用户名: 密码: 验证码:
基于内模原理的某舰载火箭炮操瞄系统控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代战争模式的变化及军事科学技术的发展,对火箭炮武器系统提出了更高的要求,需要提高火箭武器系统射击精确度。火箭炮的射击精度和反应速度依赖于火箭炮位置伺服系统的性能,为了提高舰载火箭炮在火力压制和防空方面的效能,本文结合某集束舰载火箭炮伺服系统的研制,研究高性能的火箭炮交流位置伺服系统,以现代控制理论为基础,结合前馈控制原理,对火箭炮伺服系统高精度跟踪控制和参数摄动下的鲁棒跟踪控制等进行了研究,有效地提高了火箭炮的射击精度,具有重要的理论价值和现实意义。
     首先,分析了某集束舰载火箭炮位置伺服系统的结构特点和工作原理,在永磁同步电动机的数学模型基础上,建立了舰载火箭炮交流伺服系统的数学模型,并将安装平台的耦合干扰作用建立到被控对象模型中。根据伺服电机驱动器的工作模式,将电流环和速度环的控制结构融合到被控对象数学模型中并进行推导化简,获得了伺服电机工作在速度环模式下的火箭炮伺服系统数学模型。对所建立数学模型的动态特性进行数值仿真,并与实验数据对照,二者结果吻合较好,表明数学模型能准确反映实际系统的特性,为下文设计位置控制器提供了依据。
     其次,针对经典PID控制不能满足高精度跟踪控制要求和一些智能复合控制策略实现成本高等问题,提出了一种基于不变流形的前馈-输出反馈控制策略。前馈控制律中需要使用目标航路轨迹和舰体摇摆运动的3阶以内导数信息,分别使用高增益观测器(HGO)和基于频谱分析的状态观测器来估计二者的导数,配置误差系统状态矩阵的特征根均具有负实部,使得在原点是渐近稳定的。同时给出了使用主动阻力矩进行低速摩擦爬行补偿的一些理论研究成果,为提高火箭炮低速运行性能等研究提供一些探索性的参考。前馈-输出反馈控制策略能够满足系统的设计指标,然而需要使用被控对象精确的数学模型和外部系统的参数。在实际应用中,当获取的系统参数和状态变量存在较大的偏差时,可能导致跟踪误差增加,这是其主要的局限性。
     将内模原理应用到火箭炮交流伺服系统的位置控制中,解决了前馈-输出反馈控制策略的局限性。内模原理也是一种基于不变流形的前馈控制策略,是将外部系统和控制量看作一个系统,并将其浸入到一个新的系统中,这个新系统可以产生驱动系统跟踪误差在其零不变流形上滑动的控制量,设计原理和数值仿真结果均表明内模控制策略对被控对象系统参数和外部系统的相位、幅值均具有很好的鲁棒性。但是标称内模原理在工程应用中存在一定的局限性,即需要已知外部系统的频率信息。
     为此,在标称内模原理的基础上,设计了一种基于跟踪误差和内模原理状态变量的自适应律,解决了控制器需要已知外部系统频率信息的局限,仿真结果表明该控制策略有效地提高了系统的跟踪精度,满足系统的性能指标要求,同时对系统参数摄动及外部系统均具有很强的鲁棒性,且此方法具有结构简单和易于实现等优点。
     最后,分析了实验系统的结构特点和基本组成,完成了以DSPF2812为核心的系统硬件电路、控制程序及电气连接部分的设计和研制。以火箭炮发射装置样机和其传动链模拟实验台为基础,对自动操瞄系统在不同信号下的前馈-输出反馈控制和自适应内模原理控制律进行了实验研究。通过实验结果分析,证实了系统设计指标实现的可行性,同时也证明了理论分析和数值仿真研究结果的正确性及自适应内模原理的有效性,与前人工作对比,进一步提高了系统的跟踪精度,为系统的后续研制和内模原理的应用提供了依据。
With the change of modern war pattern and development of military scientific technology, higher requirements of rocket launcher are put forward, i.e., higher shooting precision. The firing accuracy and response rate depend on the position servo system of the rocket launcher. In order to improve the efficiency of firing suppress and air defence in a carrier-borne rocket launcher, some high performance alternative current (AC) position servo system of rocket launcher is studied with the research and development of a certain cluster antiaircraft rocket launcher. The main work focuses on the research of high accurate tracking problem and robust control under some uncertainties by using modern control theory and feed-forward control principle. Results demonstrate that the proposed method performs well, and also has both important theoretical values and engineering meanings.
     Firstly, the structure features and working principle of the position servo system for the cluster rocket launcher were analyzed, and the mathematical model of the carrier-borne rocket launcher subjected to platform disturbance was established on the basis of permanent magnet synchronous motor (PMSM). The closed loops of electric current and rotational speed, which are set in the motor driver, were inserted into the controlled system model, and ultimately the mathematical rocket launcher model, in which the PMSM worked in rotational speed closed loop mode was established. Numerical simulation results and experiment results, those were similar the same, show that the mathematical model could precisely characterize the practical system and provide foundation for designing the position control module in the following text.
     Secondly, two key issues critical to the launcher servo system are low tracking accuracy of classical PID control strategy and high costs of executing some intelligent hybrid control strategy, therefore a feedforward-output feedback control strategy basis of invariant manifold was proposed. A high gain observer (GHO) and a state observer based on frequency analyzing were used to estimate up to3-step derivative of the target reference curve and the oscillatory motion of the board respectively, which were indispensable in the feedforward control strategy. Eigenvalues of the error system state matrix were configured to have negative real part and that made the equilibrium at the origin be exponentially stable. Moreover, some theoretical research results on friction compensation method by using positive torque load were proposed. Design specifications of the servo system could be satisfied by using the proposed feedforward-output feedback control strategy, but parameters of the controlled system and the exosystem must be exactly known. The main limitation in a practical project is that tracking error may rise if some parameters were not known.
     Internal model principle (IMP), which is also a feedforward control strategy based on invariant manifold, was introduced to remove the main limitation from the feedforward-output feedback control strategy. IMP shows that the exosyetem and control input could be seen as an augmented system and be immersed into a new system, which generates the control input that could drive tracking error sliding on the zero-error invariant manifold. The designing principle and numerical simulation results demonstrate that the internal model-based controller is able to cope with uncertainties on amplitude and phase of the exogenous sinusoid, but the frequency at which the internal-model oscillates must exactly match the frequency of the exogenous sinusoid, otherwise any mismatch in such frequencies results in a nonzero steady-state error.
     Motivated by the wish to remove such a limitation, an adaptive internal-model based control scheme in which the'natural frequencies'of the internal model are automatically tuned so as to match those of an exosystem which is totally unknown (except for an upper bound on its dimension) was addressed. Simulation results demonstrate that the proposed adaptive control scheme reduces the tracking error to its design specifications, besides, it is robust to parameters variation of the controlled system and exosystem, and is simple and easy implementation.
     Finally, a DSPF2812based control system consists of hardware circuit, software programming and electrical connection was built on the basis of analyzing results of the basic composition and structure characters of the experimental system. Series of experiments validating the efficiency of the feedforward-output feedback control strategy and adaptive internal model-based controller were implemented on the sample rocket launcher and experiment-bed of the simulative drive system. Through the analysis of experimental results, not only the feasibility of system design specifications achieved was confirmed, but also the correctness of theoretical analyzing and simulation research, and the effectiveness of the adaptive internal model-based strategy were proved, which provided reference for the performance improvement of servo system and the application of the internal model principle.
引文
[1]张学锋.火箭武器防空反导效能研究与系统仿真[D].南京:南京理工大学,2006.
    [3]王锋.舰载多功能火箭炮系统分析与研究[D].南京:南京理工大学,2007.
    [4]韩崇伟.火炮位置伺服系统的鲁棒控制与应用研究[D].西安:西安交通大学,2003.
    [5]朱玉川.某箱式多管火箭炮快速装填与高精度自动操瞄系统研究[D].南京:南京理工大学,2007年
    [6]柴华伟.某集束防空火箭炮位置伺服系统的鲁棒控制与应用研究[D].南京:南京N-工_大学,2008.
    [7]杨帆.防空火箭炮递阶控制策略与方法研究[D].南京:南京理工大学,2012.
    [8]郭亚军.某集束防空火箭炮操瞄系统的跟踪特性及动态特性研究[D].南京:南京理工大学,2012.
    [9]李军,马大为,等.火箭发射系统设计[M].北京:国防工业出版社,2008.
    [10]郝丕英.防空导弹发射装置伺服系统[M].宇航出版社,1992.
    [11]赵承庆,姜毅编著.火箭导弹武器系统概论[M].北京:北京理工大学出版社,1996.
    [12]陈明俊.ITAE最优数字伺服系统[J].控制理论与应用,1993,19(2):66-70.
    [13]王占林.近代液压控制[M].北京:机械工业出版社,1997.
    [14]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [15]秦继荣,沈安俊.现代直流伺服控制技术及其系统设计.北京:机械工业出版社,1993.
    [16]郭庆鼎,王元成.交流伺服系统[M].北京:机械工业出版社,1994.
    [17]巨永锋,张兴莲,王智慧.交流伺服系统综述[J].电气时代,2006,11:54~56.
    [18]韩京清.从PID技术到自抗扰控制技术[J].控制工程,2005,9(3):13-18.
    [19]G.J.Silva, A.Datta, S.P.Bhattacharyya. New Results on the Synthesis of PID Controllers [J]. IEEE Transactions on Automatic Control,2002,47(2):241-252.
    [20]Stuart Bennett. The past of PID controller[J]. Annual Reviews in Control,2001,25: 43-53.
    [21]Xue D Y, Chen Y Q. A comparative introduction of four fractional order controllers[C]. Congress on Intelligent Control and Automation,2002,10.
    [22]Wu Z Q, Mizumoto M. PID type fuzzy controller and parameters adaptive method [J]. Fuzzy Sets and Systems,1996(1):23-35.
    [23]黄友锐.基于遗传神经网络的自整定PID控制器[J].系统仿真学报,2003,15(11):1628-1630.
    [24]王国军,陈松乔.自动控制理论发展综述[J].微型机与应用,2000,19(6):4-7.
    [25]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2005.
    [26]张鹏,邹蓬,陈艳.基于H∞理论的二级倒立摆控制研究[J].中国民航学院学报,2005,23(4):46~49
    [27]Laval L, M'Sirdi N K, Cadiou J C. H∞ force control of a hydraulic servo-actuator with environmental uncertainties[J]. Robotics and Automation,1996,2:1566-1571.
    [28]Zhen Zhang, Andrea Serrani. Adaptive Robust Output Regulation of Uncertain Linear Periodic Systems[J]. IEEE Transactions on Automatic Control,2009,54(2):266-278.
    [29]F.Delli Priscoli, L.Marconi, A.Isidori. A new approach to adaptive nonlinear regulation[J]. SIAM Journal on Control and Optimization,2006,45(3):829-855.
    [30]Marouane Alma, loan Dore Lundau, Tudor-Bogdan Airimitoaie. Adaptive feedforward compensation algorithms for AVC systems in the presence of a feedback controller[J]. Automatica,2012,48:982-985.
    [31]刘正华,吴云洁,尔联洁,等.自适应反演滑模转台鲁棒控制器设计[J].系统仿真学报,2006,18:894-896.
    [32]L.Marconi, L.Praly, A.Isidori. Robust Asymptotic Stabilization of Nonlinear Systems With Non-Hyperbolic Zero Dynamics[J]. IEEE Transactions on Automatic Control, 2010,55(4):907-921.
    [33]Dabo Xu. Global Robust Output Regulation for nonlinear output feedback systems and its applications[D]. The University of Hong Kong:2010.
    [34]Sulin Pang, Jie Huang, Yuanhuai Bai. Robust output regulation of singular nonlinear systems via a nonlinear internal model[J]. IEEE Transactions on Automatic Control. 2005,50(2):222-228.
    [35]蒋沅.非线性系统全局鲁棒自适应输出调节及其应用[D].山东:山东大学,2010.
    [36]Naif B.Almutairi, Mohamed Zribi. Sliding mode control of coupled tanks[J]. Mechatronics,2006,16:427-441.
    [37]Kazuhiro Tsuruta, Kazuya Sato, Nobuhiro Ushimi,et al. High-speed and high-precision position control using a sliding mode compensator[J]. Electrical Engineering in Japan, 2011,174(2):1114-1120.
    [38]赵国峰,樊卫华.齿隙非线性研究进展[J].兵工学报,2006,27(6):1072-1079.
    [39]Jie Huang. Nonlinear Output Regulation:Theory and Applications[M]. Philadelpia PA, SIAM.2004.
    [40]Hassan K.Khalil. Nonlinear Systems,3rd ed[M]. Prentice Hall,2002.
    [41]B.A. Francis. The linear multivariable regulator problem[J]. in SIAM J.Control Optim, 1977,15:486-505.
    [42]B.A.Francis, W.M.Wonham. The internal model principle of control theory[J]. Automatica,1976,12:457-465.
    [43]Jie Huang, Zhiyong Chen. A General Framework for Tackling the output regulation problem[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2004,49: 2203-2218.
    [44]J.Huang and W.J.Rugh. On a nonlinear multivariable servo mechanism problem[J]. Automatica,1990,26:963-972.
    [45]J.Huang and W.J.Rugh. An approximation method for the nonlinear servomechanism problem[J]. IEEE Transactions on Automatic Control,1992,37:1009-1013.
    [46]A.Isidori, C.I.Byrnes. Output regulation of nonlinear systems[J]. IEEE Transactions on Automatic Control,1990,35:131-140.
    [47]J.Huang, C.-F.Lin. On a robust nonlinear servomechanism problem[J]. Proceedings of the 30th IEEE Conference on Decision and Control.1991:2529-2530.
    [48]J.Huang, C.-F.Lin. On the discrete-time nonlinear servomechanism problem[J]. Proceedings of American Control Conference,1993:844-848.
    [49]J.Huang, C.-F.Lin. Internal model principle and robust control of nonlinear systems[J]. Proceedings of the 32th IEEE Conference on Decision and Control.1993:1501-1513.
    [50]J.Huang, C.-F.Lin. On the solvability of the general nonlinear servomechanism problem[J]. Control-Theory and Advanced Technology,1995,10:1253-1262.
    [51]H.Khalil. Robust servomechanism output feedback controllers for feedback linearizable systems[J]. Automatica,1994,30:1587-1589.
    [52]C.I.Byrnes, F.D.Priscoli, A.Isidori. Structrally stable output regulation of nonlinear systems[J]. Automatica,1997,33:369-385.
    [53]A.Serrani, A.Isidori. Global robust output regulation for a class of nonlinear systems[J]. Systems and Control Letters,2000,39:133-139.
    [54]A.Serrani, A.Isidori, L.Marconi. Semiglobla robust output regulation of minimum-phase nonlinear systems[J]. International Journal of Robust and Nonlinear Control,2000,10:379-396.
    [55]A.Serrani, A.Isidori, L. Marconi. Semiglobal nonlinear output regulation with adaptive internal model[J]. IEEE Transactions on Automatic Control,2001,46:1178-1194.
    [56]C.I.Byrnes, D.S.Gilliam, A.Isidori. Internal Model Based Design for the Suppression of Harmonic Disturbances [J]. Directions in Mathematical Systems Theory and Optimization,2003, LNCIS 286:51-70.
    [57]J.Huang. On the solvability of the regulator equations for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control,2003,48:880-885.
    [58]J.Huang. Remarks on robust output regulaiton problem for nonlinear systems [J]. IEEE Transactions on Automatic Control,2001,46:2028-2031.
    [59]Lorenzo Marconi, Alberto Isidori. A Unifying Approach to the Design of Nonlinear Output Regulators[J]. Adv. in Control Theory and Applications,2007, LNCIS 353: 185-200.
    [60]Byrnes C.I, Isidori A. Limit sets, zero dynamics and internal models in the problem of nonlinear output regulation[J]. IEEE Transaction on Automatic Control,2003.48: 1712-1723.
    [61]Byrnes C I, Isidori A. Nonlinear internal models for output regulation[J]. IEEE Transaction on Automatic Control,2004,49:2244-2247.
    [62]L.Marconi, A.Isidori. Robust global stabilization of a class of uncertain feedforward nonlinear systems[J]. Systems & Control Letters,2000,41:281-290.
    [63]程代展,董亚丽.输出调节和内模原理[J].自动化学报,2003,29:284-295.
    [64]V.O.nikiforov. Adaptive nonlinear tracking with complete compensation of unknown disturbances[J]. Eur. J. Control,1998,4:132-139.
    [65]Dabo Xu and Jie Huang. Global output regulation for output feedback systems with an uncertain exosystem and its application[J]. International Journal of Robust and Nonlin ear Control,2010,20:1678-1697.
    [66]Abhyudai Singh, Hassan K.Khalil. Regulation of nonlinear systems using conditional integators[J]. Int.J.Robust Nonliear Control,2005,15:339-362.
    [67]L.Marconi, A.Isidori, A.Serrani. Autonomous vertical landing on an oscillating platform:an internal-model based approach[J]. Automatica,2002,38:21-32.
    [68]Dabo Xu, Jie Huang. Output Regulation Design for a Class of Nonliear Systems With an Unknown Control Direction[J]. Journal of Dynamic Systems, Measurement, and Control,2010,132:1-6.
    [69]Lu Liu, Zhiyong Chen, Jie Huang. Paremeter Convergence and minimal internal model with an adaptive output regulation problem[J].Automatica,2009,45:1306-1311.
    [70]孔雪娟,王荆江,彭力,等.基于内模原理的三相电压源型逆变电源的波形控制 技术[J].中国电机工程学报,2003,23(7):67-70.
    [71]阮晓刚,刘亮,于乃功.内模原理在肢体平衡中的模型及应用[J].清华大学学报(自然科学版),2007,42(S2):1 803-1 807.
    [72]于志伟,曾鸣.内模原理在转台波动力矩抑制中的应用[J].哈尔滨工业大学学报,2009,41(5):10-14.
    [73]窦同水,唐功友.基于内模原理的汽车主动悬挂系统的减振控制[J].中国海洋大学学报,2011,41(1/2):165-169.
    [74]A.Serrani, A.Isidori, L.Marconi. Semiglobal nonlinear output regulation with adaptive internal model[J]. IEEE Transactions on Automatic Control,2001,46:1178-1194.
    [75]S.Messineo, A.Serrani. Offshore crane control based on adaptive external model[J]. Automatica,2009,45:600-605.
    [76]Lu Liu, Jie Huang. Global Robust Output Regulation of Output Feedback Systems With Unknown High-Frequency Gain Sign[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2005,51:625-631.
    [77]Dabo Xu, Jie Huang. Output Regulation Design for a Class of Nonliear Systems With an Unknown Control Direction[J]. Journal of Dynamic Systems, Measurement, and Control,2010,132:1-6.
    [78]李珍国.交流电机控制基础[M].北京:化学工业出版社,2009,10.
    [79]舒志兵.交流伺服运动控制系统[M].北京:机械工业出版社,2006,3.
    [80]骆再飞.滑模变结构理论及其在交流伺服系统中的应用研究[D].杭州:浙江大学,2003.
    [81]贺昱曜.运动控制系统[M].西安市:西安电子科技大学出版社,2009.
    [82]Alberto Isidori. Nonlinear Control Systems,3rd ed[M]. Springer-Verlag,1995.
    [83]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [84]Zhicong Li, Qi Wang, Haiping Gao. Control of friction oscillator by Lyapunov redesign based on delayed state feedback[J]. Actaa Mechanica Sinica,2009,2: 257-264.
    [85]Ravichandran M.T., Mahindrakar A.D.. Robust Stabilization of a Class of Underactuated Mechanical Systems Using Time Scaling and Lyapunov Redesign[J]. Industrial Electronics,IEEE Transactions on,2011,58(9):4299-4313.
    [86]Chang-Sei Kim, Keum-Shik Hong, Moon-Ki Kim. Nonliear tobust control of a hydraulic elevator:experiment-based modeling and two-stage Lyapunov redesign[J]. Control Engineering Practice.2005,13(6):789-803.
    [87]Li HY, Hu YA. Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties[J]. Commun Nonlinear Sci Numer Simulat.2011,16(10):3904-3913.
    [88]L. Marconi and L. Praly. Uniform Practical Nonlinear Output Regulation[J]. IEEE Transactions on Automatic Control,2008,53(5):1184-1202.
    [89]于存贵,马大为,王慧方,等.舰载火箭炮随动系统调炮动力学仿真[J].南京理工大学学报,2007,31(2):143-146.
    [90]瞿军,马大为,刘为.舰载武器垂直装填机械防摇控制研究[J].兵工学报,2011,32(8):957-962.
    [91]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [92]Li S, Gu H. Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System[J]. IEEE Transaction on Industrial Informatics,2012,8(4): 767-779.
    [93]TUDORACHE T, TRIFU I, GHITA C, et al. Improved Mathematical Model of PMSM Taking Into Account Cogging Torgue Oscillations[J].Advances in Electrical and Computer Engineering,2012,12(3):59-64.
    [94]庄文许,马大为,乐贵高.火箭炮在安装平台耦合干扰下的输出调节问题研究[J].兵工学报,2012,11:1373-1378.
    [95]洪家振,杨长俊.理论力学[M].北京:高等教育出版社,2008.
    [96]Ho Pham Huy Anh, Kyoung Kwan Ahn. Hybrid control of a pneumatic artificial muscle(PAM) robot arm using an inverse NARX fuzzy model[J]. Engineering Applications of Artifical Intelligence,2011,24(4):697-716.
    [97]杜兆才,余跃庆,张绪平.平面柔性机器人动力学建模[J].机械工程学报,2007,9:96-101.
    [98]Tiwari. Robot-human control interactions in mining operations[D]. University of Nevada, Reno,2006.
    [99]某军用交流伺服电机驱动器手册[Z].
    [100]Nedic. Low-cost current-fed pmsm drive system with sinusoidal input currents[D]. University of Wisconsin, Madison,2002.
    [101]某火箭炮随动发射装置设计说明书[z].
    [102]王鼎,焦自平,刘明攀.鲁棒最优控制在舰炮随动系统中的应用[J].舰船电子工程,2007,27(6):66-68.
    [103]崔海洪.舰载光电控制系统分析与设计[D].哈尔滨:哈尔滨工程大学,2008.
    [104]Riccardo Marino, Stefano Scalzi, Mariana Netto. Nested PID steering control for lane keeping in autonomous vehicles[J]. Control Engineering Practice,2011,19:1459- 1467.
    [105]A.Kwiatkowsky, H.Werner, J.P.Blath, et al. Linear parameter varying PID controller design for charge control of a spark-ignited engine[J]. Control Engineering Practice, 2009,17(11):1307-1317.
    [106]孙德,乐贵高,庄文许.火箭炮位置伺服系统的复合PID控制[J].弹舰与制导学报.2012,1:215-219.
    [107]李胜,陈庆伟,胡维礼.不变流行在非完成链式系统镇定中的应用[J].南京理工大学学报,29(5):505-509.
    [108]Hashtrudi-Zaad K., Khorasani K.. An Integral Approach to Tracking Control for a Class of Non-minimum Phase Linear Systems Using Output Feedback[J]. Automatica, 1996,22(11):1533-1552.
    [109]Krstic.M.. Invariant manifolds and asymptotic properties of adaptive nonlinear stabilizers[J]. IEEE Transactions on Automatic Control,1996,41(6):817-829.
    [110]Attaullah Y.Memon, Hassan K.Khalil.Output regulation of nonlinear systems using conditional servocompensators[J]. Automatica,2010,46:1119-1128.
    [111]N.维纳著(郝季仁译).控制论(或关于动物和机器中控制和通信的科学)(第二版)[M].北京:科学出版社,2009.
    [112]庄文许,杨必武,马大为,等.使用主动阻力矩的摩擦补偿新方法[J].机床与液压,2012,23(40):7-13.
    [113]Xiaobin Lu, M.M.Khonsari, E.R.M. Gelinck. The Stribeck Curve:Experimental Results and Theoretica Prediction[J]. Journal of Tribology,2006,128:789-794.
    [114]Leonid Freidovich, Anders Robertsson, Anton Shiriaev, etal. LuGre-Model-Based Friction Compensation[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2010,18(1):194-200.
    [115]王永富,王殿辉,柴天佑.基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿[J].自动化学报,2010,36(3):412-419.
    [116]J.Awrejcewicz, P.Olejnik. Analysis of Dynamic Systems With Various Friction Laws[J]. Applied Mechanics Reviews,2005,58:389-410.
    [117]周景雷,张维海.带有摩擦的机器人鲁棒控制[J].机械工程学报,2007,43(9):102-106.
    [118]Tong Heng Lee, Kok Kiong Tan, Sunan Huang. Adaptive Friction Compensation With a Dynamical Friction Model[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS.2011,16(1):133-140.
    [119]S.Zhao, A.S.Putra, K.K.Tan, etal. Intelligent compensation of friction, ripple, and hysteresis via a regulated chatter[J]. ISA-The Instrumentation, Systems, and Automation Society.2006,45(3):419-433.
    [120]孔祥臻,王勇,蒋守勇.基于Stribeck模型的摩擦颤振补偿[J].机械工程学报,2010,46(5):68-73.
    [121]O.M.BRAUN. Bridging the Gap Between the Atomoc-S-cale and Macroscopic Modeling of Friciton[J]. Tribol Lett,2010(39):283-293.
    [122]梁锡昌,蒋建东.磁流变无极调速技术的研究[J].机械工程学报,2005,41(9):146-159.
    [123]王海波.水下拖拽升沉补偿液压系统及其控制研究[D].杭州:浙江大学.2009.7.
    [124]Chen;Tianshi. Robust stabilization and output regulation of nonlinear feedforward systems and their applications. The Chinese University of Hong Kong.2009.
    [125]Chih-Jer Lin, Po-Ting Lin. Particle swarm optimization based feedforward controller for a XY PZT positioning stage[J].2012,22(5):614-628.
    [126]Saverio Messineo, Andrea Serrani. Adaptive feedforward disturbance rejection in nonlinear systems[J]. Systems and Control Letters.2009,58(8):576-583.
    [127]Hassan K. Khalil. A note on the robustness of high-gain-observer-based controllers to unmodeled actuator and sensor dynamics[J]. Automatica.2005,41:1821-1824.
    [128]W.M. Wonham. Towards an Abstract Internal Model Principle[J]. IEEE Transactions on Systems, Man, and Cybernetics.1976,6(11):735-740.
    [129]B. Francis, O.A.Sebakhy and W.M.Wonham.Synthesis of multivariable regulators-The internal model principle[J]. Applied Mathematics & Optimization.1974,1(1): 64-86.
    [130]F. Delli Priscoli. Output regulation with nonlinear internal models[J].Systems & Control Letters.2004,53:177-185.
    [131]F.Delli Priscoli, L.Marconi, A.Isidori. Adaptive observers as nonlinear internal models[J]. Systems & Control Letters.2006,55:640-649.
    [132]Andrea Serrani. Rejection of harmonic disturbances at the controller input via hybrid adaptive external models[J]. Automatica,2006,42:1977-1985.
    [133]刘金琨,尔联洁.飞行模拟转台高精度数字重复控制器的设计.宇航学报.2004.25(1):59-61.
    [134]Ian R.Petersen. A notion of possible controllability for uncertain linear systems with structured uncertainty. Automatica.2009.45:134-141.
    [135]A.Isidori, L.Marconi. Asymptotic Analysis and Observer Design in the Theory of Nonlinear Output Regulation[J].G. Besancon(Ed.):Nonlinear Observers and Applications, LNCIS 363:181-210,2007.
    [136]Fahad Alramadan. Improved robustness of a servomotor using internal model control[D]. University of Arkansas.2009.
    [137]Sridhar Seshagiri, Hassan K. Khalil. Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators[J]. Automatic,2005, 41:43-54.
    [138]Wonhee Kim, Hyungjong Kim, Chung Choo Chung, et al. Adaptive Output Regulation for the Rejection of a Periodic Disturbance[J].IEEE Transactions on Control Systems Technology.2011,19(5):1296-1304.
    [139]Zhiyong Chen and Jie Huang.Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control[J]. IEEE Transactions on Automatic Control.2009, 54(3):600-605.
    [140]潘登,郑应平.基于模型参考和内模原理的线性系统鲁棒控制设计[J].控制理论与应用,2007,24(4):651-656.
    [141]A.R.Teel, L.Parly. Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Contro Optim.1995,33(5):1443-1488.
    [142]高明坤,宋廷伦编著.火箭导弹发射装置构造.北京:北京理工大学出版社,1996.
    [143]庄文许,马大为,翟小晶,等.基于DSP与AD2S83的轴角位置变换系统[J].微特电机,2012,2:27-28.
    [144]周立功单片机发展有限公司.带I2C/SPI接口,64字节发送和接受FIFO,支持内置IrDA的双UART-SC16IS752/SC16IS762[Z].
    [145]苏奎峰,吕强,常天庆,等.TMS320FX281xDSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008.2.
    [146]孙丽明.TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社,2008,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700