用户名: 密码: 验证码:
青藏线含融化夹层和地下冰冻土路基列车行驶振动响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,青藏铁路含融化夹层高温高含冰量多年冻土路基由列车荷载振动效应引起的沉陷问题日益显著,直接关系到客货列车的安全营运、青藏线能否提速等关键问题。同时,在全球气候暖化背景下,青藏铁路未受保温措施的低温基本稳定多年冻土路基必将进一步退化为高温不稳定多年冻土路基。鉴于此,本论文以青藏铁路低温高含冰量多年冻土路基在气候暖化和列车荷载共同作用下长期服役性能为应用背景,系统构建了一整套考虑热效应的大型高含冰量多年冻土路基振动响应三维模型。通过建立含相变路基温度场预测模型、精确求解轨-枕作用力实现路基响应模型的温度-应力耦合,并采用室内试验提供模型参数、现场监测实现模型验证等方法,探索青藏客货列车行驶下高温高含冰量多年冻土路基的振动响应规律。具体工作可总结如下:
     (1)基于附面层原理,并合理考虑施工期的影响,建立了多年冻土路基相变温度场预测模型。针对青藏铁路北麓河含厚层地下冰试验段地层结构、气候条件以及温升趋势,计算分析了路堤建成后未来50年路基地温分布走势。计算结果与监测数据吻合良好,验证了该温度场预测模型的正确性。
     (2)针对青藏铁路客、货列车编组形式及轨道结构特征,基于课题组研发的车辆-轨道动力耦合仿真程序ZL-TNTLM,并突破以往仅选取某一特定荷载时程或采用过于简化的荷载作为输入的局限,综合考虑轨道高低不平顺、谐波、动力型激扰和宽轨缝等不同激励因素的作用,从而获得了较符合实际的轨-枕作用力。并重点研究分析了车辆轴重、时速、以及各种激励因素下轨-枕作用力响应特性及影响规律。
     (3)基于低温动三轴试验,系统研究了列车移动荷载作用下冰的动力性能,建立了其在长期动载下永久变形预测模型,并给出主要影响因素及变化规律。计算的动力参数主要为多年冻土路基内厚层地下冰提供必要的参数。试验结果显示,可采用粘弹性模型来描述冰的动应力-应变关系。
     (4)基于上述工作,首次建立了以120个轨-枕作用力作为列车荷载输入并考虑热效应的大型三维路基振动响应模型。引入前述温度场预测结果,不仅与多点荷载输入共同作用于模型从而实现热-力耦合,还可体现多年冻土路基冻融过程。模型参数根据室内试验选取,采用等效线性化本构模型和无限元透射边界,基于显示动力分析方法开展数值计算,可初步得到青藏铁路多年冻土路基振动响应状态。结果表明该模型采用的多组轨-枕作用力多点动力输入可很好反映列车的移动特性。路基表层应力响应和青藏铁路列车行驶加速度反应现场监测结果进一步验证了模型的可靠性。
     (5)采用上述已验证的数值模型,计算得到了青藏客货列车以不同时速行驶并在不同激励因素作用时不同温度分布状态场地的振动响应。通过提取的竖向加速度和应力时程及其1/3倍频程谱分析,分别从时域、频域角度研究了轨道交通荷载作用下含融化夹层和厚层地下冰高温多年冻土路基场地效应,并分析了列车时速、激励因素和编组型式对路基振动响应的影响。同时,初步探讨了青藏列车行驶多年冻土路基应力路径响应特性,及其受路基深度、列车时速和温度状态的影响规律。
     本文研究成果有助于加深理解热效应下高含冰量低温基本稳定多年冻土普通道砟路基的退化过程及含融化夹层高温高含冰量多年冻土路基的振动响应规律。本文研究途径较为系统完备、成果真实可靠,可服务于青藏高原多年冻土区铁路建设。
The Qinghai-Tibet Railway (QTR) is experiencing severe subgrade damagesresulting from train-induced vibrations, especially for some sections located in theice-rich warm permafrost site. The operation of passenger and freight trains and thespeed-increasing scheme of QTR may therefore be interrupted. Meanwhile thestablility of permafrost subgrage, without thermal-insulation-measures taken, willbe disturbed with the evolution of global warming. This will gradually lead to thegrowth of unstable warm permafrost. The present thesis attempts to evaluate thelong term operating performance of the ice-rich permafrost subgrade along the QTR,when subjected to traffic loads and annually increasing temperature. A completethree dimensional FEM model of the ice-rich permafrost subgrade is accordinglyestablished, taking thermal effect into account. Thermal-stress coupling isconsidered by simultaneously applying temperature field and the calculated track-sleeper force to the proposed model. The adopted research approach is becomingmore systematic with the implementation of laboratory tests and in situ monitoring.The original work is presented in detail as follows.
     1. Based on the boundary layer principle, a phase-based transient temperatureforecasting model of permafrost subgrade is built, with a proper consideration ofconstruction period. The temperature evolution of subgrade in the future50years uponthe completion of embankment construction is then predicted, considering the climateand geologic structure of the ice-rich Beiluhe section along the QTR. The numericalresults are in good agreement with the reference data.
     2. Considering the organization of passenger and freight trains and the trackstructure of the QTR, track-sleeper force induced by passing trains is more accuratelysimulated on the basis of the program ZL-TNTLM, taking also into account the verticaltrack irregularities, track gap and unstable vibration excitation. Special attention is paidto the effects of vehicle weight and running speed on the vibration loads.
     3. Cryo-dynamic triaxial tests of ice samples are conducted, with the aim to obtainthe required parameters for later research, as well as to carry out the correspondingdeformation-prediction and its influencing factors analysis. Ice could be well characterized by the visco-elasticity constitutive model according to the test results.
     4. Taking the well-calculated track-sleeper force as vibration input, a threedimensional track-subgrade coupling FEM model is initially built by using infiniteelement boundaries. Based on equivalent linear constitutive model, the obtainedtemperature field is simultaneously employed to the model to simulate thermal-stresscoupling effect, so that the freezing-thawing state of subgrade is available. Traffic loadsare shown to be well characterized by groups of multi-supported dynamic track-sleeperforces. The numerical model is further validated by the monitored acceleration anddynamic stress response at ground surface.
     5. Using the above well-validated numerical model, one can obtain the train-induced vibration response of the permafrost subgrade along the QTR. Based on thecomputed vertical acceleration and stress time histories, corresponding1/3octavebandwidth frequency response are also calculated. The vibration response of ice-richwarm permafrost subgrade induced by passing trains, and the effects led by differentfactors, are accordingly analyzed in both time domain and frenquency domain. Alsogiven interest is to the stress path of soil element subjected to traffic loading and itsinfluencing factors.
     The present thesis is aimed to provide preliminary sights into degradation tendencyof ice-rich permafrost subgrade with low temperature, and train-induced vibrationmechanism of warm permafrost subgrade with subsurface ice layer and unfrozeninterlayer. The proposed approach is complete, systematic and reliable, and is of interestin relation to the construction of permafrost subgrade along the QTR.
引文
[1]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003,24(3):1-4.
    [2]马巍,刘端,吴青柏.青藏铁路冻土路基变形监测与分析[J].岩土力学,2008,29(3):571-579.
    [3]朱占元.青藏铁路列车行驶多年冻土场地路基振动反应与振陷预测[D].哈尔滨工业大学:博士学位论文,2009.
    [4]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [5]潘卫东.青藏高原多年冻土铁路路基热稳定性研究[D].兰州:兰州大学博士学位论文,2002.
    [6]祁长青.青藏铁路冻土路基温度场随机有限元分析与变形可靠性研究[D].南京:南京大学博士学位论文,2005.
    [7]李祝龙,章金钊,武民.冻土路基热学计算研究[J].公路,2000,(2):9-12.
    [8]王绍令,米海珍.青藏公路铺筑沥青路面后路基下多年冻土的变化[J].冰川冻土,1993,15(4):566-573.
    [9]王绍令,赵林,李述训,等.青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究[J].冰川冻土,2001,23(2):111-117.
    [10] Sheng Yu, Zhang Jianming, Liu Yongzhi, et al. Thermal regime in theembankment of Qinghai-Tibet Highway in permafrost region[J]. Cold RegionsScience and Technology,2002,35(1):35-44.
    [11]潘卫东,余绍水,贾海锋,等.青藏铁路沿线多年冻土区地温场变化规律[J].冰川冻土,2002,24(6):774-779.
    [12]汪海年.青藏高原多年冻土地区路基温度场研究[M].西安:长安大学硕士学位论文,2004.
    [13]国家气象局数据中心.五道梁、托托河、安多地区地面气象资料三十年数据汇编[Z].2003.
    [14]丁一汇.中国西部环境演变评估第二卷之中国西部环境变化预测[M].北京:科学出版社,2002.
    [15]秦大河.中国西部环境演变评估[M].北京:科学出版社,2002.
    [16]王丽霞,凌贤长.多年冻土场地铁路路基地震响应加速度反应谱特性研究[J].岩石力学与工程学报,2004,23(8):1330-1335.
    [17]王丽霞,凌贤长.多年冻土场地路基地震响应动应力性状研究[J].地震工程与工程振动,2004,24(4):117-121.
    [18]王丽霞,凌贤长.多年冻土场地路基地震动位移性状研究[J].世界地震工程,2004,20(2):112-116.
    [19]王丽霞.冻土动力性能与冻土场地路基地震反应研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004.
    [20]王继志.高寒地区冻土层对结构地震反应的影响[J].地震工程与工程振动,1997,17(1):46-52.
    [21] Hans Vaziri, Han Yingcai. Full-scale file studies of the dynamic response of pilesembedded in partially frozen soil[J]. Canadian Geotechnical Journal,1991,28:708-718.
    [22]雷晓燕,圣小珍.铁路交通噪声与振动[M].北京:科学出版社,2004.
    [23]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [24] Hirokazu Takemiya, Bian Xuecheng. Substructure simulation of inhomogeneoustrack and layered ground dynamic interaction under train passage[J]. Journal ofEngineering Mechanics,2005,131(7):699-711.
    [25]刘奉喜,刘建坤,房建宏,等.多年冻土区铁路隔振沟隔振效果的数值分析[J].中国铁道科学,2003,21(2):34-41.
    [26]刘奉喜,刘建坤,房建宏.青海热水煤矿多年冻土区列车引起的地面振动检测与模拟[J].冰川冻土,2004,26(4):177-180.
    [27]刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报,1996,15(增刊):586-593.
    [28] Kondratyev V.G., Pozin V.A. An introduction to a monitoring system ofengineering geocryology for Railway under construction[M]. Chita, Russian:Zabtans Prints Complex,2000:1-84.
    [29]第三铁路勘测设计院.冻土工程[M].北京:中国铁道出版社,1994.
    [30]马巍,程国栋,吴青柏.解决青藏铁路建设中冻土工程问题的思路与思考[J].科技导报(北京),2005,23(1):23-28.
    [31]吴青柏,董献付,刘永智.青藏公路沿线多年冻土对气候变化和工程影响的响应分析[J].冰川冻土,2005,27(1):50-54.
    [32]侯全德.青藏铁路多年冻土地区筑路条件浅析[J].铁路标准设计,2000,21(2):112-117.
    [33]吴紫汪,刘永智.冻土地基与工程建筑[M].北京:海洋出版社,2005.
    [34]松浦章夫.高速铁路车辆与桥梁相互作用[J].铁道技术研究资料,1974,31(5):14-17.
    [35] Bhatti MH. Vertical and lateral dynamic response of railway bridge due tononlinear vehicle and track irregularities[D]. Ph.D.Thesis, Illinois Institute ofTechnology, Chicago, Illinois,1982.
    [36]松浦章夫.新干线铁路桥梁竖向允许挠度[J].铁道技术研究报告,1974,31(10):445-449.
    [37] Dhar CL. A method of computing bridge impact[D]. Ph.D.Thesis, IllinoisInstitute of Technology, Chieago, Illinois,1978.
    [38] Chu KH, Garg VK, Dhar CL. Railway-bridge impact: Simplified train and bridgemodel[J]. ASCE Journal Struct Div,1979,9:1823-1844.
    [39] Chu KH, Garg VK, Wiriyaehai A. Dynamic interaction of railway train andbridges[J]. Vehicle system dynamics,1980,9(4):207-236.
    [40] Wang TL, Garg VK, Chu KH. Railway bridge/vehicle interaction studies withnew model vehicle model[J]. Journal of Structural Engineering, ASCE,1991,117(7):2099-2116.
    [41]曾庆元.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [42]铁木辛柯.工程中的振动问题[M].北京:人民铁道出版社,1979.
    [43] Lyon D. The calculation of track forces due to dipped rail joints, wheel flats andrail welds[J]. The Second ORE Colloquium on Technical Computer Programs,May1972.
    [44] Jenkins HH, et al. The effect of track and vehicle parameters on wheel/railvertical dynamic forces[J]. Railway Engineering Journal,1974,3(1):2-16.
    [45] Newton SG, Clark RA. An investigation into the dynamic effects on the track ofwheel flats on railway vehicles[J]. Journal of Mechanical Engineering Science,1979,21(4):287-297.
    [46] Clark RA, Dean PA, Elkins JA, Newton SG. An investigation into the dynamiceffect of railway vehicle running on corrugated rails[J]. Journal of MechanicalEngineering Science,1982,24(2):65-76.
    [47]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [48] Ahlbeck DR, et al. The development of analytical models for railroad trackdynamics[J]. Railroad Track Mechanics&Technology, Pergamon Press,1978.
    [49]佐藤裕.轨道力学[M].北京:中国铁道出版社,1981.
    [50]佐藤吉彦.新轨道力学[M].北京:中国铁道出版社,2001.
    [51]吴章江,王浦强,李湘敏.车辆通过低接头的垂向轮轨作用力计算[J].铁道机车车辆,1982,(1):24-30.
    [52]李定清.轮轨垂直相互动力作用及其动力响应[J].铁道学报,1987,(1).
    [53]陈道兴.重载铁路非线性轮轨系统垂向动力效应分析[J].哈尔滨建筑工程学院学报,1994,27(5):11-18.
    [54]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用[D].北京:铁道部科学研究院博士学位论文,1988.
    [55]翟婉明.车辆-轨道垂向耦合动力学[D].成都:西南交通大学博士学位论文,1991.
    [56]梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].成都:西南交通大学博士学位论文,1998.
    [57]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(1):84-88.
    [58]梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2000,22(1):65-71.
    [59]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999.
    [60]毛利军,雷晓燕.车辆一轨道耦合系统随机振动分析[J].华东交通大学学报,200,18(2):6-12.
    [61]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [62]马学宁,梁波,高峰.列车速度对车辆-轨道-路基系统动力特性的影响[J].中国铁道科学,2009,30(2):7-12.
    [63]和振兴,翟婉明,杨吉忠,等.铁路交通地面振动的列车-轨道-地基耦合数值方法研究[J].振动工程学报,2008,21(5):488-492.
    [64]张有为,项盼,赵岩,等.车轨系统随机响应周期性拟稳态分析[J].力学学报,2012.
    [65] Oscarsson J. Dynamic train-track-ballast interaction with unevenly distributedtrack propertie[C].17th IAVSD Symposium on Dynamics of Vehicles on Roadsand on Tracks, Lyngby, Denmark,2001.
    [66] Oscarsson J. Dynamic train-track-ballast interaction computer models and full-scale experiments[J]. Vehicle System Dynamics,1998,28(Supp1):73-84.
    [67] Bonacina C, Comini G. Numerical solution of phase-change problems[J].International Journal of Heat and Mass Transfer,1973,16:1825-1832.
    [68] Harlan RL. Analysis of coupled heat-fluid transport in partially frozen soil[J].Water Resource Research,1973,9(3).
    [69] Taylor GS, Luthin JN. A model for couple heat and moisture transfer during soilfreezing[J]. Canadian Geotechnical Journal,1978,15:548-555.
    [70] Fukuda. Heat flow measurements in freezing soils with various freezing frontadvancing rates[C]. Proceedings of the14th Canadian Permafrost Conference,1982.
    [71] Fukuda M, Nakagawa S. Numerical analysis of frost heaving based upon thecoupled heat and water flow model[J]. Low Temperature Science, Series A(Physical Sciences),1986,45.
    [72] Guymon GL. Diffusion Hydrodynamic model of shallow estuary[J]. Journal ofWater Resources Planning and Management,1994,20.
    [73]安维东等.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990.
    [74]杨诗秀,雷志栋,朱强.土壤冻结条件下水热耦合的数值模拟[J].清华大学学报,1988,28.
    [75]王劲峰.土冻结动态温度场计算公式[J].科学通报,1989,13.
    [76]朱林楠.高原冻土区不同下垫面的附面层研究[J].冰川冻土,1988,10(1):8-14.
    [77]李双洋,张明义,张淑娟,等.列车荷载下青藏铁路冻土路基动力响应分析[J].冰川冻土,2008,30(5):860-867.
    [78]李宁,陈波,陈飞熊.寒区复合地基的温度场水分场与变形场的三场耦合模型[J].土木工程学报,2003,36(10).
    [79]令锋.冻土路基热状况动态特征的数值模拟与预报研究[D].中科院兰州冻土所博士学位论文,1999.
    [80]李南生.水工建筑物冻结过程非线性温度-水分场解析数值分析[J].内蒙古河套灌区管理局永济管理局实验站,1995.
    [81]赖远明,刘松玉,吴紫汪.寒区挡土墙温度场、渗流场和应力场耦合问题的非线性分析[J].土木工程学报,2003,36(5).
    [82]侯全德.青藏铁路多年冻土地区筑路条件浅析[J].铁路标准设计,2000,21(2):112-117.
    [83]毛雪松,胡长顺,侯仲杰.冻土路基温度场室内足尺模型实验[J].长安大学学报(自然科学版),2004,24(1):30-33.
    [84]王铁行,胡长顺,王秉纲,等.考虑多种因素的冻土路基温度场有限元方法[J].中国公路学报,2000,13(4):8-11.
    [85]靳德武,牛富俊,陈志新,等.土体冻融过程中渗流场、应力场、温度场耦合作用机理研究[J].煤田地质与勘探,2003,31(5):40-42.
    [86]朱志武,宁建国,马巍.土体冻融过程中水、热、力三场耦合本构问题及数值分析[J].工程力学,2007,24(5):138-144.
    [87]杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,9(2):49-57.
    [88]茅玉泉.交通运输车辆引起的地面振动特性和衰减[J].兵器工业部第六设计研究院,1987.
    [89]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990(2):21-28.
    [90]潘昌实,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):29-34.
    [91]蔡英.大秦重载铁路路基的动力响应及分析-重载铁路线路结构与养护[M].北京:中国铁道出版社,1992.
    [92]蔡英,黄世寿.重载铁路的线路动力学测试及分析[J].西南交通大学学报,1993,91(3):92-98.
    [93]周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1-5.
    [94]王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报,2000,22(增):79-81.
    [95]铁道科学研究院.京秦客运通道提速改造工程第一次实车运行试验研究报告[R].北京:铁道科学研究院,2000.
    [96]赵洪雁.大秦线万吨列车对轨道的动态影响分析及对策建议[J].中国铁路,2004,9:44-47.
    [97]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学博士学位论文,2005.
    [98]王立军.重载铁路路基评估的试验研究[D].北京:铁道科学研究院博士论文,2005.
    [99]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2006,23(3):500-504.
    [100] Ling Xianzhang, Chen Shijun, Zhu Zhangyuan, et.al. Field monitoring on thetrain-induced vibration response of track structure in the Beiluhe permafrostregion along Qinghai-Tibet railway in China[J]. Cold Regions Science andTechnology,2010,60(1):75-83.
    [101]陈拓,吴志坚,车爱兰,等.机车动荷载作用下多年冻土区铁路路基动力响应的试验研究[J].地震工程与工程振动,2011,(1):168-173.
    [102]吴志坚,陈拓,马巍,等.青藏铁路多年冻土区典型结构路基振动响应特性[J].上海交通大学学报,2011,(5):716-721.
    [103] Gutowski TG, Dym CL. Propagation of ground vibration: a review[J]. Journal ofSound and Vibration,1976,49(2):179-193.
    [104] Dawn TM, Stanworth CG. Ground vibrations from passing trains[J]. Journal ofSound and Vibration,1979,8:355-362.
    [105] Melke J, Kraemer S. Digital techniques in the measurement of undergroundrailway vibration and the rating of track isolation systems[C]. Proceedings of theInternational Conference on Noise Control Engineering,1981:891-894.
    [106] Fujikake T. A prediction method for the propagation of ground vibration fromrailway trains[J]. Journal of Sound and Vibration,1986,111(2):357-360.
    [107] Jorgen J. Ground vibration from rail traffic[J]. Journal of Low Frequency Noiseand Vibration,1987,6(3):96-103.
    [108] Jorgen J. Transmission of ground-borne vibration in building[J]. Journal of LowFrequency Noise and Vibration,1989,7(3).
    [109] Okumura K. Statistical analysis of field data of railway noise and vibrationcollected in an urban area[J]. Applied Acoustics,1991,33(4):263-280.
    [110] Heckl M. Railway noise-can random sleeper spacings help[J]. Acustica,1995,81(6):559-564.
    [111] Norwegian Geotechnical Institute. Vibration criteria for road and rail trafficvibbase–A database for measured vibrations from road and rail traffic[R]. NGIreport No.515136-1(October),1995.
    [112] Madshus C, Bessason B, Harvik L. Prediction model for low frequency vibrationfrom high speed railways on soft ground[J]. Journal of Sound and Vibration,1996,193(1):195-203.
    [113] Madshus C, Kaynia AM. High-speed railway lines on soft ground: dynamicbehaviour at critical train speed[J]. Journal of Sound and Vibration,2000,231(3):689-701.
    [114] Kaynia AM, Madshus C, Zackrisson P. Ground vibration from high-speed trains:prediction and countermeasure[J]. Journal of Geotechnical andGeoenvironmental Engineering,2000,126(6):531-537.
    [115] Bahrekazemi M, Bodare A. Effects of lime-cement soil stabilization against traininduced ground vibrations[J]. Geotechnical Special Publication,2003,120(1):562-574.
    [116] Hirokazu Takemiya, Bian Xuecheng. Substructure simulation of inhomogeneoustrack and layered ground dynamic interaction under train passage[J]. Journal ofEngineering Mechanics,2005,131(7):699-711.
    [117] Turunen-Rise I, Brekke A, Harvik L, et al. Vibration in dwellings from road andrail traffic–Part I: a new Norwegian measurement standard and classificationsystem[J]. Applied Acoustics,2003,64(1):71-87.
    [118] Hirokazu Takemiya, Bian Xuecheng. Substructure simulation of inhomogeneoustrack and layered ground dynamic interaction under train passage[J]. Journal ofEngineering Mechanics,2005,131(7):699-711.
    [119] Eason G. The stresses produced in a semi-infinite solid by a moving surfaceforce[J]. Int. Journal of Engineering Science,1965,(2):581-609.
    [120] Fryba L. Vibration of solids and structures under moving loads[M]. Noordoffinternational publishing, groningen, The Netherlands,1972.
    [121] Jones DV, Petyt M. Ground vibration in the vicinity of a rectangular load on ahalf-space[J]. Journal of Sound and Vibration,1993,166(1):141-159.
    [122] Jones DV, Petyt M. Ground vibration in the vicinity of a strip load: A two-dimensional half-space model[J]. Journal of Sound and Vibration,1991,147(1):155-166.
    [123] Jones DV, Petyt M. Ground vibration in the vicinity of a strip load: An elasticlayer on a rigid foundation[J]. Journal of Sound and Vibration,1992,152(3):501-515.
    [124] Jones DV, Petyt M. Ground vibration in the vicinity of a strip load: an elasticlayer on an elastic half-space[J]. Journal of Sound and Vibration,1993,161(1):1-18.
    [125] Jones DV, Petyt M. Ground vibration in the vicinity of a strip load: a two-dimensional half-space model[J]. Journal of Sound and Vibration,1991,147(1):155-166.
    [126] Sheng Yu, Zhang Jianming, Liu Yongzhi, et al. Thermal regime in theembankment of Qinghai-Tibet Highway in permafrost region[J]. Cold RegionsScience and Technology,2002,35(1):35-44.
    [127] Sheng XZ, Jones C, Petyt M. Ground vibration generated by a harmonic loadacting on a railway track. Journal of Sound and Vibration,1999,225(1):3-28.
    [128] Sheng XZ, Jones C, Petyt M. Ground vibration generated by a load moving alonga railway track[J]. Journal of Sound and vibration,1999,228(1):129-156.
    [129] Kaynia A, Madshus C, Zackrisson P. Ground vibration from high speed trains:prediction and countermeasure[J]. Journal of Geotechnical andGeoenvironmental Engineering, Proceedings of the ASCE2000,126(6):531-537.
    [130] Hung HH, Yang YB. Elastic waves in visco-elastic half-space generated byvarious vehicle loads[J]. Soil Dynamics and Earthquake Engineering,2001,21(1):1-17.
    [131]张昀青.列车荷载作用下周围物体的动力响应解[J].铁道学报,2003,25(4):85-88.
    [132]王常晶,陈云敏.列车荷载在地基中引起的应力响应分析[J].岩石力学与工程学报,2005,24(7):1178-1187.
    [133] Hendry M, Hughes D, Barbour L, et al. Train induced dynamic response ofrailway track and embankments over soft peat foundations[C]. Proceedings59thCanadian Geotechnical Conference, Vancouver: Canadian Geotechnical Society,2006.
    [134] Hall L. Simulations and analyses of train-induced ground vibrations in finiteelement models[J]. Soil Dynamics and Earthquake Engineering,2003,23(5):403-413.
    [135] Heelis ME, Collop AC, Dawson RD, et al. The Bow-wave‘effect in softsubgrade beneath high speed rail lines[C]. Performance Verification ofConstructed Geotechnical Facilities, Geotechnical Engineering SpecialPublication,2000:338-349.
    [136] Toshikazu H, Keizo U. Three-dimensional analysis of traffic-induced groundvibrations[J]. Journal of Geotechnical Engineering,1991,117(8):1133-1151.
    [137]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [138]杨英豪,王杰贤.列车运行时振波在土中的传递[J].西安建筑科技大学学报,1995,27(3):329-334.
    [139] Grundmann H, Lieb M, Trommer E. The response of a layered half-space totraffic loads moving along its surface[J]. Archive Appl. Mech.1999,69:55-67.
    [140]边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析[J].力学学报,2005,37(4):477-484.
    [141] Matsuura A. Impulsive response of an elastic layered medium in the anti-planewave field based on a thin-layered element and discrete wave number method[J].Structural Engineering and Earthquake Engineering,1993,459(22):119-128.
    [142] Matsuura A. Simulation for analyzing direct derailment limit of running vehicleon oscillating tracks[J]. Structural Engineering and Earthquake Engineering,1998,15(1):63-72.
    [143]雷晓燕.高速列车对道砟的动力响应[J].铁道学报,1997,19(1):114-121.
    [144]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].铁道标准设计,2001,21(8):2-4.
    [145] Ekevid T, Wiberg NE. Wave propagation related to high-speed train a scaledboundary FE-approach for unbounded domains[J]. Computer Methods inApplied Mechanics and Engineering,2002,191(36):3947-3964
    [146]谢伟平,王国波,于艳丽.移动荷载作用下基于薄层单元法的土动力分析[J].华中科技大学学报(城市科学版),2004,2:8-11.
    [147] Maffeis A, Scandella L, Stupazzini M, Vanini M. Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard[J]. SoilDynamics and Earthquake Engineering,2003,23(6):425-433.
    [148] Takemiya H. Simulation of track-ground vibrations due to a high-speed train: thecase of X-2000at Ledsgaard[J]. Journal of Sound and Vibration,2003,261(3):503-526.
    [149] Hall L. Simulations and analyses of train-induced ground vibrations in finiteelement models[J]. Soil Dynamics and Earthquake Engineering,2003,23(5):403-413.
    [150]牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价[J].冰川冻土,2002,24(3):264-269.
    [151]中华人民共和国铁道部标准.青藏铁路高原多年冻土区工程设计暂行规定(上册)[R].北京:中华人民共和国铁道部,2001.
    [152] Lai Yuanming, Zhang Luxin, Zhang Shujuan, et al. Cooling effect of ripped-stone embankments on Qinghai-Tiber Railway under climatic warming[J].Chinese Science Bulletin,2003,48(6):598-604.
    [153] Lai Yuanming, Li Jianjun, Niu Fujun, et al. Nonlinear thermal analysis of Qing-Tibet railway embankments in cold region[J]. Journal of Cold RegionsEngineering,2003,17(4):171-184.
    [154]程国栋,江灏,王可丽,等.冻土路基表面的融化指数与冻结指数[J].冰川冻土,2003,25(6):603-607.
    [155]施烨辉.列车荷载和冻融循环作用下冻土路基稳定性研究[D].北京:北京交通大学博士学位论文,2011.
    [156]陆子建,吴青柏,盛煜,等.青藏高原北麓河附近不同地表覆被下活动层的水热差异研究[J].冰川冻土,2006,28(5):642-647.
    [157]孙志忠,马巍,李东庆.多年冻土区块、碎石护坡冷却作用的对比研究[J].冰川冻土,2004,26(4):435-439.
    [158]南卓铜,李述训,程国栋.未来50与100年青藏高原多年冻土变化情景预测[J].中国科学D辑,地球科学,2004,34(6):528-534.
    [159]汪双杰,李祝龙,章金钊,等.多年冻土地区公路修筑技术[M].北京:人民交通出版社,2008.
    [160]郑波,张建明,马小杰,等.青藏铁路道砟层对冻土路基热状况影响分析[J].中国铁道科学,2009,30(1):8-12.
    [161]丑亚玲,盛煜,马巍.多年冻土区道路边坡热状况差异对多年冻土融化形态的影响[J].冰川冻土,2007,29(6):977-985.
    [162] Wu QB, Liu YZ, Zhang JM, et al. A review of recent frozen soil engineering inpermafrost along Qinghai-Tibet highway, China[J]. Permafrost and PeriglacialProcesses,2002,13(3):199-205.
    [163]丑亚玲,盛煜,马巍.青藏高原多年冻土区铁路路基阴阳坡表面温差的计算[J].岩石力学与工程学报,2007,26(增2):4102-4107.
    [164]徐学租,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [165] Li Shuangyang, Lai Yuanming, Zhang Minyi, et al. Study on long-term stabilityof Qinghai-Tibet Railway embankment[J]. Cold Regions Science andTechnology,2009,57(2):139-147.
    [166]潘卫东,余绍水,贾海锋,等.青藏铁路沿线多年冻土区地温场变化规律.冰川冻土,2002,24(6):774-779.
    [167] Zhang Mingyi, Zhang Jianming, Lai Yuanming. Numerical analysis for criticalheight of railway embankment in permafrost regions of Qinghai Tibetan Plateau[J]. Cold Regions Science and Technology,2005,41:111-120.
    [168]孙志忠,马巍,李东庆.青藏铁路北麓河试验段块石路基与普通路基的地温特征.岩土工程学报,2008,30(2):303-308.
    [169]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [170]陈春俊,李华超.频域采样三角级数法模拟轨道不平顺信号[J].铁道学报,2006,28(3):38-42.
    [171]王元丰,王颖,王东军.铁路轨道不平顺模拟的一种新方法[J].铁道学报,1997,19(6):110-115.
    [172] Garg VK, Dukkipati RV. Dynamics of railway vehicle systems[M]. AcademicPress, Canada,1984.
    [173]长沙铁道学院随机振动研究室.关于机车车辆-轨道系统随机激励函数的研究[J].长沙铁道学院学报,1985,(2):1-36.
    [174]铁道科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究[M].TY-1215:铁道科学研究院,1999
    [175]陈宪麦,王澜,陶夏新,等.我国干线铁路通用轨道谱的研究[J].中国铁道科学,2008,29(3):73-77.
    [176]陈宪麦.轨道不平顺时频分析及预测方法的研究[D].北京:铁道科学研究院博士学位论文,2006.
    [177]夏禾,陈英俊.车-梁-墩体系动力相互作用分析[J].土木工程学报,1992,25(2):3-12.
    [178]吴延民. NJ2型机车主要技术特点及初期运用情况(上)[J].内燃机车,2009,1:2-5.
    [179]黄强.青藏铁路(格拉段)机车车辆总体技术条件的研究[J].中国铁路,2002,(3):41-47.
    [180]李瑞淳,朱彦.青藏铁路客车研制方案的探讨[J].中国铁路,2002,(12):57-59.
    [181]张曙光.青藏铁路高原客车[M].北京:中国铁道出版社,2007.
    [182]崔高航.城轨交通引起的环境振动研究及轨道谱参数虚拟反演[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [183]崔高航,陶夏新,朱增强,等.基于Blackman-turkey法生成轨道不平顺时程研究[J].沈阳建筑大学学报(自然科学版),2010,26(4):644-649.
    [184]陈果.车辆-轨道耦合系统随机震动分析[D].成都:西南交通大学,2001.
    [185] Shinozuka M. Digital simulation of random processes and its application[J].Journal of Sound Vibration,1972,25:111-128.
    [186]张昕,蒋通.考虑轨道不平顺的车-桥动力分析[J].力学季刊,2003,24(1):15-22.
    [187]练松良.轨道动力学[M].上海:同济大学出版社,2003.
    [188] Zhu Zhanyuan, Ling Xianzhang, Chen Shijun, et al. Experiment investigation onthe train-induced subsidence prediction model of Beiluhe permafrost subgradealong the Qinghai-Tibet Railway in China[J]. Cold Regions Science andTechnology,2010,62(1):67-75.
    [189] Zhu Zhanyuan, Ling Xianzhang, Chen Shijun, et al. Analysis of dynamiccompressive stress induced by passing trains in permafrost subgrade alongQinghai-Tibet Railway[J]. Cold Regions Science and Technology,2011,65(3):465-473.
    [190] Zhu Zhan-yuan, Ling Xian-zhang, Wang Zi-yu, et al. Experimental investigationon the dynamic behavior of frozen clay[J]. Cold Regions Science andTechnology,2011,69(1):91-97.
    [191]张锋.深季节冻土区公路重载汽车行驶路基动力反应与动力永久变形[D].哈尔滨:哈尔滨工业大学博士学位论文,2012.
    [192]徐洪宇,赖远明,喻文兵,等.人造多晶冰三轴压缩强度特性试验研究[J].冰川冻土,2011,33(5):1120-1126.
    [193]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989:25-28.
    [194]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002.
    [195] Zienkiewicz OC, Bando K, Bettess P, et al. Mapped infinite elements for exteriorwave problem[J]. Int J Num Meth Eng,1985,21:1229-1251.
    [196] Lysmer J, Kulemeyer RL. Finite dynamic model for infinite media[J]. J EngMech ASCE,1969,95:759-877.
    [197]严细水,叶惠飞,赵永倩,等.弹性地基中的三维时域规则网格无限元[J].中国科学:技术科学,2010,40(7):811-821.
    [198]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [199]王常晶,陈云敏.移动荷载引起的地基应力状态变化及主应力轴旋转[J].岩石力学与工程学报,2007,26(8):1698-1704.
    [200]刘雪珠,陈国兴,储勇.列车引起的地基土应力状态变化的三维有限元分析[J].地震工程与工程振动,2010,30(2):159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700