用户名: 密码: 验证码:
基于灵敏度分析的空间高光谱成像仪热控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天宫一号高光谱成像仪是目前国内在轨运行的空间分辨率和光谱综合指标最高的空间光谱成像仪,在空间分辨率、波段数目和范围、地物分类等方面均达到国际水平。相对于传统的多光谱遥感仪器,天宫一号高光谱成像仪所要求的高空间分辨率、高光谱分辨率、以及高辐射分辨率,都对热控设计提出了新的挑战。天宫一号高光谱成像仪的结构、约束和载荷均呈非对称形式,光学元件众多并且热控指标要求高。这些难点都给热控系统设计带来了新的问题和新的要求,传统经验型热控制技术越来越凸现出其局限性,本文首次将热设计参数灵敏度分析用于指导热设计,开展基于灵敏度分析的热控制技术的研究工作。
     热设计参数灵敏度是热设计参数变化对系统温度分布的影响,是实现热控设计优化的关键信息,是热设计的一个重要研究领域。空间光学遥感器在轨运行期间,在所处恶劣环境以及装配工艺等因素的作用下,其热物理属性的实际参数与热设计参数之间存在一定的偏差,在热设计过程中难以精确确定,从而影响仪器的热设计方案。在空间光学遥感器的热设计和热分析计算过程中,为了找出对温度场影响大的环节,进行热控系统的优化设计,需要进行热设计参数的灵敏度分析。通过灵敏度分析,可以找出对空间光学遥感器温度水平和温度分布影响敏感的热设计参数,提高热设计的针对性、有效性,有利于提高效率、降低成本、增加可靠性。因此,开展热设计参数灵敏度分析的研究具有重要的理论意义和工程应用价值。本文以天宫一号高光谱成像仪为研究对象,开展基于灵敏度分析的热控制技术研究,讨论并分析高光谱成像仪热设计参数灵敏度,得出普遍性结论,通过试验、仿真验证,对实际工程给出了指导性建议。具体内容如下:
     在概述国内外热设计参数灵敏度分析研究现状的基础上,对本文的研究对象天宫一号高光谱成像仪的结构、载荷等特点进行分析,对其热控制技术的特点和难点进行总结。针对天宫一号高光谱成像仪热控难度高的特点,分析并提出了基于灵敏度分析的热控制技术。系统地研究了灵敏度分析理论及分析方法,根据天宫一号高光谱成像仪的结构形式、安装方式以及热控设计方案,分析了热控系统的热设计参数,给出了各项热设计参数的灵敏度分析内容。
     研究天宫一号高光谱成像仪主体和焦面组件热设计参数灵敏度分析。分别建立了天宫一号高光谱成像仪光机主体和焦面组件的在轨热平衡方程,通过热平衡方程进行热设计参数变量分析,开展天宫一号高光谱成像仪光机主体和焦面组件热设计参数灵敏度分析,根据各项热设计参数对光机主体和焦面组件温度分布的影响程度的高低,找出影响光机主体和焦面组件热设计的主要参数。在天宫一号高光谱成像仪主体和焦面组件热设计参数灵敏度分析的基础上,对光机主体和焦面组件等各个关键部件开展热设计及优化,对热控指标提出合理化修改并对其合理性进行分析论证。
     针对天宫一号高光谱成像仪的试验规划进行探讨,分析试验的技术难点,对试验环境模拟的误差进行分析,试验结果验证了热设计的正确性。总结了入轨加电开始到在轨测试过程中天宫一号高光谱成像仪的温度变化情况,在轨测试结果表明热控系统在轨工作状态良好,天宫一号高光谱成像仪整机温度水平和三个方向温差均满足热控指标要求。从热控系统的精度和可靠性两个方面对热控系统进行评价,通过试验验证热控系统的控制精度。介绍空间光学遥感器热控系统的几种可靠性模型,并对天宫一号高光谱成像仪热控系统的可靠性进行分析。
With the highest spatial resolution and integrative spectral index in China,Tiangong-1hyperspectral imager (HSI) is a space spectral imager which is running inorbit at present. Tiangong-1HSI reaches international standards on spatial resolution,band numbers and range, and ground object classification. The high spatial resolution,high spectral resolution, and high radiation resolution of Tiangong-1HIS bringforward new challenge to thermal control relative to traditional multi-spectral remotecensor. As a complex optical instrument, the structure, restraint and payload ofTiangong-1HSI are all with asymmetry form. Furthermore, Tiangong-1HSI hasmany optical elements and rigorous thermal control index. These difficulties bringnew problems and new requirements to thermal control of the Tiangong-1HSI.Because of the problems mentioned above, the limitation of the traditional thermalcontrol technique is taken out. Sensitivity analysis of thermal design parameter(SATDP) is used to guide thermal design for the first time in this dissertation. Thethermal control technique based on sensitivity analysis is studied and explicated.
     SATDP could obtain the effect of their variety on system temperature distribution,which is a research field with important significance in thermal design. Furthermore,SATDP could help to carry out an optimum thermal design. Due to the rigorousenvironment and assembly technique, there is some deviation between the realparameters and the thermal design parameters of a space optical remote sensor (SORS)in orbit. The deviation might effects thermal design accuracy of complete appliances. In course of thermal design and thermal analysis for SORS, SATDP could find thesection which has effect on temperature field. For the sake of optimum design forthermal control system, SATDP is necessary. It could identify when or which, thermaldesign parameters play a significant role in the temperature field for SORS. Thepertinence and validity of thermal design can be enhanced through sensitivity analysis.Furthermore, SATDP could improve work efficiency, reduce cost and increasereliability. The Tiangong-1HSI is regarded as research object and the thermal controltechnique based on sensitivity analysis is summarized and studied in this dissertation.The SATDP of Tiangong-1HSI are discussed and analyzed. The generalizedconclusion are given and verified through test and simulation. The guidingsuggestions are given to practical engineering development and manufacturing. Theconcrete contents are given as below.
     The present research status of SATDP throughout the world is summarized andthe characters of structure and payload in Tiangong-1HSI are stated. The charactersand difficulties of thermal control technique are generalized. Against the characters ofthermal control technique with high degree of difficulty in Tiangong-1HSI, thethermal control technique based on sensitivity analysis is analyzed and set up. Thetheory and analytical method of sensitivity analysis are researched systematically.According to the structure style, mounting fashion and thermal design scheme,thermal design parameters of thermal control system are analyzed; and sensitivityanalysis contents for every thermal design parameter are given.
     SATDP for major structure and focal plane assembly in Tiangong-1HSI areresearched. The in-orbit heat balance equations of major structure and focal planeassembly are established, respectively. Under the design variable analysis of the heatbalance equations, SATDP for major structure and focal plane assembly ofTiangong-1HSI are developed. The main parameters which affect thermal design ofmajor structure and focal plane assembly are found through sensitivity analysis. Thethermal design of major structure and the key components such as focal planeassembly are developed and the optimum design of thermal design scheme of opticalelements and the key components are put forward. The thermal control index of Tiangong-1HSI is modified reasonably and its rationality is analyzed.
     The thermal test of Tiangong-1HSI is discussed. The technical difficulty andsimulation error of thermal test condition are analyzed. The correctness of thermaldesign scheme is verified through thermal test results. Temperature variation ofTiangong-1HSI is generalized in course of performance testing in orbit. Performancetesting results indicate that thermal control system of Tiangong-1HSI is runningperfectly. The temperature distribution and the temperature difference meet all theindex of thermal control. The accuracy and the reliability of the thermal controlsystem are estimated. The control accuracy of thermal control system is verifiedthrough thermal test. Several reliability model of thermal control system in SORS areintroduced. The reliability of thermal control system in Tiangong-1HSI is analyzed.
引文
[1]禹秉熙.成像光谱仪的性能分析.光机情报,1995(增刊):1~20.
    [2]沈中,葛之江,张连台.航天超光谱成像仪技术原理及其发展现状[J].航天器工程,2001,10(4):45-52.
    [3]沈中,葛之江,张连台.航天超光谱成像仪原理分析[J].航天返回与遥感,2002,23(2):28-34.
    [4] Thomas Wilson, Curtiss Davis. Hyperspectral Remote Sensing Technology program and theNaval EarthMap Observer(NEMO) satellite. Proc. SPIE.,1998, Vol.3437:2~10.
    [5]张兵.时空信息辅助下的高光谱数据挖掘[D]:[博士学位论文].北京:中国科学院遥感应用研究所博士学位论文,2002.
    [6] Robert O. Green, Michael L. Eastwood, Charles M. Sarture, et al. Imaging Spectroscopyand the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ.1998, Vol.65:227~248.
    [7]牛晓明.空间光学遥感器的热响应分析及热控[J].光学精密工程.1998,6(6):74-78.
    [8]李积慧,韩双丽,王家骐,等.空间相机的热分析与热控制技术[J].光学精密工程.1999,7(6):36-41.
    [9]李国强,贾宏,刘强.影响CCD相机温度分布的因素分析[J].中国空间科学技术,2001,5:62-70.
    [10]陈荣利,耿利寅,马臻,等.空间相机的热分析和热设计[J].光子学报,2006,35(1):154-157.
    [11]赵立新,邵英.空间望远镜的热设计和热光学分析综述[J].航天返回与遥感,2001,22(2):13-19.
    [12]李国强,贾宏,陈恩涛,等.空间太阳望远镜主镜精密温度控制方案介绍[J].光子学报.2007,36(增刊):239-243.
    [13] D. S. Theodore, C. B. Gajanana. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering,2003,23:1055-1065.
    [14] P. Giesen, E. Folgering. Design guidelines for thermal stability in opto-mechanicalinstruments [C]. SPIE,2003,5176:126-134.
    [15] S. Yoshiki, N. Shinichi, H. Kenji, et al.. Structure and thermal control of panel extensionsatellite [J]. Acta Astronautica,2009,65:958-966.
    [16] XIN G M, N. CHEN Y, CHENG L, et al.. Simulation of a LHP-based thermal controlsystem under orbital environment [J]. Applied Thermal Engineering,2009,29:2726-2730.
    [17]杨文刚,余雷,陈荣利,等.高分辨率空间相机精密热控设计及验证[J].光子学报.2009,38(9):2363-2367.
    [18]陈立恒,吴清文,卢锷,等.空间摄像机的热设计[J].光子学报.2008,37(10):2039-2042.
    [19]姜景山,王文魁,都亨,等.空间科学与应用.第1版,科学出版社,2001:86~95.
    [20]李泽学.高分辨率超光谱成像仪热控关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [21]闵桂荣等.卫星热控制技术.第1版.北京:宇航出版社.1991.
    [22]陈飚松.热传导与结构耦合系统的灵敏度分析及优化设计[D]:[博士学位论文].大连:大连理工大学,2001.
    [23] C. LaBaw. Airborne Imaging Spectrometer: an advanced concept instrument, Proc. SPIE.,1983, Vol.430:68~73.
    [24] S. A. Macenka, M. P. Chrisp. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),Proc. SPIE.,1987, Vol.834:32~43.
    [25]熊政军,骆清铭,刘贤德.成像光谱技术发展及其应用.激光与红外, Vol.21(1):12~16.
    [26]禹秉熙.高分辨率成像光谱仪(C-HRIS)研究.光机电信息,2000, Vol.17(4):1~5.
    [27]唐攀科,李永丽,李国斌,阎柏琨.成像光谱遥感技术及其在地质中的应用.矿产与地质,2006, Vol.20(2):160~165.
    [28] Bernd P. Kunkel, Winfried Posselt, Elke Schmidt, Umberto Del Bello, Bernd Harnisch,Roland Meynart. Hyperspectral imager survey and developments for scientific andoperational land processes monitoring applications. Proc. SPIE.,1997, Vol.3107:2~14.
    [29]王栋,杨洪波,陈长征.光学表面面形的计算机仿真[J].计算机仿真,2007,24(2):298-301.
    [30]罗传伟,焦明印.光学系统折射率温度效应的模拟计算[J].应用光学,2008,29(2):234-239.
    [31]陈恩涛,卢锷.空间光学遥感器的热控制技术[J].光机电信息,2000,17(12):12-16.
    [32] Osawa, y, et al,”PRISM:a panchromatic three-line sensor for mapping onboardALOS[J].Proc.of SPIE,vol.3498.
    [33] A. Rosenqvist, D.Ichitsubo, Y.Observing, et al. A Brief Overview of the Advanced LandObserving Satellite (ALOS) and Its Potential for Marine Applications. Proceedings of theSecond Workshop on Coastal and Marine Applications of SAR, Svalbard, Norway,2003.
    [34]罗志涛,徐抒岩,陈立恒.大功率焦平面器件的热控制[J].光学精密工程,2008,16(11):2188-2192.
    [35]陈恩涛,卢锷.空间遥感器CCD组件热设计[J].光学精密工程,2000,8(6):522-525.
    [36]李国强,贾宏. CCD组件的热分析和热试验[J].航天返回与遥感,2003,24(3):15-18.
    [37]郭亮,吴清文,颜昌翔,等.光谱成像仪CCD组件的稳态/瞬态热分析与验证[J].光学精密工程,2010,18(11):2375-2383.
    [38] T. Jagemann, N. Rando, D. Doyle, et al. Results of the ESA internal assessment study of theEuropean contribution to SPICA [C]. Proc. SPIE,2008, Vol.7082,70820Z:1-11.
    [39] Herschel observers’ manual [M]. HERSCHEL-HSC-DOC-0876, version4.1.4(End of ColdMission version),2013:14-19.
    [40] M. W. Werner, T. L. Roellig, F. J. Low, et al. The Spitzer space telescope mission [J]. TheAstrophysical Journal Supplement Series,2004,154:1-9.
    [41]曹东晶,项卫国. CBERS-1卫星CCD相机热控系统的研制[J].航天返回与遥感,2003,24(1):24-28.
    [42]高晓明,李劲东.中国海洋一号卫星热控分系统设计和在轨性能评估[J].航天器工程,2003,12(9):120-127.
    [43]张布卿,马建设,潘龙法,等.用有限元和灵敏度分析法改善光学头力矩器高频动态特性[J].光学精密工程.2007,15(7):1002-1008.
    [44]何俊,周智,董惠娟,等.灵敏度系数可调布拉格光栅应变传感器的设计[J].光学精密工程.2010,18(11):2339-2346.
    [45]刘金国,李杰,郝志航. APS星敏感器探测灵敏度研究[J].光学精密工程.2006,14(4):553-557.
    [46]陈飚松,顾元宪,张洪武,等.瞬态温度场灵敏度分析的精细积分法[J].机械强度.2000,22(4):270-274.
    [47]陈飚松,林巍,顾元宪.热传导问题灵敏度分析的伴随法[J].计算力学学报.2003,20(4):383-390.
    [48] GU Y X, CHEN B S, ZHANG H W, et al.. A sensitivity analysis method for linear andnonlinear transient heat conduction with precise time integration [J]. Struct Multidisc Optim,2002,24:23-37.
    [49]陈飚松,顾元宪.瞬态热传导方程的子结构精细积分方法[J].应用力学学报.2001,18(1):14-18.
    [50]顾元宪,陈飚松.瞬态热传导方程精细积分方法中对称性的利用[J].应用力学学报.2000,22(5):19-22.
    [51]顾元宪,周业涛,陈飚松,等.基于灵敏度的热传导辨识问题求解方法[J].土木工程学报.2002,35(3):94-98.
    [52]顾元宪,赵红兵,亢战,等.瞬态热传导问题的优化设计与灵敏度分析[J].大连理工大学学报.1999,39(2):158-165.
    [53]张洪武,顾元宪,钟万勰.稳态传热与接触耦合问题解的唯一性与迭代算法的振荡性[J].机械强度.2000,22(3):187-193.
    [54]顾元宪,赵红兵,陈飚松,等.热-应力耦合结构灵敏度分析方法[J].力学学报.2001,33(5):685-691.
    [55]顾元宪,刘涛,亢战,等.热结构瞬态响应的耦合灵敏度分析方法与优化设计[J].力学学报.2004,36(1):37-42.
    [56]顾元宪,刘涛,亢战,等.热结构稳态响应的耦合灵敏度分析方法[J].计算力学学报.2004,24(5):535-539.
    [57]顾元宪,李海梅.基于材料边界概念的相变热传导变分原理及其数值计算[J].固体力学学报.2000,21(3):261-266.
    [58]顾元宪,周业涛,赵国忠.相变传热问题的灵敏度分析与优化设计方法[J].力学学报.2006,38(1):66-72.
    [59]王宏伟,葛增杰,顾元宪,等. CPU散热片温度场模拟分析及其材料和尺寸选择的研究[J].计算力学学报.2003,20(6):725-729.
    [60]葛增杰,顾元宪,靳永欣,等. PBGA封装体的热-结构数值模拟分析及其优化设计[J].大连理工大学学报.2006,46(5):633-640.
    [61]葛增杰,顾元宪,王宏伟,等.电子封装件受热载荷作用有限元数值模拟分析[J].大连理工大学学报.2005,45(3):320-325.
    [62] HAN Y G, XUAN Y M. Parameter sensitivity analysis for the satellite thermal design [J].Chinese Journal of Computational Physics,2004,21(5):455-460.
    [63]韩玉阁,宣益民.卫星太阳能电池板热设计参数的灵敏度分析[J].南京理工大学学报.2006,30(2):178-181.
    [64]杨明,吴晓迪,吕相银,等.基于涂层性能退化的卫星红外辐射灵敏度分析[J].光电工程.2010,37(7):30-35.
    [65]丁延卫,韩双丽,李积慧.空间光学窗口的热光学灵敏度分析[J].光电工程.2002,29(5):15-18.
    [66]丁延卫,王雷,尤政,等.载人飞船光学窗口的热光学灵敏度和热控制策略[J].清华大学学报(自然科学版).2005,45(11):1489-1492.
    [67]林招荣.典型R-C系统主光学装置的热光学灵敏度分析[J].航天返回与遥感.2006,27(3):17-21.
    [68]谢剑锋,张华,宋路发,等.镀Ni光纤布拉格光栅温度灵敏度分析[J].光电子激光.2007,18(7):780-784.
    [69]谢剑锋,张华,宋路发.光纤布喇格光栅埋入后温度灵敏度分析[J].压电与声光.2007,29(3):261-263.
    [70]张自嘉,施文康,高侃,等.热光系数与长周期光纤光栅的温度灵敏度研究[J].光学技术.2004,30(5):525-528.
    [71]贾振安,乔学光,傅海威.光纤光栅温度灵敏度系数研究[J].光电子激光.2003,14(5):453-456.
    [72]尹莲花,刘莉.飞航器热结构优化方法研究综述[J].战术导弹技术.2006,5:53-58.
    [73]李永利,周得俭,张立强,等.基于能量法的挠性电路模块热-结构灵敏度分析与优化[J].桂林电子科技大学学报.2009,29(3):251-255.
    [74]王小兵,陈建军,高伟,等.层叠板结构瞬态温度场的灵敏度分析[J].吉林大学学报(工学版).2006,36(4):456-461.
    [75]张驰,吴斌.用PTI分析功能梯度材料的热传导灵敏度[J].飞机设计.2005,3:33-35.
    [76]钱伟琪,蔡金狮.用灵敏度法辨识热传导系数及热流参数[J].空气动力学学报.1998,16(2):226-231.
    [77]连晨舟,吕子安,侯斌,等.锅炉对流受热面积灰监测模型的灵敏度分析[J].动力工程.2003,23(6):2795-2798.
    [78]陈阳,包满.集热蓄热式太阳房灵敏度分析[J].江苏石油化工学院学报.1995,7(3):31-35.
    [79]黄葆华,杨建刚,高*.转子摩擦热稳定灵敏度的研究[J].中国电机工程学报.2000,20(8):65-68.
    [80]任晔.单裂隙岩体渗流与传热耦合的解析解与参数敏感度分析[D]:[硕士学位论文].北京:北京交通大学,2009.
    [81] Su Gaoli, Deng Fangping, Liu Qinhuo, et al. The sensitivity and optimization of the modelparameters for the simulation of latent heat flux [C].2010Sixth International Conferenceon Natural Computation,2010:2494-2499.
    [82] Y. Yu, L. Tao, T. Jiejuan, et al. Variance decomposition sensitivity analysis of a passiveresidual heat removal system model [J]. Procedia Social and Behavioral Sciences,2010,2:7772-7773.
    [83] K. Dems, B. Rousselet. Sensitivity analysis for transient heat conduction in a solidbody-Part I: External boundary modification [J]. Structural Optimization,1999,17:36-45.
    [84] K. Dems, B. Rousselet. Sensitivity analysis for transient heat conduction in a solidbody-Part II: Interface modification [J]. Structural Optimization,1999,17:46-54.
    [85] J. I. Frankel, M. Keyhani, HUANG M G. Local sensitivity analysis for the heatflux-temperature integral relationship in the half-space.[J]. Applied Mathematics andComputation,2010,217:363-375.
    [86] E. Colin, S. Etienne, D. Pelletier, et al. Application of a sensitivity equation method toturbulent flows with heat transfer [J]. International Journal of Thermal Sciences,2005,44:1024-1038.
    [87] P. J. Evandro, B. M. S. J. Jo o. Design sensitivity analysis of nonlinear structures subjectedto thermal loads [J]. Computers and Structures,2008,86:1369-1384.
    [88] B. Dinesh, R. Subrata. Design sensitivity analysis and optimization of steady fluid-thermalsystems [J]. Comput. Methods Appl. Engrg.,2001,190:5465-5479.
    [89] S. Babak, Y. C. Chan. Sensitivity analysis of freestream turbulence parameters onstagnation region heat transfer using a neural network [J]. International Journal of Heat andFluid Flow,2006,27:1061-1068.
    [90] K. Ryszard. Sensitivity analysis and shape optimization for transient heat conduction withradiation [J]. International Journal of Heat and Mass Transfer,2006,49:2033-2043.
    [91] K. Ryszard. Sensitivity oriented shape optimization of textile composites during coupledheat and mass transport [J]. International Journal of Heat and Mass Transfer,2010,53:2385-2392.
    [92] Y. H. Cho, H. Y. Jae, H. L. Kyun, et al. Sensitivity analyses of satellite propulsioncomponents with their thermal modelling [J]. Advances in Space Research,2011,47:466-479.
    [93] H. K. Tae, K. Dong-Kwon, J. K. Sung. Study of the sensitivity of a thermal flow sensor [J].International Journal of Heat and Mass Transfer,2009,52:2140-2144.
    [94] D. D. Clarke, V. R. Vasquez, W. B. Whiting, et al. Sensitivity and uncertainty analyses ofheat-exchanger designs to physical properties estimation [J]. Applied Thermal Engineering,2001,21:993-1017.
    [95] N. Gopi, G. S. Michael, L. M. Gregory, et al. Parametric sensitivity study of operating anddesign variables in wellbore heat exchangers [J]. Geothermics,2005,34:330-346.
    [96] L. Claudia, H. Bernd, F. Thomas. Sensitivity analysis for two ground heat flux calculationapproaches [J]. Agricultural and Forest Meteorology,2005,132:253-262.
    [97] F. Fesanghary, E. Damangir, I. Soleimani. Design optimization of shell and tube heatexchangers using global sensitivity analysis and harmony search algorithm [J]. AppliedThermal Engineering,2009,29:1026-1031.
    [98] V. B. Marnix, S. Hendrik-Jan, S. Marijke, et al. Sensitivity analysis of CFD couplednon-isothermal heat and moisture modelling [J]. Building and Environment,2010,45:2485-2496.
    [99] L. Shih-Ming. A sequential algorithm and error sensitivity analysis for the inverse heatconduction problems with multiple heat sources [J]. Applied Mathematical Modelling,2011,35:2607-2617.
    [100] M. B. Wong, J. I. Ghoel. Sensitivity analysis of heat transfer formulations for insulatedstructural steel components [J]. Fire Safety Journal,2003,38:187-201.
    [101] L. M. G. Malpot, G. Simeonides, J. Muylaert, et al. High enthalpy nozzle flow sensitivitystudy and effects on heat transfer [J]. Shock Waves,1996,6:197-204.
    [102] L. V. Dolmatov. Heat-sensitivity of petroleum residues: allowable temperature interval forpitch formation [J]. Chemistry and Technology of Fuels and Oils,1996,32(4):178-180.
    [103] N. Donatien, D. Michel. Sensitivity analysis of thermal performances of flat plate solar airheaters [J]. Heat Mass Transfer,2006,42:1065-1081.
    [104] M. Kleiber, A. Sluzalec. Material derivative and control volume approaches to shapesensitivity analysis of nonlinear transient thermal problems [J]. Structural Optimization,1996,11:56-63.
    [105] Chen B S, Tong L Y. Sensitivity analysis of heat conduction for functionally gradedmaterials [J]. Materials and Design,2004,25:663-672.
    [106] N. Ghodsipour, M. Sadrameli. Experimental and sensitivity analysis of a rotary airpreheater for the flue gas heat recovery [J]. Applied Thermal Engineering,2003,23:571-580.
    [107] D. Xie, B. D. Bowen, J. R Grace, et al. Two-dimensional model of heat transfer incirculating fluidized beds. Part II: Heat transfer in a high density CFB and sensitivityanalysis [J]. International Journal of Heat and Mass Transfer,2003,46:2193-2205.
    [108]黄金良,杜鹏飞,何万谦,等.城市降雨径流模型的参数局部灵敏度分析[J].中国环境科学.2007,27(4):549-553.
    [109]王浩昌,杜鹏飞,赵冬泉,等.城市降雨径流模型参数全局灵敏度分析[J].中国环境科学.2008,28(8):725-729.
    [110]吴志伟,宋汉周.基于全局灵敏度分析的大坝温度场影响因子探讨[J].水利学报.2011,42(6):737-742.
    [111]赵冬泉,陈吉宁,王浩正,等.城市降雨径流污染模拟的水质参数局部灵敏度分析[J].环境科学学报.2009,29(6):1170-1177.
    [112]薄会娟,董晓华,邓霞.新安江模型参数的局部灵敏度分析[J].人民长江.2010,41(1):25-28.
    [113]颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究[J].航空计算技术.2005,35(1):1-6.
    [114] Joaquim R. R. A. Martins. Sensitivity Analysis, AA222-Multidisciplinary DesignOptimization [EB]. http://www.stanford.edu/class/aa222.
    [115] Louis B. Rall. Automatic Differentiation: Techniques and Applications, Lecture Notes inComputer Science No.120[M]. Springer-Verlag, Berlin Heidelberg New York,1981.
    [116] Griewank A., Corliss G. F. Eds. Automatic Differentiation of Algorithms: Theory,Implementation, and Application [M]. SIAM, Philadelphia,1991.
    [117] Veer N. Vatsa. Computation of Sensitivity Derivatives of Navier-Stokes Equations UsingComplex Variables, Advances in Engineering Software, Volume31, Issue8-9, August,2000:655-659.
    [118] Francos A. Sensitivity analysis of distributed environmental simulation models:understanding the model behaviour in hydrological studies at the catchment scale [J].Reliability Engineering and System Safty,2003,79(2):205-218.
    [119] Zador J, Zsely I G, Turanyi T. Local and global uncertainty analysis of complex chemicalkinetic systems [J]. Reliability Engineering System Safety,2006,91:1232-1240.
    [120]林杰,黄金良,杜鹏飞,等.城市降雨径流水文模拟的参数局部灵敏度及其稳定性分析[J].环境科学.2010,31(9):2023-2028.
    [121] Morris M D. Factorial sampling plans for preliminary computational experiments [J].Technometrics,1991,33(2):161-174.
    [122] Francos A, Elorza F, Bouraoui F, et al. Sensitivity analysis of distributed environmentalsimulation models: Understanding the model behaviour in hydrological studies at thecatchment scale [J]. Reliab Eng Syst Saf,2003,79(2):205-218.
    [123] Sobieszczanski-Sobieski, J. Barthelemy, J. F., Riley, K. M. Sensitivity of optimum solutionsto problem parameters [J]. AIAA Journal, Vol.21, Sept,1982:1291-1299.
    [124] Sobieszczanski-Sobieski J. On the sensitivity of complex, internally coupled systems [R].AIAA88-2378.
    [125] SOBOL I. Sensitivity estimates for non-linear mathematical models [J]. MathematicalModeling and Computational Experiments,1993,1(4):407-414.
    [126]郭亮,吴清文,颜昌翔.空间光谱成像仪热设计及其分析与验证[J].光学精密工程.2011,19(6):1272-1280.
    [127]郭亮,吴清文,颜昌翔.空间光谱成像仪热设计参数灵敏度分析[J].光学精密工程.2012,20(6):1208-1217.
    [128] GUO L, WU Q W, YAN CH X. Sensitivity analysis of thermal design parameters for focalplane assembly in a space spectral imaging instrument [J]. Heat and mass transfer,2013,49(3):299-308.
    [129]王世萍,朱敏波.电子机械可靠性与维修性[M].北京:清华大学出版社,2000.
    [130]李运泽,宁献文,王晓明.航天器热控系统的可靠性设计与分析[J].中国工程科学,2007,9(7):53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700