘云潺.基于变步长LMS自适应陷波算法的电气信号频率测量[J].电力自动化设备,2007,27(7):54-57
    [148]刘涤尘,夏利民,商志会.基于人工神经网络的电网频率测量方法[J].电网技术,2000,24(8):40-43
    [149]李一泉,何奔腾.基于傅氏滤波的频率测量新方法[J].电力系统及其自动化学报,2006,18(4):45-48
    [150]许庆强,索南加乐,宋国兵,施静辉,葛耀中.振荡时电力系统瞬时频率的实时测量[J].中国电机工程学报,2003,23(1):51-54
    [151]王梅义.高电压电网继电保护运行与设计[M].北京:中国电力出版社,2007
    [152]国家电力调度通信中心.国家电网公司继电保护培训教材(上册)[M].北京:中国电力出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700