用户名: 密码: 验证码:
微Schwarzschild物镜的设计与MEMS制作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由两个球面反射镜组成的Schwarzschild系统具有无三阶球差、慧差、像散,以及无色差的优秀光学特性,广泛应用于天文观测领域。利用近二十年发展起来的微光学领域的知识和MEMS工艺技术,将具有百年历史的Schwarzschild结构微缩成微米尺度的微Schwarzschild物镜系统,就为这个古老的结构赋予了新的生命力,使之适用于对物镜的体积和重量有严格要求的各种应用领域,如活体检测、太空探测、数据读写和存储,以及众多手持式消费电子产品等。
     本论文设计了适合于MEMS工艺制作的微Schwarzschild物镜系统。通过探究大尺寸、小接触角的微透镜以及大尺寸球面微凹腔的设计与制作工艺,研究了系统主镜和次镜的制作方法。通过对不同系统集成方案的设计和制作研究,成功制备并测试了微Schwarzschild物镜系统的原理样镜。主要研究内容和成果综述如下:
     在微Schwarzschild物镜系统的设计方面,首先通过对不同结构的双反射镜系统的分析,提出了适合MEMS工艺制作的双反射镜系统结构。然后通过推导消像差的条件,得出了系统几何参数应满足的比例关系。结合实际MEMS工艺条件的限制,提出了系统几何参数的设计范围,并提出了一组适合MEMS工艺制作的最佳系统参数。利用光线追迹软件仿真了该系统的光学性能。验证了其消球差、慧差和像散的特点,并分析了系统参数的容差特性。
     在主镜的制作方面,首先介绍了制作微透镜的不同方法。选择了适合制作大尺寸、小接触角微透镜的丙酮蒸气回流法作为主镜微透镜的制作方法。然后从数学模型上推导了工艺参数和微透镜冠高、曲率半径的关系。采用不同型号,不同厚度的光刻胶,制作了底面直径范围为80~1000μm,冠高范围约为10~120μm的微透镜。探索了采用丙酮蒸气回流法制作微透镜的实验规律,并将实验值与理论模型结果进行了对比。通过对铝膜反射膜厚度的讨论和镀膜方式的分析,在微透镜表面镀制了一层反射膜将微透镜转变为球面反射镜,完成了主镜的制作。
     在次镜的制作方面,结合Kuiken提出的扩散受限各向同性腐蚀的数学模型,研究了搅拌方式、腐蚀时间、腐蚀窗口大小等参数对腐蚀速度和腐蚀腔形貌的影响。重点分析了实验结果中出现的非球面腐蚀腔,即腐蚀过程中发生的各向异性情况。将实验结果与Kuiken模型提出的两个腐蚀时间域的理论进行了对比,提出了制作大尺寸球面微凹腔的最佳工艺参数范围。并成功制备了满足设计指标的次镜。
     在集成方面,针对主镜的集成方法提出了两套悬臂设计方案。采用有限元方法分析了悬臂应力分布情况。采用MEMS工艺技术制作了主镜周围的悬臂;采用激光定位打孔技术制作了垫片和次镜中心的通光孔;采用中间层键合的方法完成了主镜和次镜的对准键合,成功制作了微Schwarzschild物镜系统的原理样件。
     在测试方面,搭建了用于测试原理样件光学性能的显微镜系统实验平台。实验测试了不同像面位置的光斑形状,从而得出了样品的工作距和数值孔径等光学参数。并与仿真值、设计值进行了对比。采用不同波长的色光作为光源,对系统进行了色差测试。测试结果验证了微Schwarzschild物镜系统无色差的特性。
     最后针对工艺参数的改进方法,提出了未来工作的方向。
The Schwarzschild system, composed by two spherical mirrors, enjoys the excellent optical characteristics of no3rd order spherical aberration, coma, astigmatism and chromatic aberration. It has been widely used in the field of astronomical observations. With the help of micro-optics concept and MEMS technology, the one-century-old Schwarzschild system would be given a new life by miniaturization into micron-scale structure. Hence it is suitable for applications which are critical for the size and weight of the microscope objective, such as in vivo detection, space exploration, data read/write or storage, and various handheld consumer electronics products, etc.
     This paper designs a micro-Schwarzschild objective fabricated by MEMS technology. The primary mirror and secondary mirror are designed and fabricated with the help of the research on the mirolens with large size and small contact angle, and on the spherical mirocavity fabrication. Different integration schemes are discussed, and then the prototype of micro-Schwarzschild objective is fabricated and tested. The main contents and results are summarized as follows:
     A micro-Schwarzschild objective design is proposed for MEMS fabrication by the discussion on various two-mirror configurations. Then the geometric parameters are designed by deduction of the aberration and the study of limitations of MEMS technology. The light trace software is used to analyse the optical scheme. The property of excellent aberration performance is confirmed by the ray tracing simulation results. And the tolerace characteristics of the system parameters are analysed.
     Different microlens fabrication methods are discussed. The method of acetone vapor reflow is chosen for the fabrication of primary mirror with large size and small contact angle. Then the relationship between the process parameters and microlens radius of curvarure and crown height is derived from the mathematical model. Photo resists with different thickness are used to produce microlenses with the range of bottom diameter of80-1000μm and the crown height of about10~120μm.After the study on the thickness of aluminum film and the deposit method, a layer of reflective film is coated on the surface to transform the microlens into micro-mirror. And then the primary mirror is successfully fabricated.
     Kuiken's mathematical model on the diffusion limited isotropic etching is introducted for the fabrication of the secondary mirror. The impacts of the agitation method, the etching time, the etching window size and other parameters on the profile of etched cavities are studied. The experimental results are analyzed and compared with Kuiken's model on the two different time periods. The recommended range of process parameters are then proposed for spherical micro-cavity fabrication. The secondary mirror that fits the design values is successfully fabricated.
     Two sets of cantilever designs for the integration of the primary mirror are proposed. Cantilever stress distribution is analyzed by the finite element method. The cantilever around the primary mirror is fabricated by the MEMS technology, and the apertures on the secondary mirror and middle gasket are produced by laser positioning drilling. The middle layer alignment bonding is used for the integration of the primary and the secondary mirrors to obtain the prototype of the miro-Schwarzschild objective.
     A testing miroscope system is built to test the optical performance of the prototype. The spot shapes at different image plane positions are captured by CCD. The working distance and numerical aperture are then deducted by the data, and compared with the simulation results and design values. Light sources with different wavelengths are used to test the system's chromatic aberration. Test results confirm that the system is not wavelength secletive.
     Finally the impovement of the process parameters and the directions of future work are pointed out.
引文
[1]杨国光,沈亦兵,侯西云.微光学技术及其发展.红外与激光工程,2001,30(4):157-162
    [2]Betzig E, Trautman J, Harris T, et al. Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science,1991,251:1468-1470
    [3]Lu Ying, Wang Jiyou, Xu Xiaoxuan, et al. Optimal conditions of coupling between the propagating mode in a taperes fiber and the given wg mode in a high-q microsphere. Optik,2001,112:109-113
    [4]Li Lifeng. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity. Journal of the Optical Society of America A,1993,10: 2581-2591
    [5]Burch C. Reflecting microscopes. Proceedings of the Physical Society,1947,59: 41-46
    [6]Rosin S. Inverse cassegrainian systems. Applied Optics,1968,7:1483-1498
    [7]Grey D. A new series of microscope objectives:ii. Preliminary investigation of catadioptric schwarzschild systems. Journal of the optical Society Of America, 1949,39:723-728
    [8]吴峰.折反式大视场星敏感器光学系统的设计:[硕士学位论文].苏州:苏州大学,2004.
    [9]Richardson M, Shinohara K, Tanaka K, et al. Pulsed x-ray microscopy of biological specimens with laser plasma sources. Proceedings of SPIE,1992. 133-141
    [10]Artyukov I, Bugayev Y, Devizenko O, et al. X-ray schwarzschild objective for the carbon window. Optics Letters,2009,34(19):2930-2932
    [11]Artyukov I, Feschenko R, Vinogradov A, et al. Soft x-ray imaging of thick carbon-based materials using the normal incidence multilayer optics. Micron,2010, 41:722-728
    [12]Wang X, Huang Y, Mu B, et al.18.2 nm schwarzschild microscope for diagnostics of hot electron transport. Optik,2012,123:947-949
    [13]Barkusky F, Bayer A, Peth C, et al. Compact euv source and schwarzschild objective for modification and ablation of various materials. Proceedings of SPIE, 2007.1-12
    [14]Zeitner U, Feigl T, Benkenstein T, et al. Schwarzschild-objective-based euv micro exposure tool. Proceedings of SPIE,2006.1-9
    [15]Hamamoto K, Tanaka Y, Lee S, et al. Mask defect inspection using an extreme ultraviolet microscope. Journal of Vacuum Science & Technology B,2005,23(6): 2852-2855
    [16]Winston R, Zhang W. Novel aplanatic designs. Optics Letters,2009,34(19): 3018-3019
    [17]Drechsler A, Lieb M, Debus C, et al. Confocal microscopy with a high numerical aperture parabolic mirror. Optics Express,2001,9(12):637-644
    [18]Lynden-Bell D. Exact optics:a unification of optical telescope design. Monthly Notices of the Royal Astronomical Society,2002,334:787-796
    [19]Willstrop R, Lynden-Bell D. Exact optics-ii. Exploration of designs on-and off-axis. Monthly Notices of the Royal Astronomical Society,2003,342:33-49
    [20]潘君骅.光学非球面的设计、加工与检测.北京:科学出版社,1994.
    [21]袁旭沧.光学设计.北京:北京理工大学,1988.
    [22]郁道银,谈恒英.工程光学.北京:机械工业出版社,2006.
    [23]Riedl M. Optical design fundamentals for infrared systems (2nd ed.). USA:SPIE Press,2001.
    [24]Larsen K, Ravnkilde J, Hansen O. Investigation of the isotropic etch of an icp source for silicon microlens mold fabrication. Journal of Micromechanics and Microengineering,2005,15:873-882
    [25]Fujiyoshi S, Fujiwara M, Kim C, et al. Single-component reflecting objective for low-temperature spectroscopy in the entire visible region. Applied Physics letter, 2007,91(5):0511251-3
    [26]Haselbeck S, Schreiber H, Schwider J, et al. Microlenses fabricated by melting a photoresist on a base layer. Optical Engineering,1993,6(32):1322-1324
    [27]Erdman L, Efferenn D. Technique for monolithic fabrication of silicon microlenses with selectable rim angles. Optical Engineering,1997,4(36):1094-1098
    [28]崔崧.微透镜阵列光刻投影系统的研究:[硕士学位论文].合肥:中国科学院 研究生院,2002.
    [29]赖建军,柯才军,陈四海等.微透镜阵列的制作及其与图像传感器的集成.半导体光电,2004,25(3):183-187
    [30]Popovic Z, Sprague R, Neville G. Technique for monolithic fabrication of microlens arrays. Applied Optics,1988,27:1281-1284
    [31]许乔,叶钧,周光亚等.折射型微透镜列阵的光刻热熔法研究.光学学报,1996:1326-1331
    [32]O'Neill F, Sheridan J. Photoresist reflow method of microlens production part i:background and experiments. Optik,2002,113(9):391-404
    [33]任智斌,朱丽思,曾皓等.微透镜阵列的光刻胶热熔制作技术.长春理工大学学报,2006,29(4):12-15
    [34]Li F, Chen S, Luo H, et al. Fabrication and characterization of polydimethylsiloxane concave microlens array. Optics & Laser Technology,2012, 44:1054-1059
    [35]Zhang H, Li L, Mccray D, et al. A microlens array on curved substrates by 3dmicro projection and reflow process. Sensors and Actuators A,2012:242-250
    [36]Jay T. Preshaping photoresist for refractive microlens fabrication. Optical Engineering,1994,33:3552-3555
    [37]Ossmann C, Gottert J, Ilie M, et al. Fabrication of pmma based microlenses using the LIGA process. Proceeding Microlens Arrays EOS Topical Mtg.1997.54-58
    [38]Lee S. Microlens fabrication by the modified liga process. The Fifteenth IEEE International Conference. Las Vegas.2002.520-523
    [39]Lee S, Lee K, Lee S. A simple method for microlens fabrication by the modified liga process. Journal of Micromechanics and Microengineering,2002,12:334-340
    [40]Croutxe-Barghorn C, Soppera O, Lougnot D. Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers:influence of photonic parameters. European Physical Journal:Applied Physics,2001,13:31-37
    [41]Croutxe-Barghorn C, Soppera O, Lougnot D. Fabrication of microlenses by direct photo-induced crosslinking polymerization. Applied surface science,2000,168: 89-91
    [42]Guo R, Xiao S, Zhai X, et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express,2006,14:810-816
    [43]Yang S, Krupenkin T, Mach P, et al. Tunable and latchable liquid microlens with photopolymerizable components. Advanced Materials,2003,11(15):940-943
    [44]Kyu T, Nwabunma D. Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures. Macromolecules,2001,34:9168-9172
    [45]Zeng X. Polydimethylsiloxane microlens arrays fabricated through liquid-phase photopolymerization and molding. Journal of microelectromechanical system, 2008,17(5):1210-1217
    [46]Presnyakov V, Asatryan K, Galstian T. Polymer-stabilized liquid crystal for tunable microlens applications. Optics express,2002,17:865-870
    [47]Lu Y, Chen S. Direct write of microlens array using digital projection photopolymerization. Applied Physics Letters,2008,92(4):4011091-3
    [48]Macfarlane D, Nrayan V, Cox W, et al. Microjet fabrication of microlens arrays. IEEE Photonics Technology Letters,1994,6:1112-1114
    [49]Cox W, Guan C, Hayes D. Microjet printing of micro-optical interconnects. International Journal of Microcircuits and Electronic Packaging,2000,23(3): 346-351
    [50]Trost H, Ayers S, Chen T. Using drop-on-demand technology for manufacturing grin lenses. USA:ASPE Proceedings,2001.533-536
    [51]Danzebrink R, Aegerter M. Deposition of optical microlens arrays by ink-jet processes. Thin solid films,2001,392(2):223-225
    [52]Cox W, Chen T, Guan C. Micro-jet printing of refractive microlenses. OSA Diffractive optics and micro-optics topical meeting.1998.1-4
    [53]Naessens K, Ottevaere H, Baets R, et al. Direct writing of microlenses in polycarbonate with excimer laser ablation. Applied Optics,2003,42:6349-6359
    [54]Naessensa K, Ottevaereb H, Van Daelea P, et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation. Applied Surface Science,2003,208-209:159-164
    [55]Mihailov S, Lazare S. Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon. Applied optics,1993,32(31):6211-6218
    [56]Naessens K, Van Daele P, Baets R. Excimer laser ablation based microlens fabrication for optical fiber coupling purposes. Proceedings of SPIE,2003. 133-139
    [57]Gale M, Rossi M, Schuts H, et al. Contunuous-relief diffractive optical elements for two-dimensional array generation. Applied Optics,1993,32:2526-2533
    [58]Kley E, Possner T, Roring R. Realization of micro-optics and integrated optic components by electron-beam lithographic surface profiling and ion exchane in glass. International Journal of Optoelectronics,1993,8:513-527
    [59]Gale M, Rossi M, Pedersen J, et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Optical engineering,1994,33(11): 3556-3566
    [60]李仁.半导体IC清洗技术.半导体技术,2003,28(9):44-47
    [61]阎志瑞.半导体硅片清洗工艺发展方向.电子工业专用设备,2004(116):23-26
    [62]张树永,郭永榔,曹宝成等.超大规模集成电路硅片溶液清洗技术的进展,1999,12(1):103-107
    [63]张乾.硅片湿法清洗技术与设备.电子工业专用设备,2010(187):20-35
    [64]Kern W. Handbook of semiconductor wafer cleaning technology:science, technology and applications. New Jersey:Noyes publication,1993.
    [65]崔铮.微纳米加工技术及其应用.北京:高等教育出版社,2005.
    [66]Madou M. Fundamentals of microfabrication:the science of miniaturization (2nd ed.). USA:CRC Press,2002.
    [67]余东海,王成勇,成晓玲等.磁控溅射镀膜技术的发展.真空,2009,46(2):19-25
    [68]李芬,朱颖,李刘合等.磁控溅射技术及其发展.真空电子技术,2011,3:49-54
    [69]贾嘉.溅射法制备纳米薄膜材料及进展.半导体技术,2004,29(7):70-73
    [70]王银川.真空镀膜技术的现状及发展.现代仪器,2000,6:1-4
    [71]吴大维,曾昭元,刘传胜.高速钢镀氮化碳超硬涂层及其应用研究.核技术,2003,26(4):279-283
    [72]孙银洁,马林,齐宏进.磁控溅射法制备防水透湿织物.高分子材料科学与工程,2003,19(4):188-191
    [73]Wuhrer W. A study on the microstructure and property development of dc magnetron co-sputtered ternary titanium aluminium nitride coatings. Journal of Materials Science,2002,37:1993-2004
    [74]Svadkovski I. Characterisation parameters for unbalanced magnetron sputtering systems. Vacuum,2003,68:283-290
    [75]Angleraud B. Improved film deposition of carbon and carbon nitride materials on patterned substrates by ionized magnetron sputtering. Surface and coatings technology,2004,180:29-65
    [76]杨武保.磁控溅射镀膜技术最新进展及发展趋势预测.石油机械,2005,33(6):73-76
    [77]李云奇.真空镀膜技术与设备.沈阳:东北工学院出版社,1989.
    [78]邸英浩,曹晓明.真空镀膜技术的现状及进展.天津冶金,2004,5(123):45-48
    [79]Kendall D, Shoultz R. Wet chemical etching of silicon and SiO2 and ten challenges for micromachiners. Washington:SPIE Optical Engineering Press,1997.43-89
    [80]Robbins H, Schwartz B. Chemical etching of silicon ii. The system hf, hno3, h2O and HC2H3O2. Journal of the Electrchemical Society,1960,107(2):108-111
    [81]Schwartz B, Robbins H. Chemical etching of silicon iii. A temperature study in the acid system. The Journal of The Electrochemical Society,1961,108(4):365-372
    [82]Fegely L, Hutchison D, Bhave S. Isotropic etching of 111 scs for wafer-scale manufacturing of perfectly hemispherical silicon molds. Beijing:Transducers'11, 2011.2295-2298
    [83]Moktadir Z, Koukharenka E, Kraft M, et al. Etching techniques for realizing optical micro-cavity atom traps on silicon. Journal of Micromechanics and Microengineering,2004,14(9):S82-S85
    [84]Albero J, Nieradko L, Gorecki C, et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. Optics Express,2009,17:6283-6292
    [85]Hashimoto H, Tanaka S, Sato K, et al. Chemical isotropic etching of single-crystal silicon for acoustic lens of scanning acoustic microscopy. Japanese Journal of Applied Physics,1993,32:2543-2546
    [86]Lee J, Choi J, Jang W, et al. Electrowetting lens employing hemispherica cavity formed by hydrofluoric acid, nitric acid, and acetic acid etching of silicon. Japanese Journal of Applied Physics,2012,51:06FL05 1-7
    [87]Han C, Kim E. Study of self-limiting etching behavior in wet silicon isotropic etching in silicon. Japanese Journal of Applied Physics,1998,37:6939-6941
    [88]Svetovoy C, Berenschot J, Elwenspoek M. Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings. The Journal of The Electrochemical Society,2006,153:C641-C647
    [89]Svetovoy C, Berenschot J, Elwenspoek M. Experimental investigation of anisotropy in isotropic silicon etching. Journal of Micromechanics and Microengineering,2007,17:2344-2351
    [90]Mauer L, Itzowitz H, Taddei J. Process control of wet etching for silicon wafer thinning. Chip scale review. SCCE white paper.1-5
    [91]Steinert M, Acker J, Oswald S, et al. Study on the mechanism of silicon etching in HNO3-rich HF/HNO3 mixtures. The Journal of Physical Chemistry C,2007,111: 2133-2140
    [92]Steinet M, Acker J, Wetzig K. New aspects on the reduction of nitric acid during wet chemical etching of silicon in concentrated hf/hno3 mixtures. The Journal of Physical Chemistry,2008,112:14139-14144
    [93]Acker J, Rietig A, Steinert M, et al. Mass and electron balance for the oxidation of silicon during wet chemical etching in HF/HNO3 mixtures. The Journal of Physical Chemistry C,2012,116:20380-20388
    [94]Shin C, Economu D. Forced and natural convection effects on the shape evolution of cavities during wet chemical etching. The Journal of The Electrochemical Society,1991,138:527-538
    [95]Kuiken H. A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole. Journal of Engineering Mathmatics,2003,45: 75-90
    [96]Kuiken H. Etching:a two-dimensional mathematical approach. Preceedings of the Royal Society A,1984,392(1082),:199-225
    [97]Baranski M, Albero J, Kasztelanic R, et al. A numerical model of wet isotropic etching of silicon molds for microlenses fabrication. Journal of the electrochemical society,2011,158(11):D681-D688
    [98]Kuiken H, Kelly J, Notten P. Etching profiles at resist edges:i. Mathematical models for diffusion-controlled cases. The Journal of The Electrochemical Society, 1986,133:1217-1226
    [99]Steinert M, Acker J, Krause M, et al. Reactive species generated during wet chemical etching of silicon in hf/hno3 mixtures. The Journal of Physical Chemistry B,2006,110:11377-11382
    [100]Daisuke E, Sakamoto H, Sasaki K. Effect of mechanical surface damage on silicon wafer strength. Procedia Engineering,2011,10:1440-1445
    [101]Wu J, Huang C, Liao C. Fracture strength characterization and failure analysis of silicon dies. Microelectronics Reliability,2003,43:269-277
    [102]Jeong S, Park S, Oh H, et al. Fracture strength evaluation of semiconductor silicon wafering process induced damage. Arizona:ASPE Proceedings,2000.1-5
    [103]Deluca M, Bermejo R, Pletz M, et al. Strength and fracture analysis of silicon-based components for embedding. Journal of the European Ceramic Society,2011,31:549-558
    [104]Kukharenka E, Farooqui M, Grigore L, et al. Electroplating moulds using dry film thick negative photoresist. Journal of micromechanics and engineering,2003,13: S67-S74
    [105]Stephan K, Pittet P, Renaud L, et al. Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. Jounal of Micromechanics and microegineering,2007,17:N69-N74
    [106]Tsai Y, Jen H, Lin K, et al. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. Journal of Chromatography A, 2006,1111(2):267-271
    [107]Zhao S, Cong H, Pan T. Direct projection on dry-film photoresist (dp2): do-it-yourself three-dimensional polymer microfluidics. Lab on a chip,2009,9: 1128-1132
    [108]Koes T. High resolution positive acting dry film photoresist. USA Patent,5981135, 1999.1-12
    [109]Shelnut J. Dry film photoresist. USA Patent, US 2003/0091926 Al,2003.1-9
    [110]陈德英,茅盘松.微机械加工中的图形硅片键合技术.固体电子学研究与进展,1999,19(3):321-328
    [111]林晓辉.晶圆低温键合技术及应用研究:[博士学位论文].武汉:华中科技大学,2008.
    [112]阮传植.多层硅硅直接键合实验研究:[硕士学位论文].武汉:华中科技大学,2009.
    [113]Schmidt M. Wafer-to-wafer bonding for microstructure formation. Proceedings of the IEEE,1998.1575-1585
    [114]李和太,李晔辰.硅片键合技术的研究进展.传感器世界,2002:6-10
    [115]何田.先进封装技术的发展趋势.电子工业专用设备,2005(124):5-8
    [116]Lasky J, Stiffler S, Abernathey J. Silicon-on-insulator(soi) by bonding and etch-back. Proceedings IEDM,1985.684-687
    [117]刘玉岭,王新,张文智等.硅/硅键合新方法的研究.稀有金属,2000,24(1):16-20
    [118]肖滢滢.硅硅直接键合的理论及工艺研究:[硕士学位论文].合肥:合肥工业大学,2005.
    [119]Lasky J. Wafer bonding for siliconaon-insulator technologies. Applied Physics Letters,1986,48(1):78-80
    [120]Bbermeier E. Anodic wafer bonding. Proceedings of semiconductor wafer bonding: science, technology and applications,1995.212-220
    [121]Wallis G, Pomerant D. Field assisted glass-metal sealing. Journal of applied physics,1969,40(10):39-46
    [122]Field L, Muller R. Fusing silicon wafers with low melting temperature glass. Sensors Actuators A,1990,23:935-938
    [123]Wang C, Lee C. A eutectic bonding technology at a temperture below the eutecic point. Proceedings of 42nd electronic components conference,1992.502-506
    [124]何洪涛.一种基于BCB键合技术的新型MEMS圆片级封装工艺.微纳电子技 术,2010,47(10):629-651
    [125]Niklaus F, Enoksson P, Kalvesten E, et al. Low-temperature full wafer adhesive bonding. Journal of micromechanics and microengineering,2001,11:100-107
    [126]Li Z, Hao Y, Zhang D. An soi-mems technology using substrate layer and bonded glass as wafer-level package. Sensors and Actuators,2002,96:34-42
    [127]Knowles K, van Helvoort. Anodic bonding. International Materials Reviews,2006, 51(5):273-311
    [128]Saran A, Abeysinghe D, Boyd J. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding. Applied Optics,2006,45(8): 1737-1742
    [129]Oberhammer J, Niklaus E, Stemme G. Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sensors and Actuators, A: Physical,2003,105(3):297-304
    [130]Choi Y, Park J, Park H. Effects of temperatures on microstructures and bonding strengths of si-si bonding using bisbenzocyclobutene. Sensors and Actuators A: Physical,2003,108:201-205
    [131]Kwon Y, Seok J, Lu J. Critical adhesion energy of benzocyclobutene-bonded wafers. Journal of the Electrochemical Society,2006,153(4):G347-G352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700