用户名: 密码: 验证码:
自行火炮弹炮多体发射系统动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自行火炮在射击过程中,膛内的高温高压火药燃气瞬间形成较大的冲击载荷,使系统产生复杂的动态响应;同时,由于弹炮间隙的存在,弹丸在膛内高速运动时将不断与身管内壁发生剧烈的接触碰撞,从而导致身管的弹性振动与弹丸运动两者相互耦合,形成了火炮系统的初始扰动,并决定了弹丸出炮口时的运动状态及以后的姿态变化,直接关系到自行火炮的射击精度和射击稳定性。
     因此,建立相对准确高效且充分反映弹炮间相互作用的自行火炮弹炮多体发射系统动力学模型,来描述火炮的射击过程,进而得到结构参数对系统动态响应特性和弹丸膛内运动规律的影响,对火炮的发射动力学研究和结构优化设计具有重要的指导意义。本文以某型履带式自行火炮为研究对象,针对上述问题展开分析,所做的主要工作如下:
     (1)为了研究火炮射击过程中弹丸和柔性身管间的接触碰撞对弹丸膛内运动规律及炮口振动的影响,通过引出虚拟体的概念,提出了一种经由虚拟体组成的模拟身管来间接传递弹炮间相互作用力的方法,并以虚拟体为基础建立了弹炮刚柔耦合多体系统模型,推导了系统对应的动力学方程,为弹炮耦合问题的研究奠定了理论基础。
     (2)将相对坐标理论和递归算法引入到火炮系统中,推导了构件间的运动学递归关系;同时,采用模态综合法描述身管的柔性变形,建立了火炮刚柔耦合多体系统的动力学方程。
     (3)基于文中阐述的火炮系统动力学建模理论,以某型履带式自行火炮为研究对象,将有限个虚拟体组成模拟身管引入弹炮刚柔耦合系统,考虑弹炮间的接触碰撞及身管的柔性变形,建立了履带式自行火炮弹炮多体发射系统动力学仿真模型;同时,获得了在相同试验条件下计算结果和测试数据的对比曲线,验证了将虚拟体引入火炮仿真模型的可行性与正确性。
     (4)通过将弹丸与模拟身管内壁间的接触面视为规则几何形状进行离散,对比了系统模型采用刚性身管以及不考虑弹丸作用时炮口振动的变化规律,证明了在对火炮系统进行动力学分析时计及弹炮间耦合作用的必要性,得到了弹丸在模拟身管中的运动规律,实现了柔性身管和弹丸间相互作用力的等效传递,为自行火炮发射动力学和弹炮耦合问题的研究提供一种新的思路。
     (5)以建立的自行火炮弹炮多体发射系统动力学模型为基础,从弹炮间的结构变量及自行火炮自身结构参数两方面出发,取炮口横向和垂向的角速度和线速度为炮口振动特征量,取弹丸横向和垂向的角位移、角速度和线速度为弹丸运动特征量,较为详细地分析了结构参数的改变对炮口振动和弹丸膛内运动规律的影响。分析表明,相比于大多数火炮自身结构参数对系统初始扰动的影响,弹炮间的结构参数对炮口振动和弹丸运动所造成的影响较明显,且弹炮间的作用力不容忽略。对于火炮系统的发射动力学研究,要想获得较理想的分析结果,就必须充分考虑弹丸和身管间的结构参数对系统的影响;同时研究表明,由结构参数的改变而引起的炮口和弹丸初始扰动值的变化,并不完全同时增大或减小,即弹丸和炮口的运动规律并不完全具有一致性。
     (6)针对弹丸和炮口的初始扰动并不完全具有一致性这一问题,提出了一种同时以弹丸和炮口扰动为优化目标的自行火炮系统多目标优化方法,通过对多个子目标进行加权归一化得到了反映炮口振动量和反映弹丸初始扰动的两个子目标函数,建立了系统的多目标优化数学模型,并结合NSGA Ⅱ遗传算法求得对应的Pareto前沿,从而为火炮系统的结构优化研究提供一定参考。
During the firing process of the self-propelled artillery, the large impact load is generated by the high-temperature high-pressure propellant gas in the bore, which may bring about the complex dynamic response of the system. Meanwhile, when the projectile moves at a high speed in the bore, there is a strong contact/impact between the projectile and the barrel due to the projectile-barrel gap, which results in the coupling between the elastic vibration of the barrel and the projectile motion. All the above cause the initial disturbance of the artillery and determine the state of the projectile out of the muzzle, which have a close bearing on the firing accuracy and firing stability of the artillery.
     Therefore, it is of important significance to establish the projectile-barrel multi-body dynamics model for the self-propelled artillery. The model should fully reflect the projectile-barrel interaction, and can obtain the influence of the structure parameters to both the system dynamic response characteristics and the projectile motion, and thus offer guidance for the artillery launch dynamics research and the structure optimization design. A certain type of medium caliber tracked self-propelled artillery is taken as the subject background in the thesis, and the main research contents and results are as follows:
     (1) In order to investigate the influence of the contact/impact between the projectile and the flexible barrel to the projectile motion and the muzzle vibration, a method was proposed by introducing the concept of virtual substance, in which the analog barrel composed by the virtual substances was used to transferred the projectile-barrel interaction force indirectly. Then a projectile-barrel rigid-flexible coupling multi-body model was built based on the virtual substances, and the corresponding dynamics equation was derived, which provides a theoretical foundation for the research of rigid-flexible coupling.
     (2) The relative coordinate theory and the recursive algorithm were introduced into the artillery system, and the recursive relationship between components was derived. At the same time, the flexible deformation of the barrel was described by the modal synthesis method, and the rigid-flexible coupling dynamics equations of the multi-body system were set up.
     (3) Based on the system dynamics theory described in the present paper, taking a medium caliber tracked self-propelled artillery as an example, the analog barrel composed by finite virtual substances was introduced into the projectile-barrel rigid-flexible coupling system. Considering the projectile-barrel contact/impact and the flexible deformation of the barrel, the multi-body dynamics model of the projectile-barrel system was established. The model is feasible by comparing the calculation results and the experimental data.
     (4) The discretization was carried out after regarding the interface between the projectile and the inner wall of the analog barrel as the regular geometric shape. When the barrel was considered as rigid and the projectile-barrel interaction was ignored, the variations of the muzzle vibration were also calculated for comparison. The results show that the projectile-barrel interaction must be taken into account in the artillery dynamics research. The motion law of the projectile in the analog barrel was obtained, and the equivalent transfer of the projectile-barrel interaction force was achieved, which can provide a new thought for the self-propelled artillery launch dynamics and the projectile-barrel coupling research.
     (5) Based on the launch dynamics model of the self-propelled artillery, considering the structure parameters of both the projectile-barrel interaction and the artillery itself, the horizontal and vertical angular velocity and linear velocity of the muzzle were taken as the characteristic parameters of the muzzle vibration, and the horizontal and vertical angular displacement, angular velocity and linear velocity were chosen as the characteristic parameters of the projectile motion, then the influences of the structure parameters to both the muzzle vibration and the projectile motion were analyzed in detail. The results show that the influence of the projectile-barrel structure parameters is more obvious than that of the artillery parameters, so the interaction force is not allowed to be ignored. Therefore, the impact of the projectile-barrel structure parameters must be fully taken into account in the artillery dynamics research. The results show that the influences of the structure parameters to the initial disturbances of the muzzle and the projectile are not entirely consistent.
     (6) Aim at the inconsistency of the initial disturbances of the muzzle and the projectile, a multi-objective optimization method was presented, in which the initial disturbances of the muzzle and the projectile were regarded as the optimization goal. Through the weighted normalization of several sub-goals, two sub-objective functions were obtained which can reflect the muzzle vibration and the initial disturbance of the projectile. On this basis, the multi-objective optimization model of the system was established, and the corresponding Pareto front was gained by NSGA II genetic algorithm, which can provide some references for the structural optimization research of the self-propelled artillery.
引文
[1]康新中等.火炮系统动力学[M].北京市:国防工业出版社,1999.
    [2]龚海岳.牵引火炮总体结构多目标优化研究[D].南京理工大学,2006.
    [3]Sakawa Y, Matsuno F, Fukushima S. Modeling and Feedback Control of a Flexible Arm[J]. Journal of Robotic Systems,1985,2(4):453-472.
    [4]Bayo E. Timoshenko versus Bernoulli-Euler Beam Theories for the Universe Dynamics of Flexible Robots[J]. International Journal of Robotics & Automation,1989,4(1):53-56.
    [5]Auciello N M, Ercolano A. A General Solution for Dynamic Response of Axially Loaded Non-Uniform Timoshenko Beams[J]. International Journal of Solids and Structures,2004, 41(18):4861-4874.
    [6]Auciello N M. Free Vibration of a Restrained Shear-Deformable Tapered Beam with a Tip Mass at its Free End[J]. Journal of Sound Vibration,2000,237:542-549.
    [7]Eisenberger M. Derivation of Shape Functions For an Exact 4-DOF Timoshenko Beam Element[J]. Communications in Numerical Methods in Engineering,1994,10(9): 673-681.
    [8]Eisenberger M. Dynamic Stiffness Matrix for Variable Cross-Section Timoshenko Beams[J]. Communications in Numerical Methods in Engineering,1995,11(6):507-513.
    [9]潘旦光,吴顺川,张维.变截面Timoshenko悬臂梁自由振动分析[J].土木建筑与环境工程,2009,31(3):25-28.
    [10]吕中荣,谢瑾荣,刘济科.复合单元法在变截面梁自由振动分析中的应用[J].中山大学学报(自然科学版),2010,49(6):49-52.
    [11]Singh R P, Vandervoort R J, Likins P W. Dynamics of Flexible Bodies in Tree Topology-A Computer-Oriented Approach[J]. Journal of Guidance, Control, and Dynamics,1985,8(5):584-590.
    [12]Bakr E M, Shabana A A. Geometrically Nonlinear Analysis of Multibody Systems[J]. Computers & Structures,1986,23(6):739-751.
    [13]Huston R L. Multi-Body Dynamics including the Effects of Flexibility and Compliance[J]. Computers & Structures,1981,14(5):443-451.
    [14]Cox P A. Muzzle Motion of the M68 105mm Gun, AD-A062296[R],1978.
    [15]Sneck H J. Main Battle Tank Flexible Gun Tube Disturbance Model:Three-Segment Model, AD-A631804[R],2002.
    [16]Soifer M T, Becker R S. Dynamic Analysis of the 75MM ADMAG Gun System, AD-A768321[R],1982.
    [17]Boresi A P. Transient Response of a Gun System under Repeated Firing[D], Naval Postgraduate School,1979.
    [18]Jones D E. Analysis of a Controller for the M61 Movable Gun, AD-A081893[R],1978.
    [19]杨国来.多柔体系统参数化模型及其在火炮中的应用研究[D].南京理工大学,1999.
    [20]王亚平,赵军,聂宏,等.机枪刚柔耦合参数化仿真模型及应用[J].系统仿真学报,2008,20(20):5722-5724.
    [21]徐达,胡俊彪,穆歌.基于刚柔耦合的坦克炮发射动力学仿真分析[J].装甲兵工程学院学报,2009,23(4):45-47,51.
    [22]刘林,狄长春,李云峰,等.身管柔性化对火炮动力后坐试验的影响研究[J].军械工程学院学报,2011,23(1):31-34.
    [23]王颖泽,张小兵,袁亚雄.计及柔性效应的火炮身管动力学模型分析[J].火炮发射与控制学报,2008(4):49-52,58.
    [24]闵建平,陈运生,杨国来.身管柔性对炮口扰动的影响[J].火炮发射与控制学报,2000(2):28-31.
    [25]陈明,马吉胜,高岩.有限段法在自动武器多体动力学分析中的应用[J].振动与冲击,2008,27(7):158-160.
    [26]王晓锋,姜兴渭.有限段法在高炮发射多体系统动力学分析中的应用[J].南京理工大学学报,2001,25(1):25-27.
    [27]刘雷,陈运生.身管多体动力学模型研究[J].南京理工大学学报(自然科学版),2005,29(3):267-269,295.
    [28]于海龙,芮筱亭,何斌,等.火炮身管固有振动特性的有限元传递矩阵法[J].弹道学报,2006,18(3):62-64.
    [29]申亮.某舰炮发射动力学仿真分析[D].南京理工大学,2008.
    [30]刘建军,陈红军.身管弯曲对射击精度影响及修正模型研究[J].舰船电子工程,2011,31(7):155-157.
    [31]王加刚,徐亚栋.复合材料身管动态特性分析[J].四川兵工学报,2010,31(2):82-85,93.
    [32]金志明.枪炮内弹道学[M].北京市:北京理工大学出版社,2004.
    [33]Steele C R. The Timoshenko Beam with a Moving Load[J]. Journal of Applied Mechanics,1968,35:481-488.
    [34]Lankarani H M, Nikravesh P E. Continuous Contact Force Models for Impact Analysis in Multibody Systems[J]. Nonlinear Dynamics,1994,5(2):193-207.
    [35]闰安志,滕军,鲁志雄,等.动质量对悬臂梁振动抑制的数值分析和实验研究[J].机械科学与技术,2007,26(1):122-126.
    [36]周叮,谢玉树.弹丸膛内运动引起炮管振动的小参数解法[J].振动与冲击,1999,18(1):76-81.
    [37]刘宁,杨国来.弹管横向碰撞对身管动力响应的影响[J].弹道学报,2010,22(2):67-70.
    [38]姜沐,郭锡福.弹丸加速运动在身管中激发的振动[J].弹道学报,2002,14(3):57-62,68.
    [39]马吉胜,王瑞林.弹炮耦合问题的理论模型[J].兵工学报,2004,25(1):73-77.
    [40]马吉胜.基于ADAMS软件的弹炮耦合问题研究[J].火炮发射与控制学报,2001(2):29-31.
    [41]于会杰,王德石.身管在加速弹丸激励下的振动研究[J].海军工程大学学报,2009,21(2):12-17.
    [42]刘雷.弹丸-身管耦合系统动力学模型[J].振动与冲击,2007,26(6):121-124.
    [43]刘雷,陈运生,杨国来.基于接触模型的弹炮耦合问题研究[J].兵工学报,2006,27(6):984-987.
    [44]葛建立,杨国来,陈运生,等.基于弹塑性接触/碰撞模型的弹炮耦合问题研究[J].弹道学报,2008,20(3):103-106.
    [45]曾晋春,杨国来,王晓锋.计及齿轮-齿弧接触的火炮动力学分析[J].弹道学报,2008,20(2):81-84.
    [46]蔡文勇.大口径车载火炮多柔体动力学与总体优化研究[D].南京理工大学,2009.
    [47]葛建立.车载炮动态非线性有限元仿真研究[D].南京理工大学,2007.
    [48]邓辉咏,马吉胜,许中山,等.考虑高低机碟簧缓冲作用的火炮动力学分析[J].军械工程学院学报,2011,23(2):39-41.
    [49]崔凯波,秦俊奇,贾长治,等.火炮高低机缓冲制动过程振动分析与仿真研究[J].火炮发射与控制学报,2011(1):6-9.
    [50]顾克秋,张鸽.火炮高低机刚度的有限元计算方法[J].四川兵工学报,2001,22(1):15-17.
    [51]李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究,2003,19(2):27-29.
    [52]毕凤荣,崔新涛,刘宁.渐开线齿轮动态啮合力计算机仿真[J].天津大学学报,2005,38(11):991-995.
    [53]方子帆,舒刚,何孔德,等.齿轮传动多体接触动力学模型[J].机械传动,2009,33(1):15-18.
    [54]华顺刚,余国权,苏铁明.基于ADAMS的减速器虚拟样机建模及动力学仿真[J].机械设计与研究,2006,22(6):47-52.
    [55]王炎,马吉胜,邓辉咏,等.方向机刚柔耦合动力学仿真研究[J].现代制造工程,2011(7):50-53.
    [56]戴荣,马英忱,王炎.某方向机传动系统动力学建模与仿真[J].军械工程学院学报,2011,23(2):36-38.
    [57]Mccullough M K, Haug E J. Dynamics of High Mobility Track Vehicles[J]. Journal of Mechanical Design,1986,108(2),189-196.
    [58]Dhir A, Sankar S. Ride Dynamics of High-Speed Tracked Vehicles:Simulation with Field Validation[J]. Vehicle System Dynamics,1994,23(1):379-409.
    [59]Wong J Y, Preston T J. Investigation into the Effects of Suspension Characteristics and Design Parameters on the Performance of Tracked Vehicles using an Advanced Computer Simulation Model[C]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,1988,202(3):143-161.
    [60]Choi H J, Lee H C. A Spatial Dynamics of Multibody Tracked Vehicles[J]. Vehicle System Dynamic,1998,29:27-49.
    [61]韩宝坤,李晓雷,孙逢春.履带车辆动力学仿真技术的发展与展望[J].兵工学报,2003,24(2):246-249.
    [62]宋晗,李晓雷.履带动态张紧力的动力学仿真[J].计算机仿真,2005,22(9):18-21.
    [63]宋晗,李晓雷.履带张紧力的多体动力学仿真[J].车辆与动力技术,2005(2):24-27.
    [64]邱志勇,黄华,董明明.履带张紧装置柔体动力学模型及其仿真[J].计算机仿真,2007,24(1):254-257.
    [65]袁芬,张明.高速履带车辆诱导轮张紧力的计算与仿真[J].车辆与动力技术,2008(1):44-48.
    [66]肖永开,李晓雷.高速履带车辆履带预紧张力对平顺性的影响[J].计算机仿真,2006,23(7):253-255.
    [67]史力晨,王良曦,张兵志.高速履带车辆悬挂系统动力学仿真[J].系统仿真学报,2004,16(7):1429-1432.
    [68]吴大林,马吉胜,董自卫.基于ADAMS的自行火炮悬挂装置振动分析[J].振动与冲击,2005,24(5):39-41.
    [69]尹忠俊,陈兵,顾亮,等.基于多体理论的履带车辆半主动悬挂仿真研究[J].系统仿真学报,2006,18(2):286-289.
    [70]于杨,魏雪霞,张永发.履带车辆悬挂系统振动的半主动控制与仿真[J].兵工学报,2007,28(11):1281-1286.
    [71]陈兵,顾亮,黄华.履带车辆半主动悬挂计算机仿真研究[J].计算机工程与设计,2006,27(1):7-11.
    [72]韩宝坤,张宇,李晓雷.履带模型与仿真[J].计算机仿真,2003,20(5):7-9.
    [73]韩宝坤,李晓雷,孙逢春.高速履带车辆平稳性能模型与仿真[J].计算机仿真,2003,20(2):58-59,107-108.
    [74]韩宝坤,李晓雷,孙逢春.基于DADS的履带车辆多体模型与仿真[J].系统仿真学报,2002,14(11):1531-1532.
    [75]王良明,钱明伟,陈熙.路面条件对自行火炮动力学特性影响的研究[J].弹道学报,2004,16(1):24-28,35.
    [76]陈洪亮.履带车辆多轮驱动研究[D].北京理工大学,2007.
    [77]吴大林,马吉胜,李亚东,等.一类自行火炮行走部分建模与仿真研究[J].系统仿真学报,2004,16(11):2552-2554,2574.
    [78]朱艳芳,翟雁,郭晓波.基于ADAMS的履带车辆行走系统性能的仿真[J].传动技术,2008,22(2):29-31.
    [79]王双双,张豫南,张朋,等.电传动履带式装甲车辆动力学建模与仿真[J].计算机仿真,2009,26(3):21-25.
    [80]史力晨,王良曦,张兵志.履带车辆转向动力学仿真[J].兵工学报,2003,24(3):289-293.
    [81]刘延柱.高等动力学[M].北京市:高等教育出版社,2001.
    [82]袁士杰,吕哲勤.多刚体系统动力学[M].北京市:北京理工大学出版社,1992.
    [83]Huybrechts S, Meink T E. Advanced Grid Stiffened Structures for the Next Generation of Launch Vehicles[C]. Aerospace Conference,1997,1:263-270.
    [84]Ambur D R, Rehfield L W. Effect of Stiffness Characteristics on the Response of Composite Grid-Stiffened Structures[J]. Journal of Aircraft,1993,30(4):541-546.
    [85]Fletcher H J, Rongved L, Yu E Y. Dynamics Analysis of a Two-Body Gravitationally Oriented Satellite[J]. Bell System Tech. J,1963,42(5):2239-2266.
    [86]Likins P W. Quasicoordinate Equations for Flexible Spacecraft[J]. AIAA Journal,1975, 13(4):524-526.
    [87]Sasiadek J Z, Srinivasan R. Dynamic Modeling and Adaptive Vontrol of a Single-Link Flexible Manipulator[J]. Journal of Guidance, Control, and Dynamics,1989,12(6): 838-844.
    [88]Lowl K H. A Systematic Formulation of Dynamic Equations for Robot Manipulators with Elastic Links[J]. Journal of Robotic Systems,1987,4(3):435-456.
    [89]Kane T R, Levinson D A. Multibody Dynamics[J]. Journal of Applied Mechanics,1983, 50:1071-1078.
    [90]Kane T R, Levinson D A. The Use of Kane's Dynamical Equations in Robotics[J]. The International Journal of Robotics Research,1983,2(3):3-21.
    [91]Wang J T, Huston R L. Kane's Equations With Undetermined Multipliers-Application to Constrained Multibody Systems[J]. Journal of Applied Mechanics,1987,54:424.
    [92]Lin F H, Tseng A A. A Finite Element Analysis of Elasto-Plastic Contact Problems in Metal Forming[J]. Materials & Design,1998,19(3):99-108.
    [93]Bauchau O A. Analysis of Flexible Multibody Systems with Intermittent Contacts[J]. Multibody System Dynamics,2000,4(1):23-54.
    [94]Seifried R, Eberhard P. Impact Analysis Using Modal Reduction[J]. PAMM,2005,5(1): 129-130.
    [95]Konno A, Uchiyama M. Modeling of a Flexible Manipulator Dynamics Based on the Holzer's Method[J]. Journal of Robotics Society of Japan,1994,12(7):1021-1028.
    [96]Yigit A S. The Effect of Flexibility on the Impact Response of a Two-Link Rigid-Flexible Manipulator [J]. Journal of Sound and Vibration,1994,177(3):349-361.
    [97]余成宝.火炮系统模态测试与分析[D].南京理工大学,2007,
    [98]谷增锋,张培林,傅建平.基于ADAMS勺自行火炮射击仿真研究[J].军械工程学院学报,2007,19(5):26-29.
    [99]刘雷,陈运生.自行火炮发射过程的可视化仿真[J].火炮发射与控制学报,2005(4):10-14.59.
    [100]蔡文勇,陈运生,杨国来.车载火炮动力学仿真[J].火炮发射与控制学报,2006(4):12-15.
    [101]曾晋春.车载式火炮刚柔耦合发射动力学研究[D].南京理工大学,2010.
    [102]冯长根,温波,李才葆.自行火炮行进间射击动力学研究[J].兵工学报,2002,23(4):457-461.
    [103]冯长根,温波,王茂林,等.高炮发射动力学仿真技术研究[J].兵工学报,2001,22(2):145-148.
    [104]杭燚.火炮虚拟现实技术研究[D].南京理工大学,2007.
    [105]杭燚,王晓锋,杨国来,等.火炮发射动力学的可视化仿真[J].弹道学报,2007,19(3):85-88.
    [106]负来峰,史初蕾,王建国.某炮弹立靶密度集度的影响因素分析[J].弹道学报,2009,21(4):13-16.
    [107]葛建立,杨国来,曾晋春,等.某自行火炮总体结构参数灵敏度分析与优化[J].火炮发射与控制学报,2007(1):16-19.
    [108]姚家骏,马吉胜.土壤参数改变对火炮射击性能影响的仿真研究[J].军械工程学院学报,2010,22(4):26-30.
    [109]毕世华,赵文江.自行火炮发射动力学研究[J].北京理工大学学报,1999,19(2):147-151.
    [110]芮筱亭.自行炮发射动力学研究[J].兵工学报,2000,21(z1):38-40.
    [111]钱明伟,王良明.自行火炮行进间动力学模型及仿真研究[J].兵工学报,2004,25(5):520-524.
    [112]蔡骊君.复杂机械系统刚·柔混合虚拟样机一体化分析技术初探[D].天津大学,2010.
    [113]车全伟.城轨车辆碰撞及端部结构优化的仿真研究[D].大连交通大学,2010.
    [114]杜保平.基于ANSYS的遗传算法在框架结构优化中的应用[D].西安建筑科技大学,2011.
    [115]Gates A A, Accorsi M L. Automatic Shape Optimization of Three-Dimensional Shell Structures with Large Shape Changes[J]. Computers & Structures,1993,49(1): 167-178.
    [116]Yamazaki K, Sakamoto J, Kitano M. Three-Dimensional Shape Optimization Using the Boundary Element Method[J]. AIAA Journal,1994,32(6):1295-1301.
    [117]罗志军,乔新.基于遗传算法的雷达天线罩优化设计[J].计算力学学报,1997,14(3):361-365.
    [118]郑宏,俞茂宏.基于遗传算法的钢结构优化设计[J].长安大学学报(自然科学版),2002,22(5):65-67.
    [119]龚曙光,谢桂兰.基于有限元分析的管板结构优化设计[J].机械设计与制造工程,2002,31(6):49-51.
    [120]宋保维,李楠.iSIGHT在多目标优化问题中的应用研究[J].火力与指挥控制,2008,33(z1):133-135,137.
    [121]童晶,赵明旺.高效求解Pareto最优前沿的多目标进化算法[J].计算机仿真,2009(6):216-219.
    [122]魏静萱.解决单目标和多目标优化问题的进化算法[D].西安电子科技大学,2009.
    [123]王明真.轻型火炮大架的优化设计[D].南京理工大学,2005.
    [124]毛保全,陈运生,敖勇.多刚体动力学参数优化设计[J].弹道学报,1997,9(4):29-33.
    [125]毛保全,穆歌.自行火炮总体结构参数的优化设计研究[J].兵工学报,2003,24(1):5-9.
    [126]柳高洁,顾克秋.结合NSGA-Ⅱ算法和蒙特卡罗模拟技术实现结构的鲁棒优化[J]. 机械设计,2009(4):65-67.
    [127]冯勇,马大为,薛畅,等.多管火箭炮刚柔耦合多体发射动力学仿真研究[J].兵工学报,2006,27(3):545-548.
    [128]傅德彬,姜毅.基于刚柔耦合模型的发射装置动力学仿真分析[J].系统仿真学报,2009,21(6):1789-1791.
    [129]洪嘉振,刘铸永.刚柔耦合动力学的建模方法[J].上海交通大学学报,2008,42(11):1922-1926.
    [130]刘东升,李文兵,于存贵.基于固液耦合的舰炮身管模态分析[J].测试技术学报,2010,24(4):283-286.
    [131]曾志银,宁变芳,王在森.身管动态应力有限元通用求解方法[J].兵工学报,2005,26(6):725-728.
    [132]徐悦,田爱梅,张振鹏,等.导弹垂直发射系统柔性多体动力学建模与仿真[J].兵工学报,2008,29(9):1083-1087.
    [133]敖勇,陈运生.火炮多体系统动力学分析的一种方法[J].弹道学报,1997,9(4):19-22.
    [134]敖勇,毛保全,陈运生.模态综合法在求解自行火炮动态特性中的应用[J].装甲兵工程学院学报,1997,11(2):7-11.
    [135]程永强.某型地空导弹发射装置动力学分析与导弹出筒速度的控制仿真[D].西北工业大学,2005.
    [136]闵建平,杨国来,杨伯忠,等.自行火炮多体发射动力学仿真研究[J].兵工学报,2001,22(1):34-36.
    [137]闵建平,杨国平,杨伯忠,等.自行火炮行进间射击时的受载研究[J].弹道学报,2000,12(2):55-59.
    [138]史力晨,王良曦,张兵志.车载火炮系统动力学仿真[J].系统仿真学报,2004,16(3):366-369.
    [139]马吉胜.自行火炮发射动力学仿真[J].计算机仿真,2003,20(6):8-10.
    [140]张云杰.某双管自行火炮动力学仿真及稳定性分析[D].南京理工大学,2008.
    [141]吴大林,马吉胜,蔡树新,等.基于虚拟样机的自行火炮行驶平顺性仿真研究[J].兵工学报,2006,27(6):970-973.
    [142]龚春林.多学科设计优化技术研究[D].西北工业大学,2004.
    [143]龚海岳.牵引火炮总体结构多目标优化研究[D].南京理工大学,2006.
    [144]蔺晓风.微遗传优化与iSIGHT集成技术研究[D].大连理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700