用户名: 密码: 验证码:
沥青混合料低温铺筑热扩散过程及改进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面低温环境铺筑时,混合料将迅速降温,导致难以碾压密实或产生显著温度-密实度离析进而影响路用性能。但是,由于气候环境特点,我国北方和青藏高原地区的沥青路面施工将不可避免地遇到大温差或低温的不利环境。低温环境铺筑是我国筑路领域必须面对的问题。当施工条件不利时,道路工作者需要了解沥青混合料自最高铺筑温度冷却到允许压实的温度下限时所需要的有效压实时间,以制定是否施工的决策;或者当处于大温差不利环境而又必须施工时,应采取何种应对措施以保证工程质量。针对上述问题,本文从传热学角度出发,建立了铺筑温度场的数值仿真模型,采用仿真手段对沥青路面低温铺筑过程的热扩散影响因素进行了敏感性分析。进而,在影响因素分析的基础上,提出并研究了放大沥青混合料可压实温度域的低温施工改进技术。
     沥青路面铺筑热扩散过程影响因素复杂而多变,由现场观测和统计无法得到全面和可靠的规律。研究首先基于铺筑温度场的观测和传热学分析,确定铺筑过程中不同的热扩散影响因素在沥青铺层层内与界面的传热方式与能量守恒。然后通过对铺筑过程中材料性质与边界条件的研究,建立了基于通用CAE(Computer Aided Engineering)软件的一维铺筑温度场仿真模型。该模型的特点是采用在铺筑过程中随碾压次数和温度而改变的材料热物性,以及随施工表面温度和压实遍数动态变化的对流、有效辐射和洒水三种边界换热条件,同时层厚在铺筑过程中随碾压次数非连续变化。通过初始条件迭代,实现了多种非连续性条件在连续场仿真中的同时调用。依据温度场观测结果所进行的仿真检验证明:本文仿真模型准确,仿真结果与观测结果一致。
     基于仿真试验,本文对影响铺筑热扩散的环境条件、铺层条件、底层条件和施工工艺条件等因素进行了单因素和多因素敏感性分析,分层逐次揭示了铺筑热扩散过程对于不同因素变化的敏感性。分析结果表明,在0~10℃区间的典型低温施工环境下,初压温度每增加10℃,4~6cm铺层的有效压实时间能延长约5min;初压温度相同的情况下,厚度每减少1cm,有效压实时间减少约10min。沥青层厚度小于等于5cm时压实时间将变得窘迫,必须通过技术改进措施延长有效压实时间来保证压实质量。
     放大沥青混合料施工可操作温度范围对延长有效压实时间非常有效,且对工程具有普遍适用性。相对于温拌,低温环境施工时,维持热拌是保证压实质量、混合料品质与路面长期使用性能的基本需求。由此,本文将混合料低温施工技术改进方向确定为保持高温拌合的同时降低压实温度,提出用稀释机理的沥青阶段降粘技术,基于平衡拌合-铺筑-使用三个阶段的沥青降粘作用来实现上述研究目的。
     为评价稀释机理阶段降粘技术对混合料由施工期到服役期的全面影响,研究设计了沥青高温拌合老化影响-混合料最佳压实温度降低效果影响-混合料服役期路用性能影响的试验评价体系。从而对使用降粘添加剂的混合料进行了全面技术评价。试验结果表明,以煤油为基础的降粘添加剂对沥青热拌老化无明显不利影响,热拌后的混合料可压实温度域放大20℃,相应能使5cm以下薄层沥青路面低温施工的有效压实时间延长约20min;在密实度相同的情况下,热拌-温成型的稀释机理沥青混合料的服役期路用性能总体上不低于热拌-热成型的普通沥青混合料。通过试验路应用,本文验证了热拌稀释降粘型沥青混合料的低温环境应用效果。在平均负温环境并未对压实工艺进行调整的条件下,使用该类型混合料的4cm和5cm的路面达到了高压实标准。而跟踪观测证明:试验路所使用的混合料能够经受荷载和环境的考验。
     本文在沥青路面铺筑温度场仿真模型、铺筑热扩散影响因素敏感性分析、适于低温铺筑的沥青混合料改进技术机理、阶段降粘技术对沥青混合料最佳压实温度影响评价等方面开展的创新性研究有助于解决低温环境沥青路面施工的技术问题。
If paving at low temperature envirnoment, asphalt mixture would cool rapidly,andcould’t be compacted to certain density or would cause significant temperature-densitysegregation, then the mixture performance in service. But in northern china and Tibetplateau, asphalt pavement construction would in trouble of large temperature differenceor low temperature environment inevitably, paving at low temperature envirnoment is aproblem that road engineers must faced. When paving at disadvantage environoment,engineers have an urgent need of efficient compaction time which mixture cooling fromthe highest temperature to the lowest allow compaction temperature, or in a lowtemperature environment and must construction, need know what measures should betaken to ensure the quality of the engineering. For above problems, the paper has set upa paving temperature field simulation model based on the theory of heat transfer, andconducted sensitivity analysis of thermal diffusion influencing factors at lowtemperature by simulation test. Then, the paper has proposed effective and feasibletechnology mix improve techniques on the basis analysis of influencing factors.
     Thermal diffusion influencing factors of asphalt paving are complex and variable,comprehensive and reliable law can’t be obtained only based on field observations andstatistics. The research had first determined heat transfer modes and energyconservation at the inner and interface of paving layer, then, proposed aone-dimensional paving temperature field simulation model based on theCAE(Computer Aided Engineering) software by study of material properties andboundary conditions in the process of paving. The characteristics of the model arematerial thermal properties would be changed with compacted times and temperature;and three boundary conditions, such as convection, effective radiation and sprayingwater heat exchanger would be changed with compacted times and temperature also; thethickness of paving layer would be changed with compacted times. By the initialconditions iterations, different non-continuity conditions are applied in continuous fieldsimulation simultaneously. Simulation examination based on in situ observations dataproved: the simulation model is accurate and the simulation results are consistent withthe observed results.
     By simulation test, the article has carried out univariate and multivariate sensitivityanalysis to environmental conditions, paving layer conditions, bottom layer conditionsand paving operation conditions. Analysis at0~10℃environment shows that if theinitial compaction temperature is increased10℃, the effective compaction time of4~6cm paving layer would extend about5min; while if the thickness is decreased1cm, the effective compaction time of same initial temperature would reduced10min. Ifpaving layer thickness is less than or equal to5cm, compaction time would be very poor,and some improve improvement techniques must be used to ensure compaction quality.
     Amplifying asphalt mixture‘s operable temperature range is very effective toextend the effective compaction time and has universality and applicability to pavingwork. Compare to warm mix, when paving at low-temperature environment,maintaining hot mix is the basic needs to ensure the compaction quality, the mixturequality and the pavement long-term performance. The research has proposed that themixture improvement direction at low temperature paving is maintaining hot mix andreducing allow compaction temperature at the same time. And the asphalt stageviscosity reducing technique based on dilution mechanism was determined to realize theimprovement goal by balancing viscosity reducing impact to mixture atmix-paving-service stages.
     For evaluating full impact from construction to service of diluted mechanismadditives to mixture, the author had designed test evaluation system that include asphalthigh temperature mixing aging impact, mixture’s best compaction temperatures reduceeffect and mixture’s performance impact in service. though comprehensive technicalevaluation, get the results as follow: the additives which kerosene as the main ingredientdoes not have significant adverse impact on aging of asphalt hot mix; the bestcompaction temperature relative reduces20℃,so that a thin paving layer’s compactiontime can be added about20min. At the same density, the service road performance ofhot mix-warm compacted additives mixture do not less than hot mix-hot compactedcommon mixture in general. By the actual use at test road,the research has examinedthe application effect of hot mix dilution viscosity reduction mixture. With the use ofthe improved mixture,4cm and5cm paving layer have achieved high compactionstandard at extreme environments temperature lower than0℃and did not adjust thecompaction process. By follow-up observations, the mixture used in road test canwithstand the loads and environmental impact.
     The innovative research in asphlat paving temperature field simulation model,asphalt mixture improved technology mechanism suitable for low-temperatureenvironment paving, and compaction temperature evaluation of asphlat mixture withstage viscosity reducing techniques help to solve the technical problems of asphaltpavement construction at low temperature environment.
引文
[1]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999:10-15.
    [2]中国网.西藏自治区自然地理概况[EB/OL].(2009-11-24)[2012-9-2].http://www.china.com.cn/aboutchina/zhuanti/09dfgl/2009-11/24/content_18945762_2.htm.
    [3] Kim.K.C. The Roles Of CoMpaction Stress And Temperature in Densification ofHot Mixted Asphalt Using Image Processing[D]. Madison: Doctoral Dissertation,University Of Wisconsin-Madison,2008.
    [4] Cabrera.J G. Assessment of the Workability of Bituminous Mixtures[J]. Highwaysand Transportation,1991,11:17-23.
    [5] McLeod N W. Influence of Viscosity of Asphalt Cements on Compaction ofPaving Mixtures in the Field (Highway Research Record No.158)[R]. Washington,D.C: Highway Research Board, National Academy of Sciences-National ResearchCouncil,1967:76-115.
    [6] Skinner T. Segregation Awareness: Should Segregation Appear During theConstruction of an Asphalt Pavement[J].Technical resources,2000,46(1):15-24
    [7]陈华鑫;彭挺;邢明亮等.压实温度变异性对排水沥青混合料性能的影响研究[J].中外公路,2010,30(4):251-254.
    [8] Read S A. Construction Related Temperature Differential Damage in AsphaltConcrete Pavements[D] Seattle: Doctoral Dissertation, University of Washington,1996.
    [9]张蕾,焦晓磊,王哲人等.沥青路面温度离析标准的探讨[J].公路交通科技2008,25(5):15-19.
    [10]彭余华,沙爱民,罗志华.沥青混合料温度离析特性[J].长安大学学报(自然科学版),2008,28(6):5-10.
    [11] West R C,Watson D E,Turner P A,et al.Mixing and Compaction Temperatures ofAsphalt Binders in Hot-Mix Asphalt(NCHRP Report648)[R]. Washington:National Cooperative Highway Research Program,2010:17-18.
    [12] Chadboum B A, Newcomb D E, Voller V R, et al. An Asphalt Paving Tool forAdverse Conditions[R] Minnesota Department of Transportation Report(MN/RC-1998-18)[R].1998.
    [13] Barber E S. Calculation of Maximum Pavement Temperature from WeatherReports[R]. Washington D.C: Highway Research Board Bulletin,1957.
    [14] Williamson.R.H. Effects of Environment on Pavement Temperatures[R].Proceeding of the3rd International Conference on Structural Design of AsphaltPavements,1972.
    [15] Christison. J.M, Anderson.K.O. The Response of Asphalt Pavements to LowTemperature Climatic Environments[R]. Proceeding of the3rd InternationalConference on the Structural Design of Asphalt Pavements,1972.
    [16] Hermansson.A. A Simulation Model for Calculating Pavement Temperature,Including the Maximum Temperature[R]. Transportation Research Board79thAnnual Meeting,Washington DC,2000.
    [17] Hermansson. A. A Mathematical Model for Calculating Pavement Temperature,Comparisons between Calculated and Measured Temperature[C]//Transportation ResearchBoard80th Annual Meeting, Washington D.C,2001:619-627.
    [18] Diefenderfer.B.K. Development and Validation of a Model to Predict PavementTemperature Profile[C]//Washington DC. Transportation Research Board82th Annual Meeting, Washington DC,2003:995-1002.
    [19] Corlew J S, Dickson P F. Methods for Calculating Temperature Profiles ofHot-Mix Asphalt Concrete as Related to the Construction of Asphalt Pavements[J].Asphalt Paving Technology,1968,137:101-140.
    [20] Jordan P G, Thomas M E. Prediction of Cooling Curves Materials For Hot-MixPaving By A Computer Program(LR729)[R].London:Transportation and RoadResearch Laboratory(TRRL),1976.
    [21] Brown J R. The Cooling Effects of Temperature and Wind on Rolled AsphaltSurfacing(SR624)[R]. London:Transportation and Road Research Laboratory(TRRL),1980.
    [22] Daines M E. Cooling of Bituminous Layers and Time Available for TheirCompaction(LR4)[R]. London:Transportation and Road Research Laboratory(TRRL),1985.
    [23] US Army Corps of Engineers,Federal Aviation Administration. Hot-Mix AsphaltPaving Handbook2000[S]. Washington D.C: National Asphalt PavementAssociation,2000.
    [24] Hensley J. Establishing Hot Mix Asphalt Mixing and Compaction Temperature atthe Project Level[R/OL].(1998). http://www.asphaltmagazine.com/archives/1998/Spring/Establishing_HMA_Mixing_Temp_Project_Level.pdf
    [25] Alford J S, Ryan J E, Urban F O. Effect of Heat Storage and Variation in outdoorTemperature and Solar Intensity on Heat Transfer Through Walls[J]. Transactions:American Society of Heating and Ventilating Engineers,1979,45:369-396.
    [26]胡长顺,黄辉华.高等级公路路基路面施工技术[M].北京:人民交通出版社1994:218-219.
    [27]李长来.高等级公路沥青路面铺筑与压实高技术研究[D].西安:长安大学硕士学位论文,1997.
    [28]尹如军,李玉亭,张占军.沥青混合料有效压实时间的实测与分析[J].公路,2001,2:37-40
    [29]郑钟名.转运车沥青混合料温度变化规律研究[D].长沙:长沙理工大学硕士学位论文,2005.
    [30]陈骁.热态沥青混合料压实过程变形特性研究[D].长沙:长沙理工大学硕士学位论文,2006.
    [31]吕德宝.沥青混合料施工温度控制研究[D].长春:吉林大学博士学位论文,2011.
    [32]鲁正兰,杨春兰,董瑞琨.沥青路面摊铺时温度场时空分布特性[J].重庆建筑大学学报,2004,26(6):49-52
    [33]李波,岳永和,窦晖等.温拌沥青合料施工中温度场的时空特性[J].武汉理工大学学报,2011,33(4):61-64
    [34]王孙富.沥青路面结构温度场与温度应力的数值模拟分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [35]孙洁.热拌沥青混合料施工压实过程中温度场变化规律研究[D].长沙:长沙理工大学硕士学位论文,2009.
    [36]夏明,徐邱斌.沥青混合料摊铺碾压温度场模拟分析[J].交通标准化2009,9:85-88.
    [37]张志峰,孙杨勇.热拌沥青混合料降温规律分析[J].公路交通科技(应用技术版).2009,7:10-12.
    [38] Dawson A R, Dehdezi P K, Hall M R, et al. Enhancing thermal properties ofasphalt materials for heat storage and transfer applications[J]. Road Materials andPavement Design,2012,13(4):784-803.
    [39] Landers K. Asphalt in the Tundra:How Alaska Manages Its Asphalt Roads andAirstrips[J]. Hot Mix Asphalt Technology,2011,16(5):51-65.
    [40]马学良.振荡压路机压实动力学及压实过程控制关键技术的研究[D].西安:长安大学博士学位论文,2008.
    [41]张广,刘洪海,贾廷跃等.大温差地区沥青路面施工技术研究[R]西安:长安大学,2007
    [42] Szydlo A, Mackicwicz P. Asphalt Mix Deformation Sensitivity to Change inRheological Patameters[J]. Journal of Materials in civil engineering,2005,17(1):1-9.
    [43] Mostafavi A, Valentin V, Abraham D M, et al. Assessment of the Productivity ofNighttime Asphalt Paving Operations: A Case Study[J]. Journal of ConstructionEngineering and Management,2012,1:396-397.
    [44] Horan R D, Chang G K, Xu Q, et al. Improving Quality Control of Hot-MixAsphalt Paving with Intelligent Compaction Technology[J]. TransportationResearch Record: Journal of the Transportation Research Board,2012,2268(1):82-91.
    [45]康克贵.沥青路面低温施工浅识[J].公路,1987,12:13-16.
    [46]李兵.天水过境高速公路Superpave沥青路面低温施工技术研究[J].公路交通科技(应用技术版),2011,8:119-121.
    [47]穆柯,王选仓,王朝辉等.双层摊铺的温度散失规律研究[J].筑路机械与施工机械化,2012,1:32-34
    [48]黄慧沥青及沥青混合料热物特性及测试方法研究[D].长沙:长沙理工大学硕士学位论文,2010.
    [49] Wycoff J C. Suitability of Lightweight Aggregate for Bituminous Plant Mix[R].ASTM Bulletin,1959,235:33-36
    [50] Brahma S P. Use of Lignite Fly Ash as a Mineral Filler in BituminousConcrete(Engineering Experiment Station Series No.3)[R]. Fargo, NorthDakota:North Dakota State University.1968.
    [51] FHWA of U.S.DOT. User Guidelines for Waste and Byproduct Materials inPavement Construction [S/OL].(1997) http://www.fhwa.dot.gov/publications/research/.../pavements/.../research/infrastructure/structures/97148/cfa52.cfm.
    [52] Khan A, Mrawira D. Investigation of the Use of Lightweight AggregateHot-Mixed Asphalt in Flexible Pavements in Frost Susceptible Areas[J]. Journalof Materials in Civil Engineering,2010,22(2):171-178.
    [53]焦宝祥,周启兆.粉煤灰代石粉在沥青混凝土中的适宜掺量研究[J].粉煤灰综合利用,2002,5:15-16.
    [54]吴文学.粉煤灰沥青混合料路用性能试验研究[D].重庆:重庆交通大学硕士学位论文,2007.
    [55]焦华.掺粉煤灰沥青混合料(AC-16)性能研究[D].西安:长安大学博士学位论文,2010.
    [56]李萃斌.高强度陶粒用作道路沥青混凝上的试验研究[J].中国科技信息,2005,14:141-142.
    [57]刘启华,李萃斌,张传镁.高强页岩陶粒配制沥青陶粒混凝土的试验研究[J].广州大学学报(自然科学版),2007,6(3):77-81
    [58]郑彬,钱振东,江陈龙.碎石型陶粒环氧沥青混合料试验研究[J].公路,2009,11:187-190
    [59]张鑫.沥青路面热反射与热阻技术降温机理与应用研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011.
    [60]马驫,王晓曼,李超.相变材料在沥青混凝土路面中的应用前景分析[J].公路,2009,12:115-118.
    [61] Swiertz D, Johannes P, Tashman L, et al. Evaluation of Laboratory Coating andCompaction Procedures for Cold Mix Asphalt[J]. Asphalt Paving TechnologyProceedings Association of Asphalt Technologists,2012,81:81-83.
    [62] Raynaud G M, Lafon J F, Brosseaud Y, et al. Cold Mix Asphalt[C]//Choice forSustainable Development. Pre-Proceedings of the23rd PIARRC World RoadCongress.2007.
    [63] Л Б盖金茨维.道路沥青混凝土稳定性的研究[M].赵世五,李明堃译.北京:中国建筑工业出版社,1981:241-243.
    [64] Kristjánsdóttir ó, Muench S T, Michael L, et al. Assessing Potential forWarm-Mix Asphalt Technology Adoption[J]. Transportation Research Record:Journal of the Transportation Research Board,2007,2040(-1):91-99.
    [65] Bonaquist R F. Mix Design Practices for Warm Mix Asphalt[M]. TransportationResearch Board,2011.
    [66]陈欢欢,黄颂昌.温拌沥青,十年内取代现有技术[EB/OL].(2008-8-28).http://news.sciencenet.cn/htmlnews/2008/8/210454.html.
    [67] D’Angelo J, Harm E, Bartoszek, et al.,Warm-Mix Asphalt: European Practice(FHWA-PL-08-007)[R]. FHWAof U.S.DOT,2008:14-15
    [68] Meadwestvaco Ltd. Evotherm Warm Mix[EB/OL][2012-9-2] http://www.meadwestvaco.com/SpecialtyChemicals/AsphaltAdditives/MWV002106
    [69] Saboundjian S, Liu J, Li P, et al. Late-Season Paving of a Low-Volume Road withWarm-Mix Asphalt[J]. Transportation Research Record: Journal of theTransportation Research Board,2011,2205(1):40-47.
    [70] Liu J, Saboundjian S, Li P, et al. Laboratory Evaluation of Sasobit-ModifiedWarm-Mix Asphalt for Alaskan Conditions[J]. Journal of Materials in CivilEngineering,2011,23(11):1498-1505.
    [71] Robjent L, Dosh W. Warm-mix asphalt for rural county roads[C]//Cold RegionsEngineering2009, The14th Conference on Cold Regions Engineering, AmericanSociety of Civil Engineering,2009:438-454.
    [72] Anthony J, Linda V O, Snawder J E, et al. Study Design and Methods toInvestigate Inhalation and Dermal Exposure to Polycyclic Aromatic Compoundsand Urinary Metabolites from Asphalt Paving Workers: Research ConductedThrough Partnership[J]. Polycyclic Aromatic Compounds,2011,31(4):243-269.
    [73] Rogers w. Influence of Warm Mix Additives upon High RAP Asphalt Mixes[D].Clemson: Doctoral Dissertation,Clemson University,2012.
    [74]邢向阳.温拌沥青混合料若干关键技术研究[D].西安:长安大学硕士学位论文,2010
    [75]杨丽英.沸石沥青混合料温拌机理与性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012.
    [76] Bhusal S. A Laboratory Study of Warm Mix Asphalt for Moisture DamagePotential and Performances Issues[D]. Oklahoma City: Master Dissertation,Oklahoma State University,2009.
    [77] Sampath A. Comprehensive Evaluation of Four Warm Asphalt Mixture RegardingViscosity Tensile Strength Moisture Sensitivity Dynamic Modulus And FlowNumber[D], Iowa: Master Dissertation, The University of Iowa,2010.
    [78] Purdy K M. Warm Mix Asphalt Technology;A Comparative Study of EvothermAnd Conventional Hot Mix Asphalt[D]. Halifax: Master Dissertation, DalhousieUniversity,2008.
    [79] Akisetty C K. Evaluation Of Warm Asphalt Additives On Performance PropertiesOf CRM Binders And Mixtures[D]. Clemson: Doctoral Dissertation, ClemsonUniversity,2008
    [80]赵镇南.传热学[M].北京:高等教育出版社,2009:2-3.
    [81]杜洛金Y S.固体热物理性质导论一理论和测量[M].奚同庚,工梅华译.北京:中国计量出版社,1987:1-2
    [82] Kavianipour A. Thermal Property Estimation Utilizing the Laplace Transformwith Application to Asphaltic Pavement[J]. International Journal of Heat andMass Transfer,1967,(20):259--267.
    [83] Dawson A R, Dehdezi P K, Hall M R, et al. Thermo-Physical Optimization ofAsphalt Paving Materials[C]//Transportation Research Board91st AnnualMeeting.2012(12):1752-1762.
    [84] Loca J. Investigation of Thermophysical Properties and Transient TemperatureDistribution of Asphalt Concrete[D]. Fredericton: Master Dissertation, Universityof New Brunswick,2003.
    [85]邹玲.沥青混合料热物性参数研究[D].西安:长安大学硕士学位论文,2011.
    [86]张家荣,赵廷元.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987:155-158
    [87]逯彦秋.钢桥桥面铺装层温度场的研究[D].哈尔滨:哈尔滨工业大学博士论文,2007.
    [88]张仁义,顾强康,林超群,等.沥青和水泥混凝土导热特性研究[J].四川建筑科学研究,2012,38(1):168-170
    [89] Highter W H, Wall D J. Thermal Properties of Some Asphaltic Concrete Mixes[J].Transportation research record,1984,(7):968-979.
    [90] Williamson H. Effects of Environment on Pavement Temperatures[C]//Proceedingof the3rd International Conference on Structural Design of Asphalt Pavement,1972:144-158.
    [91] Kersten M S. Thermal Properties of Soils(Bulletin No.28)[R]. Minneapolis:Institute of Technology Engineering Experiment Station of University ofMinnesota,1949.
    [92] Atkins H N. Highway Materials,Soils,and Concretes(3th Edition)[M]. Columbus:Prentice-Hall,1997:11-12.
    [93]张秀华,陶家朴.路面材料的热学性质及其影响因素[J].西安公路学院学报,1985,3(2):26-34.
    [94] Incropera F P, DeWitt D D. Fundamentals of Heat Transfer,5th Edition[M]. JohnWiley&Sons Inc,2010,198-199
    [95] Kehlbeck F.太阳辐射对桥梁结构的影响[M].刘兴法译.北京:中国铁道出版社,1981:25-27
    [96]郑健龙,周志刚,张起森.沥青路而抗裂设计理论与方法[M].北京:人民交通出版社,2002.14-19
    [97]吴赣昌.层状路面体系温度场分析[J].中国公路学报,1992, l5(4):17-25
    [98] MCAdams W A. Heat Transmission[M]. New York:McGraw-Hill,1984.115-116
    [99] Nusselt W. Das Grundgesetz des Warmeubergangs[J]. Gesundheits-Ingenieur,1985,38:477-482,490-496
    [100] Solaimanian M, Kennedy T W. Predicting Maximum Pavement SurfaceTemperature Using Maximum Air Temperature and Hourly SolarRadiation(Transportation Research Record1417)[R]. TRB, National ResearchCouncil, Washington, D.C.,1993.
    [101] Sparrow E M, Tien K K. forced Convection Heat Transfer at an Inclined andYawed Square Plat-Application to Solar Collectors[J]. ASME Journal of HeatTransfer1977,99:507-512.
    [102] ASHARE Handbook of Fundamentals[S], New York:American Society ofHeating, Refrigeration and Air-Conditioning Engineers,1978.191-192
    [103]林媛.太阳辐射强度模型的建立及验证[J].安徽建筑工业学院学报(自然科学版),2007,15(5):44-46.
    [104]戴寿申.应用太阳辐射通量和云量的历史资料进行紫外线辐射强度预报[J].科技信息,2010,18:347-348.
    [105]严作人.层状路面体系的温度场分析[J].同济大学学报,1984(3):76-85.
    [106]林波荣.绿化对室外热环境影响的研究[D].北京:清华大学博士学位论文,2009.
    [107]韩子东.道路结构温度场研究[D].西安:长安大学硕士学位论文,2001.
    [108]刘森元,黄远锋.天空有效温度的探讨[J].太阳能学报,1983, l4(1):63-68
    [109]谈志明.路面温度场的数值解及几个关键问题探讨[J].同济大学学报(自然科学版),2010,38(1):374-379.
    [110] Swinbank W C. Long-Wave Radiation from Clear Skies[J]. Quarterly Journal ofRoyal Meterological,1963,89:339-348.
    [111]陈世训,陈创买.气象学[M].广州:中山大学出版社,1993:135.
    [112]李源渊,李艳春,孙建勇.沥青路面对城市热岛效应的影响分析[J].天津建设科技,2009,4:36-38
    [113]宋存牛.沙漠地区路基路面温度场暨路面工作环境温度指标研究[D].西安:长安大学博士学位论文,2006.
    [114]单丽岩,侯相深. LTPP进展综述[J].中外公路,2005,25(5):49-53.
    [115]陈飞.沥青路面FWD弯沉温度修正研究[D].北京:交通部科学研究院硕士学位论文,2006:19-24.
    [116] Park D Y, Buch N, Chatti K. Effective layer temperature prediction model andtemperature correction via falling weight deflectometer deflections[J].Transportation Research Record: Journal of the Transportation Research Board,2001,1764(-1):97-111.
    [117]陈森.沥青路面FWD标准检测规程与弯沉修正公式研究[D].重庆:重庆交通大学硕士学位论文,2011:4-5,39.
    [118]肖田元,张燕云,陈加栋.系统仿真导论[M].北京:清华大学出版社,2001:3-4.
    [119] Kheir N A, Holmes W M. An Validating Simulation Models of Missile Systems[J].Simulation,1978,30(4):117-128.
    [120]傅惠民,陈建伟.仿真结果距离检验方法和TIC方法对比分析[J].航空动力学报,2009,24(12):2784-2788.
    [121] McLeod N W. Influence of Viscosity of Asphalt-Cements on Compaction ofPaving Mixtures in The Field and Discussion[J]. Highway Research Record,1967,7:117-125.
    [122]李毅,邵明安,王文焰,等.土壤非饱和导水率模型中参数的敏感性分析[J].水科学进展,2003,14(5):593-597.
    [123] Diaz Vasquez L G. Simplified test method for stability assessment of asphalt coldmixes[D]. Urbana-Champaign: Doctoral Dissertation, University of Illinois AtUrbana-Champaign,2006.
    [124] Buss A, Williams R C. Warm Mix Asphalt Performance Modeling Using theMechanistic-Empirical Pavement Design Guide[C]//7th RILEM InternationalConference on Cracking in Pavements. Springer Netherlands,2012:1323-1332.
    [125]李彦伟,王江帅,黄文元.温拌沥青路面施工技术[M].北京:中国建筑工业出版社,2011:10-27.
    [126]李永生.新型硫磺沥青混凝土在北京市政工程中的应用[J].公路交通科技(应用技术版),2012,6:101-103.
    [127]吴超凡,曾梦澜,王茂文,等.添加Sasobit温拌沥青混合料的拌和与压实温度确定[J].湖南大学学报,2010,37(8):1-5.
    [128]李宁利,李铁虎,陈华鑫,等.改性沥青混合料的拌和与压实温度[J].中国公路学报,2007,2(2):40-44.
    [129]彭勇,孙立军,石永久,等.沥青混合料抗剪强度的影响因素[J].东南大学学报(自然科学版),2007,37(2):330-333.
    [130]谭忆秋.基于沥青路面应力场分布沥青混合料抗剪特性的研究[D].上海:同济大学博士后出站报告,2002:31-37.
    [131]袁钟,李思源,申伯熙.标准贯入试验的应用及贯入击数的影响因素[J].港工技术,2002,4:50-52.
    [132]袁聚云,徐超,赵春风.土工试验与原位测试[M].上海:同济大学出版社,2004:215-219.
    [133] Gandhi T. Effects of Warm Asphalt Additives on Asphalt Binder and MixtureProperties[D]. Clemson: Doctoral Dissertation, Clemson University,2008.
    [134] Mogawer W S, Austerman A J, Daniel J S, et al. Evaluation of the Effects of HotMix Asphalt Density on Mixture Fatigue Performance, Rutting Performance andMEPDG Distress Predictions[J]. International Journal of Pavement Engineering,2011,12(02):161-175.
    [135] Tangella S C S R, Craus J, Deacon J A, et al. Summary Report on FatigueResponse of Asphalt Mixtures(SHRP-A-312)[R]. Washington D.C.:NationalResearch Council,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700