用户名: 密码: 验证码:
胶粉聚苯颗粒外墙外保温系统及其抗裂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶粉聚苯颗粒外墙外保温系统具有保温性、耐候性较好、施工快捷简便、工程造价较低等特点,近年来在节能工程中广泛应用,已成为我国夏热冬冷和夏热冬暖地区主要外墙外保温系统之一。该系统胶粉聚苯颗粒保温砂浆强度较低、吸水率高、耐候性差、收缩应力较高,抗裂层易开裂,系统耐久性、安全性存在一定隐患,系统开裂、渗漏、脱落的质量事故时有发生。研究胶粉聚苯颗粒保温砂浆、抗裂砂浆浆配制及其外保温系统开裂成因与机制,从材料及系统构造着手,改善和提升系统抗裂性对于提高夏热冬冷和夏热冬暖地区胶粉聚苯颗粒保温砂浆及其外保温系统的使用效率和保温效果,具有重要的现实意义和良好的指导作用。
     为克服原发聚苯乙烯颗粒保温砂浆粘聚性、施工性差的缺陷,系统研究了聚苯颗粒表面改性技术。利用偶联剂和粘接剂的双重作用,采用预处理表面造壳,使聚苯颗粒表面形成亲水性无机薄层,表面由憎水性改变为亲水性,从根本上解决了胶凝材对聚苯颗粒表面不润湿的技术难题,使改善胶凝材与聚苯颗粒基面的结合由粗放式的采用有机粘结剂向聚苯颗粒表面改性方向发展。这一低成本表面改性技术为高性能聚苯颗粒保温砂浆制备奠定了坚实的技术基础。
     系统研究了聚苯颗粒级配、形貌、聚合物粘结剂、保水剂、聚合物纤维、有机硅防水剂对保温砂浆性能的影响。可再分散乳胶粉可显著改善保温砂浆施工性和粘结性能,并提高硬化体韧性,其适宜掺量为5.0~6.0kg m3;甲基纤维素醚是聚苯颗粒保温砂浆的高效保水剂,但存在水灰比增加,强度降低的负面影响,其适宜掺量为1.5~1.7kg m3;聚丙烯纤维能有效抑制保温砂浆收缩,提高硬化保温砂浆的断裂韧性和抗开裂性,其最佳长度宜控制在8~12mm,适宜掺量为0.7~1.0kg m3;有机硅防水剂可显著降低保温砂浆吸水率,改善其耐水性,其适宜掺量为0.6kg m3。采用聚苯颗粒表面改性,以及聚合物粘结剂增粘增韧、聚丙烯纤维增强、甲基纤维素醚保水、有机硅防水等综合措施,配制了干表观密度230kg m3、导热系数0.056W m k、抗压强度0.8MPa、压剪粘结强度0.117MPa、吸水率2.5%、干缩率0.872‰的保温砂浆,其施工性、强度、耐水性、抗裂性均明显优于传统的高性能聚苯颗粒保温砂浆。
     抗裂砂浆是胶粉聚苯颗粒外保温系统的重要组成材料。对特细砂抗裂砂浆的配制原理与方法以及砂浆物理力学性能进行了研究。揭示了特细砂含泥量、细度模数对砂浆强度和干缩率的影响规律。通过聚丙烯纤维与木质纤维复合增强、聚合物增韧等措施配制了拉伸粘结强度0.96MPa、裂缝指数1.6、56d收缩率0.565‰、28d冲击能8.7J、28d断裂能300.3J m2、最大变形量3.02mm、抗裂性优良的特细砂抗裂砂浆,对外保温系统特细砂抗裂砂浆制备有很好的指导作用。
     采用有限元数值模拟分析软件研究了胶粉聚苯颗粒外保温系统在重庆极端高温和极端低温下的应力应变行为。保温层的温度梯度和温度应变最大,通过使用原发聚苯颗粒配制的保温砂浆和在保温层中设置伸缩缝可以有效降低构造层的温度应变,伸缩缝的宽度应不少于8mm,伸缩缝的设置间隔不超过2层或6m。抗裂砂浆层的温度应力最大,且不均匀,开裂风险较大,通过使用特细砂抗裂砂浆可以有效降低构造层的温度应力。窗洞口、阴阳角和女儿墙还出现应力集中现象,窗洞口应力集中区域为洞口四角450方向0.32m0.84m范围,其应力集中大小和范围不随窗洞口大小的变化而变化,阴角应力集中范围为交界处两边各0.05m范围,阳角应力集中范围为交界处两边各0.08m范围,女儿墙应力集中范围为交界处屋面方向0.35m、女儿墙方向0.25m范围,上述区域范围内必须采取玻纤网格布增强措施。
     论文研制的胶粉聚苯颗粒保温砂浆和特细砂抗裂砂浆进行了工业化生产,产品已在重庆龙湖U城一期4组团多层建筑进行了大规模工程应用。该工程采用35mm原发聚苯颗粒外保温加特细砂抗裂砂浆面层外保温系统,构造上采取每6m设置1030mm水平伸缩缝,窗洞口、阴阳角、女儿墙等应力集中区域采用增强耐碱玻纤网格布增强处理。2012年1月进场,不到2个月即完成该工程外保温施工,同年5月通过了重庆市沙坪坝区建委质量监督站组织的建筑节能专项验收。工程质量获得开发、施工、监理及业内人士一致好评,为成果的推广应用奠定了良好的工程基础。
The polystyrene powder has been widely used in the external wall thermalinsulation system due to its super insulation ability,good stability,easy constructionprocess and low cost. The polystyrene powder insulation system is one of the popularinsulation systems in various regions of China with large temperature gap betweensummer and winter. However,there are drawbacks occurring to the polystyrene powder.The polystyrene powders possess low strength,high water absorption,high shrinkstress,easy cracking and safety issue. In addition,the polystyrene powder insulationsystem occasionally cracks,leakages,and chips. In this dissertation,the formation andmechanism of cracking of polystyrene powders and insulation system are investigated.From the material and insulation system points of view,the utilization of polystyrenepowders and the insulation effect of polystyrene powders and insulation system havebeen dramatically improved by preventing the insulation system from cracking.
     The surface treatment of polystyrene powders has been systematically investigatedto increase the adhesive ability. We use the coupling agents and binding agents to form ahydrophilic shell on the hydrophobic polystyrene powders. The hydrophilic shell on thehydrophobic polystyrene powders increases the adhesion between the polystyrenepowders and cementitious material. The improvement of adhesion by the hydrophilicshell with the cementitious material is one of EPS surface treatment techniques freewith the organic binders. This low cost surface treatment technique guarantees theavailability of polystyrene powder insulation mortar for the mass production.
     The effect of the graduation and morphology of polystyrene powder,polymerbinders,water retention agents,polymer fibers,poly-silicon water proof agents on theinsulation mortar has been investigated systematically. The use of re-dispersed emulsionpowders can increase the construction ability and adhesion of the insulation mortar andimprove the toughness of the insulation system. The adding amount of the emulsionpowders has to be controlled within5.0~6.0kg m3.Methyl cellulose ether is theeffective water retention agent. However,it will decrease the strength of the insulationsystem as the ratio between water and cement increases.The adding amount of themethyl cellulose ether has to be controlled within1.5~1.7kg m3.The polypropylenefibers can prevent the insulation mortar from shrinking and increase the toughness andthe anti-cracking ability of hardening insulation mortar. The length of the polypropylene fibers has to be controlled within8~12mm. And the adding amount of thepolypropylene fibers has to be controlled within0.7~1.0kg m3. The organic siliconwater-proof agents can significantly decrease the water adsorbing ability and improvethe water-proof ability. The adding amount of the organic silicon water-proof agents hasto be controlled to be0.6kg m3. We have prepared the polystyrene powder mortar witha superficial density of230Kg/m3,the thermal conductivity of0.056W/cm,compressstrength of0.8,shear bond strength of0.117,absorbing ratio of2.5%,dry shrinkage of0.872‰by surface treatment on polystyrene powder,adding of polymer binders,polypropylene fibers, and so on. The homemade polystyrene powder mortar isadvantages in easy construction process,strength,water-proof,anti-cracking over thetraditional insulation mortar.
     The anti-cracking mortar is one of the most important components in the insulationsystem. We have investigated the configuration regulation and the physical mechanicalproperties of anti-cracking mortar with special fine sand. We found a regular effect ofthe content of special fine sand and modulus of fineness on the strength and shrinkageratio of mortar. We have prepared the anti-cracking special fine sand mortar with tensilebond strength of0.96MPa,cracking index of1.6,shrinkage of0.565‰in56days.After28days of hardening,the anti-cracking special fine sand mortar possesses astriking energy of8.7J,cracking energy of300.3J m2,and maximum deformation of3.02mm.
     We have investigated the stress strain behavior of the polystyrene powderinsulation system in the extreme high or low temperature in Chongqing by finiteelement numerical simulation. It was found that the insulation layer has the maximumtemperature gradient and strain,while the anti-cracking layer has the maximumtemperature stress. At the summer with extreme high temperature,the maximum stressof anti-cracking. Therefore,the location with maximum probability of cracking has tobe pre-strength. The stress concentration occurs at the inside corner,outside corner andparapet wall. The widths of stress concentration at the inside corner and outside cornerare0.05and0.08. The widths of stress concentration at the parapet wall are0.35and0.25at plane and parapet orientations,respectively. The anti-cracking layer withconcentrated stress can be strengthened by fiberglass mesh cloth to conquer theinfluence. The four corners at the window hole will meet the concentrated stressphenomenon. The range is about0.32m0.84m with an angle of45from the hole.However,the area of the region of the stress is independent of the size of the hole. In addition there is the stress release occurring at the surround of the hole except thecorners. The polystyrene ribbon at the expansion joint has low elastic modulus. It willrecover under a large stress and strain,which can absorb the stress and strain created bythe temperature variation. The width of the expansion joint has to be larger than8mm.And the interspace between two joints has to be smaller than6m.
     We have produced the polystyrene powder insulation mortar and anti-crackingspecial fine sand mortar with mass production. We have used them in the buildings ofthe Longhu real estate. To improve the anti-cracking ability,we have put the horizonexpansion joint with a size of10×30mm in every distance of3m.We also use thefiberglass mesh with anti-alkaline treatment at the inside corners,outside corners andparapet corners with occurrence of the concentrated stress. At January2012,we begin toconstruct and it only took two months to finish. At May2012,it was passed through theexamination of building energy saving by the quantity supervision station.The exportershighly appraised the quantity of the construction.
引文
[1]中国网.国家十二五规划纲要.http://www.china.com.cn/policy/txt/2011-03/16/content_22156007.htm
    [2]杨惠忠.建筑节能新技术研究与工程应用[M].北京:中国建筑工业出版社,2009.
    [3]李青.建筑干粉保温砂浆制备及性能研究[D].长沙:湖南大学,2008.
    [4]童丽萍.从能源危机看建筑节能的必然趋势[J].郑州大学学报(理学版),2008,40(4):105-109.
    [5]郁文红.建筑节能的理论分析与应用研究[D].天津:天津大学,2004.
    [6]范亚明,李兴友,付祥钊.建筑节能途径和实施措施综述[J].重庆建筑大学学报,2004,26(5):82-85.
    [7]左现广.日照阴影辅助建筑环境设计[J].重庆建筑,2003,(1):28-30.
    [8] Elisabeth Kossecka,Jan Kosny.Influence of insulation configuration on heating and coolingloads in a continuously used building[J].Energy and Building,2000,34(4):321-331.
    [9]涂逢祥,韩爱兴.外墙外保温技术[M].北京:中国计划出版社,1999.
    [10]清华大学建筑技术科学系.中国建筑节能年度发展研究报告(2008)[M].北京:中国建筑工业出版社,2009,214-215.
    [11]付祥钊等.夏热冬冷地区建筑节能技术[M].北京:中国建筑工业出版社,2002.
    [12]邱勇.建筑外墙自保温材料及体系研究[D].浙江:浙江大学,2007.
    [13]刘玉波.外墙外保温相对于外墙内保温的优势探讨[J].墙材革新与建筑节能,2003(5):37-39.
    [14]何禹.建筑外墙外保温与内保温优势比较[J].中国住宅设施,2009(8):50-52.
    [15]国家发展改革委、科技部.中国节能技术政策大纲(2006年)(发改环资[2007]199号).
    [16] Elisabeth Kossecka, Jan Kosny.Influence of insulation configuration on heating and coolingloads in a continuously used building[J].Energy and Building.2000,34(4):321-331..
    [17] Kub Edward GII. Cracking in exterior insulation and finish systems[J]. Journal ofPerformance ofConstructed Facilities,1993,7(1):60~66.
    [18]孟长再.外墙及屋顶保温的节能分析[J].煤气与热力,1996,16(4):44-49.
    [19] Williams.Monitoringjoint movement in a panelized EIFS building[J].ASTM SpecialTechnical Publication,1995:307-3206.
    [20] Ann. McNicholl, J. Owen,Lewis.Energy efficiency and solar energy in European officebuildings: a mid-career education initia-tive[J].Energy and Buildings.2001(33).
    [21]中华人民共和国建设部.JGJ144-2004.外墙外保温工程技术规程[S].北京:中国建设工业出版社,2004.
    [22]建设部标准定额研究所.RISN-TG001-2005.建筑外墙外保温技术导则[S].北京:中国建设工业出版社,2006.
    [23] Balocco C, Grazzini G, Cavalera A. Transient analysis of an external buildingcladding[J].Energy and Buildings,2008,40(7):1273-1277.
    [24]孙进磊.外墙外保温技术的发展及应用研究[D].天津:天津大学,2008.
    [25] Williams. Monitoring joint movement in a panelized EIFS building. ASTM Specialtechnical Publication,1995:307-320.
    [26] Nelson.Joint movement of a panelized EIFS wall system[J].ASTM Special TechnicalPublication,1995:294-360.
    [27] Mahaboonpachai T,Kuromiya Y,Matsumoto T. Experimental investigation of adhesionfailure of the interface between concrete and polymer-cement mortar in an external wall tilestructure under a thermal load. Construction and Building Materials,2008,22(9):2001-2006.
    [28]屈志中.外墙外保温技术发展方向的若干问题[J].建筑技术,2009.Vol40(10):309-312.
    [29] Mahlia T M I, Taufiq B N, Ismail. Correlation between thermal conductivity and thethickness of selected insulation materials for building wall. Energy and Buildings,2007,39(2):182-187.
    [30]旷峰华等.无机保温材料的现状及发展趋势[C].湖南长沙:中国硅酸盐学会陶瓷分会2012年学术年会论文集.2012(11):79-81.
    [31]宋磊.浅谈胶粉聚苯颗粒外墙外保温施工质量控制[J].城市建设理论研究,2011(27).
    [32]黄建.ZL胶粉聚苯颗粒外墙外保温系统应用技术[J].建筑技术,2005(10).
    [33] Sandrolini,F.Bignozzi,M C;Sacearfi,A.New polymer mortars containing polymericwastes.I.MJerostructure and mechanical properties Composites Part A:Applied Science andManufacturing(UK).2000Vol(31):97-106.
    [34] Bojie M,Yik F, Leung W.Thermal insulation of cooled spaces in high rise residentialbuildings in Hong Kong[J].Energy Conversion and Management.2002(43):165-183.
    [35]耿大纯,胡希华.新型外墙外保温体系的应用[J].新型建筑材料,1998(12):32-34.
    [36] Nilica R,Harmuth H. Mechanical and fracture mechanical characterization of buildingmaterials used for external thermal insulation composite systems[J].Cement and ConcreteResearch,2005,35(8):1641-1645.
    [37] Zimmer Christine,Deress David. Moisture Infiltration in Exterior Wall Systems[J].Buildings.2007,101(5):58-60.
    [38] Rebeiz,K.S.,Banko,A.S.Craft,A.P.Thermal Properties of Polymer Mortar UsingRecycled PET and Fly Ash[J].Journal of Materials in Civil Engineering.1995V01(7),no.2:129-133.
    [39]中华人民共和国建设部.JG158-2004.胶粉聚苯颗粒外墙外保温系统[S].北京:中国建设工业出版社,2004.
    [40]章银祥,石恩华,康健伟.聚苯板用界面砂浆的研究[C].中国北京:2010第四届(中国)国际建筑干混砂浆生产应用技术研讨会论文集.
    [41]建设部科技发展促进中心,北京振利高新技术公司等.外墙保温应用技术[M].北京:中国建筑工业出版社,2005.
    [42]马保国,郝先成,赛守卫,张琴.外墙外保温抗裂砂浆抗裂性能研究[J].新型建筑材料,2006,(3):61-63.
    [45] Yanhong L,Yunge F,Jianbiao M.Thermal physical and chemical stability of porouspolystyrene-type beads with different degrees of crosslinking[J].Polymer Degradation andStability,2001,73(1):163-167.
    [46]易松林,郭玉顺,王贤磊.高性能胶粉聚苯颗粒保温砂浆的组成及性能研究[J].新型建筑材料,2006,(10):35-38.
    [47]韩松,阎培渝.大掺量粉煤灰的胶粉聚苯颗粒保温砂浆研制[C].北京,第三届中国国际建筑干混砂浆生产应用技术研讨会论文集.
    [52]张明良.聚苯颗粒保温砂浆胶粉料配方优化的研究[J].墙材革新与建筑节能,2006,(12):48-51.
    [53]陈明凤,瞿金东,彭家惠,张建新. EPS保温砂浆的耐候性、抗裂性及其机理[J].建筑技术开发,2002,(3):41-42.
    [56]王昌成.外墙外保温技术及其常见问题分析[J].建材技术与应用,2004.(2):61-62.
    [65] Imad A,Ouakka A,Van K D,et al. Analysis of the viscoelastoplastic behavior of expandedpolystyrene under compressive loading: experiments and modeling. Strength Mater,2001,33(2):140-149.
    [66] Gnip I Y, Kersulis V, Vejelis S. Water absorption of expanded polystyreneboards[J].Polymer Testing,2006,25(5):635-641.
    [67] Mahaboonpachai T,Matsumoto T,Inaba Y.Investigation of interfacial fracture toughnessbetween concrete and adhesive mortar in an external wall tile structure[J].InternationalJournal of Adhesion&Adhesives,2010,30(1):1-9.
    [68]张景琦,刘树旺,王艳兵,兰明章.有机聚合物对砂浆负温粘结强度的影响[J].低温建筑技术,2009(5):11-13.
    [69] Bischoff P. H. et al. Polystyrene aggregate concrete subjected to hard impact. Proc. Instn.Civ. Engrs. Part2.1990(89):225-239.
    [70] Cummigham A, Jeffs G M, Rosbotham I D, et al. Recent advances in the developmentof rigid polyurethane foams of improved thermal insulation efficiency.In: PolyurethanesWorld Congress,1987:104-110.
    [71]张建新,彭家惠,冉光理,谢厚礼,吴彻平.加气混凝土干混特细砂抹灰砂浆研究[J].新型建筑材料,2008(2):20-23.
    [72]莫丹,彭家惠,陈明凤.加气混凝土用新型抹灰砂浆的研制[J].重庆建筑大学学报,2005(4):120-124.
    [73]李学智等.特细砂砌筑砂浆配合比设计的研究与探讨[J].混凝土,2000(2):48-49.
    [74]彭家惠等.干混特细砂陶瓷墙地砖粘结砂浆研究[J].重庆建筑大学学报,2008(6):146-150.
    [75]程志红.特细砂粘结砂浆的粘结性能研究[J].低温建筑技术,2012(1):7-8.
    [76]杨秀燕.EPS薄抹灰外墙外保温系统的开裂成因与对策研究[D].山东:山东建筑大学,2011.
    [77]刘瑶等.胶粉聚苯颗粒外墙外保温系统墙面开裂空鼓的原因分析与处理[J].浙江建筑,2009(11):64-66.
    [78]应仲浩.浅谈外墙外保温体系开裂原因及防控措施[J].民营科技,2012(9):311.
    [79]陈聪等.外墙外保温体系裂缝分析研究[J].重庆建筑大学学报,2005(12):26-28.
    [80]朱艳超.外墙外保温材料保温抗裂技术的研究[D].武汉:武汉理工大学,2009.
    [81]张晋伟.建筑外墙外保温面层开裂质量通病的防治浅析[J].山西建筑,2008(12):231-232.
    [82] Kub Edward G.. Cracking in exterior insulation and finish systems[J]. Journal ofPerformance of Constructed Facilities,1993,7(1):60-66.
    [83] Gustafsson S I.Optimization of insulation measures on existing buildings[J].Energy andBuildings,2000,33(1):49-55.
    [84] Nussbaumer T,Wakili K G,Tanner C.Experimental and numerical investigation of thethermal performance of a protected vacuum-insulation system applied to a concretewall[J].Applied Energy,2006,83(8):841-855.
    [85] Tiwari,Piyush. Rolfsman Energy efficiency and building construction in India[J]. Buildingand Environment,2001(10):1127-1135.
    [86] Dombayc O A. The environmental impact of optimum insulation thickness for external wallsof buildings[J].Building and Environment,2007,42(11):3835-3859.
    [87]黄振利.外墙外保温抗裂技术的研究(上篇)[J].施工技术,2005(7):77-80.
    [88]苏德满.建筑外墙外保温系统裂缝的探究[J].科技创新导报,2010(9):30.
    [89]陈炜.红外热像法在外墙外保温墙体抗裂层质量检测的应用研究[D].浙江:浙江工业大学,2011.
    [90]胡欣.夏热冬冷地区外墙外保温系统温度效应研究[D].浙江:浙江宁波大学,2012.
    [91]任玲玲.EPS板保温系统裂缝问题的数值分析[D].河南:郑州大学,2010.
    [92]张研.EPS外保温系统的力学分析和数值仿真[J].建筑材料学报,2010(8):478-482.
    [93]吴彻平,彭家惠,姜涵.不同结构墙体的绝热性能数值分析[J].煤气与热力,2011(11):A27-A32.
    [94]王厚华等.几种复合墙体构造的热工性能数值分析[J].重庆大学学报,2010(5):126-132.
    [95]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.10.
    [96]孙洪铁.有限单元法概述及其基本概念的分析[J].山西建筑,2012(4):37-39.
    [97]孙菊芳,荣王伍.有限元及其应用[M].北京:北京航空航天大学出版社,1990.7.
    [98]傅向荣等.有限单元法发展中的一些思考[D].中国:北京,北京力学会第18届学术年会论文集,2012(1).
    [99] Saeed Moaveni(美)著,欧阳宇等译.有限元分析-ANSYS理论与应用[M].北京:电子工业出版社,2003.
    [100]唐兴伦.Ansys工程应用教程(热与电磁学篇)[M].北京:机械工业出版社,2000.
    [101]庄茁等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社.2009.
    [102] ABQUS Inc.ASAQUS Version6.6Documentation[M].USA:ABAQUS Inc.2006.
    [103] ABAQUS.Standard User’s Manual[M].Hibbitte Karlsson&Sorenson INC,2002.
    [104] ABAQUS.Theory Manual[M].Hibbitte Karlsson&Sorenson INC,2002.
    [105] ABAQUS.2002ABAQUS Users.Conference Paper(sUS)[C].Hibbitte Karlsson&SorensonINC,2002,5.
    [106] P.P.Kraai. A Proposed Test to Determine the Cracking Potential Due to Drying Shrinkage ofConcrete [J]. Concrete Construction,1985,775-778.
    [107] Parviz Soroushian,Faiz Mirza&Abdurahman Alzozaimy. Plastic shrinkage cracking ofpolypropylene fiber reinforced concrete [J]. ACI Material Journal,Vo1.92,No.5,Sept.-Oct.,1995.
    [108] Parviz Soroushian. Secondary Reinforcement Adding Cellulose Fibers. International,1997(6).
    [109]朱伶俐,赵宇.灰砂比对防水干混砂浆性能影响的试验研究[J].砖瓦,2006,(9):65-66.
    [110] RILEM, TC50-FMC, Fracture mechanics of concrete, in:Determination of fractureenergy of mortar and concrete by means of three point bend test on notched beams. DraftRILEM Recommendation, Materials and Structures,1985(18):238-296.
    [111] Hillerborg A. The theoretical basis of a method to determine the fracture energy GFofconcrete. Material and Structure,1996,18(6):291-298.
    [112] BRAMESHBER W,HILSDORF HK. Influence of ligament length and stress state onfracture energy of concrete [J]. Engng Fract Mech,1IHAASHI H,NURMURA N,IZUMIM,990,35(1/2/3):95-106.
    [113]丁勇,李百战,罗庆,刘红.重庆市自然资源在改善室内热湿环境中的作用[J].重庆大学学报(自然科学版).2007,30(9):127-133.
    [114]彭家惠等. EPS表面改性及其保温砂浆的耐候性与抗裂性[J].重庆大学学报(自然科学版).2002,25(1):24-27.
    [115] Z.Bayasi, J.Zeng. Properties of polypropylene fiber reinforced concrete[J]. ACIMaster.1993,90(6):605-610.
    [116]陈兵,刘宁,邓初晴.EPS保温砂浆性能试验研究[J].哈尔滨工程大学学报.2012(6).
    [117]陈美祝.水泥基材料组分对早期水化及收缩开裂影响的研究[D].武汉:武汉大学.2004.
    [118]蔡苇.干拌砂浆的研究[D].重庆:重庆大学.2004.
    [119] Laetitia Patural,Philippe Marchal,Alexandre Govin,Philippe Grosseau,Bertrand Ruot,Olivier Devès.Cellulose ethers influence on water retention and consistency in cement-basedmortars[J].Cement and Concrete Research,2011,41(1):46-55.
    [120]王丽丽.羟丙基甲基纤维素的接枝改性、化学修饰及应用性能研究[D].天津:天津大学.2007.
    [121] Pourchez J,Peschard A,Grosseau P,et al.HPMC and HEMC influence on cementhydrations[J].Cement and Concrete Research,2006,36(2):288-294.
    [122]姜涵.重庆市商品砂浆发展对策及其应用技术研究[D].重庆:重庆大学.2008.
    [123]许超.废胶粉基热塑性弹性体研究及应用[D].湖南:湖南工业大学.2012.
    [124] P.Soroushian,A.Khan,J.W.Hsu.Mechanical properties of concrete material reinforced withpolypropylene or polyethylene fiber[J].ACI Master.J.1992,89(2):535-540.
    [125]赵淑红.材料力学(普通高等教育十一五规划教材)[M].北京:化学工业出版社.2010.
    [126] GRZYBOWSKI M,SHAH S P.Shrinkage cracking of fibre reinforced concrete[J].ACIMaterials Journal,1990,87(2):138-148.
    [127] Hyun-Joon kong,Stacy G.Bike,Victor C.Li.Constitutive rheological control ti develop aself-consolidating engineered cementitious composite reinforced with hydrophilic poly (vinylalcohol) fibers,Cement&Concrete Composites[J].2003,25(3):333-334.
    [128] DENG Q H, TANG G F.Numerical visualization of mass and heat transport for conjugatenatural convection/heat conduction by streamline and heathine[J].International Journal ofHeat and Mass Transfer,2002(45):2373-2385.
    [129]汤莉,汤广发.三种墙体保温隔热性能的数值分析[J].湖南人学学报(自然科学版).2008(2):31-34.
    [130] MAREF W,SWINTON M.C,KUMARAN M. K,et al.Three dimensional analysis ofthermal resistance of exterior basement insulation systems(EIBS)[J]. Building andEnvironment.2001.VOL36(4):407-419.
    [131] John Grunewald. Documentation of the Numerical simulation Program DIM3.1[J]Dresden.2000:130-13.
    [132] Ghosh S,Lee K,Moorthy S.Multiple scale analysis of heterogeneous elastic structures usinghomogenization V oronoi cell finite element methods[J].International Journal of Solids andStructures.1995,32(1):27-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700