用户名: 密码: 验证码:
钯/聚合物/泡沫镍电极制备及其电催化脱氯还原氯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代有机物由于具有毒性强、分布广、易在食物链中积累与传播,并且能对人的分泌系统造成严重的影响,因此它的环境影响及有效去除受到了研究者较多的关注。在众多的研究方法中,电催化因其效率高、无污染等优点而倍受青睐。钯修饰电极因在催化、加氢等领域有着巨大的优势而显现出良好的应用前景。在国内外研究的基础上,本论文制备了钯/泡沫镍、钯/聚苯胺/泡沫镍及钯/聚吡咯/泡沫镍三种复合电极,并采用扫描电子显微镜、透射电子显微镜、X-射线衍射、X-射线光电子能谱及傅立叶红外光谱对其结构及物理化学性能进行了表征分析,研究了复合电极对氯酚类化合物的脱氯性能,分析了改性复合电极增强的脱氯机制。
     采用恒电流电沉积法制备了钯/泡沫镍电极,并利用多种表征手段考察了所制备的钯/泡沫镍电极表观形貌、晶体结构及表面形态,并重点研究了钯/泡沫镍电极对一氯酚的电催化还原脱氯活性、动力学特性及稳定性。结果表明:钯/泡沫镍电极上钯颗粒呈树枝状,且为零价,并表现出良好的化学稳定性及脱氯活性,系列一氯酚的电催化还原脱氯反应为拟一级反应动力学。
     先将聚苯胺恒电流聚合在泡沫镍上,再将钯颗粒恒电流沉积在聚苯胺层上,制备了钯/聚苯胺/泡沫镍复合电极,并利用扫描电子显微镜、透射电子显微镜、X-射线衍射、傅立叶红外光谱及X-射线光电子能谱研究了其表观形貌、晶体结构及表面形态等物理化学性能,重点研究了不同聚合条件对复合电极形貌及结构与二氯酚的电化学脱氯行为的影响。结果表明钯/聚苯胺/泡沫镍复合电极中聚苯胺以针形存在,而Pd颗粒则以簇状结构分布在聚苯胺网络结构中,并主要以零价钯形式存在。聚苯胺的引入大大改善了钯颗粒的分散性。其中,最优的聚苯胺制备条件为:聚合电流为24mA,聚合温度为0℃,聚合时间为20min。
     先将聚吡咯恒电位聚合在泡沫镍上,再将钯颗粒恒电流沉积在聚吡咯层上,制备了钯/聚吡咯/泡沫镍复合电极,并用相关的表征手段研究了复合电极的表观形貌、晶体结构及表面形态等,重点考察了不同电聚合条件对其形貌及结构与二氯酚的电化学脱氯行为的影响。结果表明不同掺杂离子、应用电位、聚合温度及聚合时间等均对聚吡咯微球的表观形貌及分布有显著影响。结果表明:当掺杂离子为对甲苯磺酸,聚合电位为0.6V,聚合温度为0℃及聚合时间为20min时聚吡咯微球颗粒粒径最小、分布最均匀,为Pd颗粒的成核和生长提供了良好的环境。电催化还原2,4-二氯苯酚(2,4-DCP)的效率最高。
     考察了电极的稳定性,同时研究了了其对六种二氯苯酚同分异构体的脱氯路径、动力学及机理。结果发现:钯/聚吡咯/泡沫镍复合电极具有良好的稳定性及电化学还原脱氯活性,且对六种二氯苯酚同分异构体的电催化加氢脱氯结果表明:2,4-DCP的在反应时间为120min时的去除率最高,为91.1%,而3,5-DCP的去除率最低,为68%。此外,考察了六种二氯酚的电化学加氢脱氯各级反应动力学。
Environmental effect and effective removal of chlorinated organic compounds have attracted many attentions due to its strong toxicity, widespread, and easy accumulation and migration in the food chain, as well as serious effect on human secretion system. Among the many methods, electrocatalysis was received many emphasis due to the high efficiency and non-pollution. In addition, Pd decorated electrode exhibited huge advantages and promising application in the research field of catalysis and hydrogenation. On the basis of the research at home and abroad, three kinds of composite electrodes such as Pd/Ni, Pd/PANI/Ni and Pd/PPY/Ni were prepared. The structures and physicochemical properties were investigated by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). In addition, dechlorination activities together with the dechlorination mechanism of the modified composite electrodes were proposed.
     Pd/Ni electrodes were prepared through galvanostatic method. Subsequently, the apparent morphologies, crystal structures and surface state of Pd/Ni electrodes prepared from different conditions were investigated by many techniques. Meanwhile, electrocatalytic dechlorination activity for monochlorphenol, dynamic characteristic and stability of the as-prepared Pd/Ni electrodes were mainly investigated. It was found that Pd particles existed in the form of dendritic structure and zero state, which exhibited excellent chemical-stability and dechlorination activity. Furthermore, the reactions fitted well with the first order kinetics function.
     Pd/PAIN/Ni composite electrodes were synthesized by electrochemical deposition method. Pysicochemical properties such as apparent morphologies, crystal structures and surface states were characterized through scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The effect of polymerization conditions on morphologies, structures and dechlorination activity for dichlorophen of Pd/PAIN/Ni composite electrodes were mainly studied. All results indicated that PPYs in the Pd/PANI/Ni composite electrode existed in the form of needle-shaped, while nulvalent Pd particles dispersed well as clusters in the network on PPYs, in which the optimal polymerization conditions were obtained with the polymerization current of24mA, temperature of0℃and time of20min, respectively.
     Pd/PPY/Ni composite electrodes were constructed through constant current cathodic electrodeposition. The apparent morphologies, crystal structures and surface states were studied by related techniques. Furthermore, the effect of polymerization conditions on morphologies, structures and dechlorination activity for dichlorophen was mainly investigated. Results showed that the dopant ions, applied potential, polymerization temperature and time exhibited significant influences on the apparent morphology and distribution of PPYs microspheres. Furthermore, as the polymerization process was continued20min under0.6V at0℃in the presence of toluenesulfonic acid, the minimum particle sizes and uniform distributions of PPYs microspheres were obtained, which provided a favorable condition for the crystallize and growth of Pd particle.
     The stability of Pd/PPY/Ni composite electrodes was investigated. In addition, the dechlorination activity for dichlorophen and its isomerides and dynamic characteristics were studied. It was found that Pd/PPY/Ni composite electrodes displayed excellent electrochemical reductive dechlorination activity. Besides, under120min, the dechlorination activity for2,4-dichlorophenol was91.1%, while3,5-chlorophenol was68%.
引文
[1] Trost B M, Fleming I. Comprehensive Organic Synthesis [D]. Pegramon Press:Oxofrd,1991.
    [2]化学化工大辞典[M].北京:化学工业出版社,2003:500.
    [3]丛燕青.氯酚的电化学降解行为及治理研究[D].杭州,浙江大学博士学位论文,2005.
    [4]王执伟.钯/泡沫镍电极制备及其电催化还原水中氯酚的研究[D].哈尔滨,哈尔滨工业大学硕士学位论文,2010.
    [5] EPA.2002,06. http:www.seorecard.org.
    [6] Hayward K. Drinking Water Contaminant Hit-list for US EPA [J]. Water21-magazine of the International Water Association, September-October,1998:4. http://www.iwaponline.com/w21/00102/2/default.htm.
    [7] Keith L H, Telliard W A. Priority Pollutants: a Prospective View [J].Environmental Science and Technology,1979,13:416-424.
    [8] EC Decision2455/2001/EC of the European Parliament and of the Council ofNovember20[C].2001Establishing the List of Priority Substances in theField of Water Policy and Amending Directive2000/60/EC(L331of15-12-2001),2001.
    [9] Ahlborg U G, Thunberg T M. Chlorinated Phenols: Occurrence, Toxicity,Metabolism and Environmental Impact [J]. Critical Reviews in Toxicology,1980,07:01-35.
    [10]张亚辉,曹莹,王一喆等.3种氯酚化合物对大型溞的联合毒性[J].生态毒理学报,2011,6(4):403-409.
    [11] Grimwood M, Mascarenhas R. Proposed Environmental Quality Standards for2-,3-and4-chlorophenol and2,4-dichlorophenol in Water [C]. EnvironmentAgency Technical Report, WRc Report No. EA4215,1997,46/i688.
    [12] Devillers.J, Chambon P. Acute toxicity and QSAR of chlorophenols onDaphnia magna [J]. Bulletin of Environmental Contamination and Toxicology,1986,37:599-605.
    [13] EPA, USA, Report440/5-80-034, PB81-117459,1980.
    [14]郑璐,朱承驻,徐莺等.电解对氯苯酚稀水溶液中脱氯降解机理研究[J].环境科学研究,2004,14(6):54-58.
    [15]贾素云.化工环境科学与安全技术[M].国防工业出版社,2009,42-43.
    [16] Wang R C, Kuo C C, Shyu C C. Adsorption of Phenols onto Granular ActivatedCarbon in a Liquid-solid Fluidized Bed [J]. Journal of Chemical Technologyand Biotechnology,1997,68(2):187-194.
    [17] Jung M, Ahn K, Lee Y, et al. Adsorption Characteristics of Phenol andChlorophenols on Granular Activated Carbons (GAC)[J]. MicrochemicalJournal,2001,70(2):123-131.
    [18] Haghseresht F, Nouri S, Finnerty J J, et al. Effects of Surface Chemistry onAromatic Compound Adsorption from Dilute Aqueous Solutions by ActivatedCarbon [J]. The Journal of Physical Chemistry B,2002,106,10935-10943.
    [19]王晓玭.活性炭的表面改性及对水中三氯苯酚的去除研究[D].南昌,南昌大学硕士学位论文,2008.
    [20] Sakoda A, Kawazoe K, Suzuki M. Adsorption of Tri-and Tetra-chloroethylenefrom Aqueous Solutions on Activated Carbon Fibers [J].Water Research,21:712-722.
    [21] Streat M. Physical and adsorptive properties of Hypersol-Macronet polymers[J]. Reactive and Functional Polymers,1997,01(35):99-109.
    [22] Andini S, Cioffi R, Montagnaro F, et al. Simultaneous Adsorption ofChlorophenol and Heavy Metal Ions on Organophilic Bentonite [J]. AppliedClay Science,2006,31:126-133.
    [23] Harbabu E, Upadhya Y D, Upadhyay S N. Removal of Phenols from Effluentsby Fly Ash [J]. International Journal of Environmental Studies,1993,43(2-3):169-176.
    [24]张雪娜.生物膜电极法降解分类有机污染物的研究[D].长春,吉林大学博士学位论文,2010.
    [25]康艳红,薛向欣,杨合.含钛矿渣的表征及在超声波作用下催化降解含硝基苯废水[J].硅酸盐通报,2009,28:229-234.
    [26] Ince N H, Tezcanli G, Belen R K. Ultrasound as a Catalyzer of Aqueous System:the State of the Art and Environmental Applications [J]. Applied Catalysis B:Environmental,2001,29:167-176.
    [27] Lambert N, Rediers H, Hulsmans A, et al. Evaluation of UltrasoundTechnology for the Disinfection of Process Water and the Prevention ofBiofilm Formation in a Pilot Plant [J]. Water Science and Technology,2010,61(5):1089-1096
    [28] Petrier C. Micolle M, Merlin G. Characteristics of Pentach IorophenateDegradation IN Aqueous Solution Bymeans of Ultrasound [J]. EnvironmentalScience and Technology,1992,26(8):1639-1642.
    [29]冯若.声化学及其应用[M].安徽科学技术出版社,1992.
    [30] Petrier C. Ultrasound and Environment: Sonochemical Destruction ofChloroaromatic Derivatives [J]. Environmental Science and Technology,1998,32(9):1316-1318.
    [31] Ku Y, Chen K Y, Lee K K. Ultrasonic Destruction of2-chlorophenol inAqueous Solution [J]. Water Research,1997,31(4):929-935.
    [32] Visscher A D, Langenhove H V. Sonochemistry of Organic Compounds inHomogeneous Aqueous Oxidizing System [J]. Ultrasonics Sonochemistry,1998,5(3):87-92.
    [33]胥朝禔,杨兵.分析化学[M].化学工业出版社,2008.
    [34]范洪富,王达,马军等.用离子液体[bmim]PF6和[emim]Beti萃取水中的氯酚[J].大庆石油学院学报,2007,31:68-73.
    [35]施汉昌,赵胤慧,冀静平.氯酚废水的生物处理技术的研究与进展[J].化学通报,1998,08:1-4.
    [36]王晓东,张光辉,顾平.水体中氯酚类污染物的生物降解性研究进展[J].中国给水排水,2008,24(16):17-19.
    [37] Solyanikova I P, Golovleva L A. Bacterial Degradation of Chlorophenols:Pathways, Biochemica and Genetic Aspects [J]..Journal of environmentalscience and Health Part B,2004,39(3):333-351.
    [38]吴为中,冯叶成,王建龙.不动杆菌(Acinetobacter sp.)降解4-氯酚的特性及机制研究[J].环境科学,2008,29(11):3185-3188.
    [39] Ettala M, Koskela J, Kiesila A. Removal of Chlorophenols in a MunicipalSewage Treatment Plant Using Activated Sludge [J]. Water Research,1992,26(6):797-804.
    [40] Kaballo H P, Zhao Y G. Elimination of P-Chlorophenol in Biofilm Reactors-aComparative Study of Continuous Flow and Sequenced Batch Operation [J].Water Science&Technology,1995,31(1):51-60.
    [41] Shi X Y, Sheng G P, Li X Y. Operation of a Sequencing Batch Reactor forCultivating Autotrophic Nitrifying Granules [J]. Bioresource technology,2010,101(9):2960-2964.
    [42] Wang S G, Liu X W, Gong W X, et al. Aerobic Granulation with BreweryWastewater in a Sequencing Batch Reactor [J]. Bioresource technology,2007,98(11):2142-2147.
    [43] Mohammad Z K, Pijush K M, Suhail S. Bioremediation of2-chlorophenolContaining Wastewater by Aerobic Granules-Kinetics and Toxicity [J]. Journalof Hazardous Materials,2011,190(1-3):222-228.
    [44] Alessandra C, Stefano M, Giovanna C, et al. A Direct Comparison AmongstDifferent Technologies (Aerobic Granular Sludge, Sbr and Mbr) for theTreatment of Wastewater Contaminated by4-Chlorophenol [J] Journal ofHazardous Materials,2010,177(1-3):1119-1125.
    [45] Lee D J, Chen Y Y, Show K Y, et al. Advances in Aerobic Granule Formationand Granule Stability in the Course of Storage and Reactor Operation [J].Biotechnology Advances,2010,28(6):919-934.
    [46] Puyol D, Mohedano A F, Sanz J L, et al. Comparison of UASB and EGSBPerformance on the Anaerobic Biodegradation of2,4-dichlorophenol [J].Chemosphere,2009,76:1192-1198.
    [47]顾荷炎,张兴旺,李中坚等.微生物燃料电池协同处理含氯酚废水[J].科学通报,2007,52(18):2214-2216.
    [48] Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and AerobicBiodegradation of Chlorophenols Using UASB and ASG Bioreactors [J].World Journal of Microbiology&Biotechnology,2000,16:95-98.
    [49] Oh W D, Lim P E, Seng C E, et al. Kinetic Modeling of Bioregeneration ofChlorophenol-loaded Granular Activated Carbon in Simultaneous Adsorptionand Biodegradation Processes [J]. Bioresource Technology,2012,114:179-187.
    [50] Glaze W H. An overview of Advanced Oxidation Processes:Current Status andKinetic Models [J]. Chemistry Oxidation,1994,02:44-57.
    [51] Glaze W H, Kang J W, Chapin D H. The Chemistry of Water TreatmentProcesses Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation [J].Ozone-Science and Engineering,1987,09:335-352.
    [52] Hunsberger J F. Standard Reduction Potentials [C].in:R.C.Weast(Ed.Handbookof Chemistry and Physics,58th ed.,D141-144,CRC Press,Ohio,1977.
    [53] Marc P T, Veronica G M, Miguel A.B, et al. Degradation of Chlorophenols byMeans of Advanced Oxidation Processes:a General Review [J]. AppliedCatalysis B:Environmental,2004,47:219-256.
    [54] Kuo C H, Huang C H. Aqueous Phase Ozonation of Chlorophenols [J]. Journalof Hazardous Materials,1995,01(41):31-45.
    [55] Pi Y, Wang J. The Mechanism and Pathway of the Ozonation of4-chlorophenolin Aqueous Solution [J]. Science in China Series: Chemistry,2006,49:379-384.
    [56] Kawaguchi H. Oxidation Efficiency of Hydroxyl Radical in the Photooxidationof2-chlorophenol Using Ultraviolet Radiation and Hydrogen Peroxide [J].Environmental Technology,1993,14(2):89-293.
    [57] Shi Z, Sigman E, Ghosh M M, et al. Photolysis of2-chlorophenol Dissolved inSurfactant Solutions [J]. Environmental Science and Technology,1997,31:3581-3587.
    [58] Lipczynska-Kochany E. Degradation of Nitrobenzene and Nitrophenols byMeans of Advanced Oxidation Processes in a Homogeneous Phase:Photolysisin the Presence of Hydrogen Peroxide Versus the Fenton Reaction [J].Chemosphere,1992,24(9):1369-1380.
    [59] Rodrigo M A, Michaud P A, Duo I, et al. Oxidation of4-Chlorophenol atBoron-Doped Diamond Electrode for Wastewater Treatment [J]. Journal of TheElectrochemical Society,2001,05(148):60-64.
    [60] Canizares P, Garcia-Gomez J, Saez C, et al. Electrochemical Oxidation ofSeveral Chlorophenols on Diamond Electrodes Part I. Reaction Mechanism [J].Journal of Applied Electrochemistry,2003,10(33):917-927.
    [61] Canizares P, Garcia-Gomez J, Saez C, et al. Electrochemical Oxidation ofSeveral Chlorophenols on Diamond Electrodes: Part II. Influence Of WasteCharacteristics and Operating Conditions [J]. Journal of appliedelectrochemistry,2004,01(34):87-94.
    [62] Zanta C L P S, Michaud P A, Comninellis C, et al. Electrochemical Oxidationof p-chlorophenol on SnO2–Sb2O5Based Anodes for Wastewater Treatment[J]. Journal of Applied Electrochemistry,2003,33(12):1211-1215.
    [63] Polcaro A M, Palmas S, Renoldi F, et al. On the Performance of Ti/SnO2andTi/PbO2Anodesin Electrochemical Degradation of2-chlorophenol forWastewater Treatment [J]. Journal of Applied Electrochemistry,1999,02(29):147-151.
    [64]封帆,高迎新,张昱等. Fenton氧化4-氯酚降解机制研究[J].环境化学,2011,30:1889-1893.
    [65] Munoz M, Pedro Z M, Casas J A, et al. Assessment of the Generation ofChlorinated Byproducts upon Fenton-Like Oxidation of Chlorophenols atDifferent Conditions [J]. Journal of Hazardous Materials,2011,190(01-03):993-1000.
    [66] Orth W S, Gillham R W. Dechlorination of Trichloroethene in AqueousSolution Using Fe0[J]. Environmental Science and Technology,1996,30:66-71.
    [67] Sayles G D, You G R, Wang M X, et al. DDT, DDD and DDE DechlorinationbyZero Valent Iron [J]. Environmental Science and Technology,1997,31:3448-3454.
    [68] Kima Y, Carrawaya E R. Dechlorination of Chlorinated Phenols by Zero ValentZinc [J]. Environmental Technology,2003,12(24):1455-1463.
    [69] Goran N. J, Polona Z P, Ploenpun S, et al. Dechlorination of p-Chlorophenol ina Microreactor with Bimetallic Pd/Fe Catalyst [J]. Industrial EngineeringChemistry Research,2005,44(14):5099-5106.
    [70] Liu Y, Yang F, Yue P L, et al. Catalytic Dechlorination of Chlorophenols inWater by Palladium/Iron [J]. Water Research,2001,08(35):1887-1890.
    [71] Solankim J N, Murthy Z V P. Reduction of4-Chlorophenol by Mg and Mg-AgBimetallic Nanocatalysts [J]. Industrial Engineering Chemistry Research,2011,50(24):14211-14216.
    [72] Zhou T, Li Y, Lim T. Catalytic Hydrodechlorination of Chlorophenols by Pd/FeNanoparticles: Comparisons with Other Bimetallic Systems, Kinetics andMechanism [J]. Separation and Purification Technology,2010,02(76):206-214.
    [73] Su J, Lin S, Chen Z, et al. Dechlorination of p-chlorophenol from AqueousSolution Using Bentonite Supported Fe/Pd Nanoparticles: Synthesis,Characterization and Kinetics [J]. Desalination,2011,1-3(280):167-173.
    [74]葛慧,李保华,孙治荣.电化学法去除水中氯代有机化合物的研究进展[J].化工环保,2008,28:317-322.
    [75] Matsunaga A, Yasuhara A. Dechlorination of Polychlorinated OrganicCompounds by Electrochemical Reduction with Naphthalene Radical Anion asMediator [J]. Chemosphere,2005,10(59):1487-1496.
    [76] Cheng I F, Fernando Q, Korte N, et al. Electrochemical Dechlorination of4-Chlorophenol to Phenol [J]. Environmental Science and Technology,1997,31(4):1074-1078.
    [77] Robin D, Comtois M, Martel A, et al.The Electrocatalytic Hydrogenation ofFused Poly Cyclic Aromatic Compounds at Raney Nickel Electrodes: theInfluence of Catalyst Activation and Electrolysis Conditions [J]. CanadianJournal of Chemistry,1990,68(7):1218-1227.
    [78] Dabo P, Cyr A, Lessard J, et al. Electrocatalytic Hydrogenation of4-phenoxyphenol on Active Powders Highly Dispersed in a ReticulatedVitreous Carbon Electrode [J]. Canadian Journal of Chemistry,1999,77(7):1225-1229.
    [79] Mahdavi B, Chambrion P, Binette J, et al. Electrocatalytic Hydrogenation ofConjugated Enones on Nickel Boride, Nickel, and Raney Nickel Electrodes [J].Canadian Journal of Chemistry,1995,73(6):846-852.
    [80] Dabo P, Cyr A, Laplante F, et al. Electrocatalytic Dehydrochlorination ofPentachlorophenol to Phenol or Cyclohexanol [J]. Environmental Science andTechnology,2000,34:1265-1268.
    [81] Vetter K J. Electrochemical Kinetics.Theoretical and Experimental Aspects [J].Academic Press, New York.1967,516-517.
    [82] Hemptinne X D, Schunck K. Electrochemical Reduction of Acetone.Electrocatalytic Activity of Platinized Platinum [J]. Transactions of TheFaraday Society,1969,65:591-597.
    [83] Miller L L, Christensen L. Electrocatalytic Hydrogenation of AromaticCompounds [J]. The Journal of Organic Chemistry,1978,43:2059-2061.
    [84] Hemptinne X D, Jungers J C. Mechanism of Electrochemical Hydrogenation[J]. Z.Physik.Chem.N.F.,1958,15:137-148.
    [85] Atsushi M. Dechlorination of PCBs by Electrochemical Reduction withAromatic Radical Anion as Mediator [J]. Chemosphere,2005,58:897-904.
    [86] Blair E. High-temperature Electrocatalysis using Thermophilic P450CYP919:Dehalogenation of CCl4to CH4[J]. Jacs Communication,2004,6(4):978-983.
    [87] Ross N C, Spackman R A, Hitchman M L, et al. An Investigation of theElectrochemical Reduction of Pentachlorophenol with Analysis by HPLC,Journal of Applied Electrochemistry,1997,27:51-57.
    [88] Cui C, Quan X, Yu H, et al. Electrocatalytic Hydrodehalogenation ofPentachlorophenol at Palladized Multiwalled Carbon Nanotubes Electrode [J].Applied Catalysis B: Environmental,2008,80:122-128.
    [89] Fang Y, Al-Abed S R. Palladium-facilitated Electrolytic Dechlorination of2-chlorobiphenyl Using a Granular-graphite Electrode [J]. Chemosphere,20007,66:226-233.
    [90] Kulikov S M, Plekhanov V P, Tsyganok A I, et al. Electrochemical ReductiveDechlorination of Chlororganic Compounds on Carbon Cloth andMetal-modified Carbon Cloth Cathodes [J]. Electrochimica Acta,1996,04(41):527-531.
    [91] Tsyganok A I, Yamanaka I, Otsuka K. Dechlorination of Chloroaromatics byElectrocatalytic Reduction over Palladium-Loaded Carbon Felt at RoomTemperature [J]. Chemosphere,1999,11(39):1819-1831.
    [92] Cheng H, Scott K, Christensen P A. Electrochemical Hydrodehalogenation of2,4-dibromophenolin Paraffin Oil Using a Solid Polymer Electrolyte Reactor[J]. Environmental Science and Technology,2004,38:638-642.
    [93] Sun Z, Ge H, Hu X, et al. Electrocatalytic Dechlorination of Chloroform inAqueous Solution on Palladium/Titanium Electrode [J]. Chemical Engineeringand Technology,2009,01(32):134-139.
    [94] Jiao Y L, Wu D L, Ma H Y, et al. Electrochemical Reductive Dechlorination ofCarbon Tetrachloride on Nanostructured pd Thin Films[J].Electrochem.Commun.,2008,10(10):1474-1477.
    [95] Chen G, Wang Z, Xia D. Electrochemically Reductive Dechlorination of MicroAmounts of2,4,6-trichlorophenol in Aqueous Medium on Molybdenum Oxidecontaining Supported Palladium [J]. Electrochimica Acta,2004,50:933-937.
    [96] H. Maria. The Electrocatalytic Oxidation of Methanol at Finely DispersedPlatinum Nanoparticles in Polypyrrole Films [J]. Journal of theElectrochemical Society,1998,145(1):124-134.
    [97]郭娟.适用于氧还原的钴-聚吡咯-碳(Co-PPy/C)复合电催化剂的研究[D].广州大学硕士学位论文,2011.
    [98] Zhao Y C, Zhan Lu, Tian J N, et al. Enhanced Electrocatalytic Oxidation ofMethanol on Pd/polypyrrole–graphene in Alkaline Medium [J]. ElectrochimicaActa,2011,56:1967-1972.
    [99] Selvaraj V, Alagar M, Sathish K. Synthesis and Characterization of MetalNanoparticles-decorated PPY-CNT Composite and Their ElectrocatalyticOxidation of Formic Acid and Formaldehyde for Fuel Cell Applications [J].Applied Catalysis B: Environmental,2007,1-2(75):129-138.
    [100] Christopher T. H, Mark S. W. Electrocatalytic Oxidation of Methanol andEthanol: a Comparison of Platinum-tin and Platinum-ruthenium CatalystParticles in a Conducting Polyaniline Matrix [J]. Langmuir,1993,9(11):3284-3290.
    [101] Seo M H, Lim E J, Choi S M, et al. Stability Enhancement of Pd Catalysts byCompositing with Polypyrrole Layer for Polymer Electrolyte Fuel CellElectrodes [J]. Top Catal,2010,53:678-685.
    [102] Becerik I, Suzer S, Kadirgan F. Platinum-palladium Loaded Polypyrrole FilmElectrodes for The Electrooxidation of D-glucose in Neutral Media [J]. Journalof Electroanalytical Chemistry,1999,476:171-176.
    [103] Nguyen-Thanh D, Frenkel A I, Wang J Q, et al. Cobalt-polypyrrole-carbonblack (Co-PPY-CB) Electrocatalysts for the Oxygen ReductionReaction(ORR)in Fuel Cells:Composition and Kinetic Activity [J]. AppliedCatalysis B: Environmental,2011,105:50-60.
    [104] Monica T, Stefano P.T, Sergio T. Electrocatalytic Activity for HydrogenEvolution of Polypyrrole Films Modified with Noble Metal Particles [J].Materials Chemistry and Physics,2006,98:165-171.
    [105] Careem M A, Velmurugu Y, Skaaru P S, et al. A Voltammetry Study on theDiffsion of Eounter Ions in Polypyrrole Films [J]. Joumal of Power Sources,2006,159(1):210-214.
    [106] Vidanapathirana K P, Careem M A, Skaarup S etal. Ion Movement inPolypyrrole/dodecylbenzenesulphonate Films in Aqueous and Non-AqueousElectrolytes [J]. Solid State Ionies,2002,154-155:331-335.
    [107] Qiao Y, Bao S J, Li C M, et al. Nanostructured Polyaniline/titanium DioxideComposite Anode for Microbial Fuel Cells [J]. ACS Nano,2008,2(1):113-119.
    [108] Yan Y, Yu Z, Huang Y, et al. Helical Polyaniline Nanofibers Induced by ChiralDopants by a Polymerization Process [J]. Advanced Materials,2007,19(20):3353-3357.
    [109] Tran F, Carrier M, Chevrot C, et al. Sulfonated Polythiophene and Poly (3,4-ethylenedioxythiophene) Derivatives with Cations Exchange Properties [J].Synthetie Metals,2004,142(l-3):251-258.
    [110] Trivinho F, Pereira E C, Mello S V, et al. Ions Transport and Self-Doping inlayer-by-layer Conducting Polymer Films [J]. Synthetic Metals,2005,155(3):648-651.
    [111] McDiarmid A G. A New Concept in Conducting Polymers[J]. Synthetic Metals,1987,18:285-289.
    [112]颜海燕.聚苯胺吸波材料的研究[D]西安,西北工业大学硕士学位论文,2005.
    [113]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003.
    [114] Genies E M, Bidan G, Diaz A F. Spectroelectrochemical Study of PolypyrroleFilms [J]. Journal of Electroanalytical Chemistry,1983,149(1-2):101-113.
    [115]朱日龙.聚吡咯的电化学合成、应用及防蚀机理研究[D].长沙,湖南大学博士学位论文,2008.
    [116] Diaz A F, Crowley J, Bargon J, et al. Electrooxidation of Aromatic Oligomersand Conducting Polymers [J]. Journal of Electroanalytical Chemistry,1981,121:355-361.
    [117] Wallace G G, Spinks G M. Conductive Electeoactive Polumers [J]. IntelligentMaterials Systems,2003, CRC Press LLC.227.
    [118] Skotheim T A. Handbook of Conducting Polymers [M]. Marcel dekker, INC,1986.
    [119] Vork F T A, Schuermans B C A M, Barendrecht E. Influence of InsertedAnions on the Properties of Polypyrrole [J]. Electeochim Acta,1990,35(2):567-575.
    [120] Fruend M, Bodalbhai L, Brajter A. Anion-excluding Polypyrrole Films [J].Talanta,1991,38(1):95-99.
    [121]朱和国王恒志.材料科学研究与测试方法[M].南京:东南大学出版社,2008.
    [122]董宝平.几类稀土硼化物纳米材料的制备和性能研究[D].信阳:信阳师范学院硕士学位论文,2012.
    [123]朱永法.纳米材料的表征及测试技术[M].北京:化学工业出版社,2006.
    [124]王斌,陈集,饶小桐,现代分析测试方法[M].北京:石油工业出版社,2008.
    [125]胡海.泡沫金属负载纳米TiO2的制备、表征及其光催化性能的研究[D].上海:上海交通大学博士学位论文,2007.
    [126] Bera D, Kuiry S C, Sea S. Kinetics and Growth Mechanism ofElectrodeposited Palladium Nanocrystallites [J]. The Journal of PhysicalChemistry B,2004,108(02):556-562.
    [127] Bera D, Kuiry S C, Patil S, et al. Palladium Nanoparticle Arrays UsingTemplate-Assisted Electrodeposition [J]. Applied Physics Letters,2003,18(82):3089-3091.
    [128] Carrey J, Bouzehouane K, George J M, et al. Electrical Characterization ofNanocontacts Fabricated by Nanoindentation and Electrodeposition [J].Applied Physics Letters,2002,04(81):760-763.
    [129] Quayum M E, Ye S, Uosaki K. Mechanism for Nucleation and Growth ofElectrochemical Palladium Deposition on an Au(111) Electrode [J]. Journal ofElectroanalytical Chemistry,2002,01-02(520):126-132.
    [130] Mourato A, Wong S M, Siegenthaler H, et al. Polyaniline Films containingPalladium Microparticles for Electrocatalytic Purposes [J]. Journal of SolidState Electrochemistry,2006,10:140-147.
    [131] Shin E J, Spiller A, Tavoularis G, et al. Chlorine-nickel Interactions in GasPhase Catalytic Hydrodechlorination: Catalyst Deactivation and the Nature ofReactive Hydrogen [J]. Physical Chemistry Chemical Physics,1999,1(13):3173-3181
    [132] Shin E J, Keane M A. Detoxification of Dichlorophenols by CatalyticHydrodechlorination Using a Nickel/silica Catalyst [J]. Chemical EngineeringScience,1999,54:1109-1120.
    [133] Tsakova V. How to Affect Number, Size, and Location of Metal ParticlesDeposited in Conducting Polymer Layers [J]. Journal of Solid StateElectrochemistry,2008;12:1421-1434.
    [134] Pandey R K, Lakshminarayanan V. Electro-oxidation of Formic Acid,Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films inAcidic and Alkaline Medium [J]. The Journal of Physical Chemistry C,2009,113:21596-21603.
    [135] Nagashree K L, Ahmed M F. Electrocatalytic Oxidation of Methanol on NiModified Polyaniline Electrode in Alkaline Medium [J]. Journal of Solid StateElectrochemistry,2010,14:2307-2320.
    [136]任芳芳.导电高分子与贵金属复合物的电催化性能研究[D].江苏,苏州大学硕士学位论文,2012.
    [137]方惠群,李根喜,陈洪渊.低电流密度下恒电流法制备的聚苯胺修饰电极[J].高等学校化学学报,1994,3:348-351.
    [138] Hatchett D W, Josowicz M, Janata J. Acid Doping ofPolyaniline:Spectroscopic and Electrochemical Studies [J]. The Journal ofPhysical Chemistry B,1999,103:10992-10998.
    [139] Drelinkiewicz A, Hasik M, Choczynski M. Preparation and Properties ofPolyaniline containing Palladium [J]. Materials Research Bulletin,1998,05(33):739-762.
    [140] Rodriguez J, Grande H J, Cooper T F. Handbook of Organic ConductiveMolecules and Polymers [M]. John Wiley&Sons: New York,1997.
    [141] Yoon C O, Sung H K, Kim J H. The Effect of Low-Temperature Conditions onthe Electrochemical Polymerization of Polypyrrole Films with High Density,High Electrical Conductivity and High Stability [J]. Synthenic Metals,1999,99(3):201-212.
    [142] Bufon C C, Heinzel T, Espindola P. Influence of the Polymerization Potentialon the Transport Properties of Polypyrrole Films [J]. The Journal of PhysicalChemistry B,2010,114(2):714-718.
    [143] PatoisaT, Lakarda B, Martinb N, et al. Effect of Various Parameters on theConductivity of Free Standing Electrosynthesized Polypyrrole Films [J],Synthenic Metals,2010,160:2180-2185.
    [144] Patoisa T, Lakarda B, Monneya S, et al. Characterization of the SurfaceProperties of Polypyrrole Films: Influence of Electrodeposition Parameters [J].Synthenic Metals,2011,161:2498-2505.
    [145] Kaynak A, Rintoul L, George G A. Change of Mechanical and ElectricalProperties of Polypyrrole Films with Dopant Concentration and OxidativeAging, Materials Research Bulletin,2000,35:813-824.
    [146] Kassim A, Basar Z B, Mahmud H N M E. Effects of Preparation Temperatureon the Conductivity of Polypyrrole Conducting Polymer [J]. Journal ofChemical. Sciences,2002,114:155-162.
    [147] Singh R, Narula A K, Tandon R P, et al. Growth Kinetics of Polypyrrole, Poly(N-Methyl Pyrrole) and their Copolymer, Poly (N-Methyl Pyrrole-Pyrrole):Effect of Annealing on Conductivity and Surface Structure [J]. SynthenicMetals,1996,79:01-06.
    [148] Tian B, Zerbi G. Lattice Dynamics and Vibrational Spectra of Polypyrrole,Journal of Physical Chemistry,1990,92:3886-3891.
    [149] Tian B, Zerbi G. Lattice Dynamics and Vibrational Spectra of Pristine anddoped Polypyrrole: Effective Conjugation Coordinate, Journal of PhysicalChemistry,1990,92:3892-3898.
    [150] Menon V, Lei J, Martin C. Investigation of Molecular and SupermolecularStructure in Template-synthesized Polypyrrole Tubules and Fibrils, Chemistryof Materials,1996,8:2382-2390.
    [151] Ansari R. Polypyrrole Conducting Electroactive Polymers: Synthesis andStability Studies [J]. E-Journal of Chemistry,2006,03:186-201.
    [152] Khalkhali R A. Effect of Thermal Treatment on Electrical Conductivities ofPolypyrrole Conducting Polymers [J]. Iranian Polymer Journal,2004,13:53-61.
    [153] Atobe M, Tsuji H, Asami R, et al. A Study on Doping–undoping Properties ofPolypyrrole Films Electropolymerized under Ultrasonication [J]. Journal ofThe Electrochemical Society,2006,153:10-13.
    [154] Lee S, Sung H, Han S, et al. Polypyrrole Film Formation by Solution-surfaceElectropolymerization: Influence of Solvents and Doped Anions [J]. TheJournal of Physical Chemistry,1994,98:1250-1252.
    [155] Chmielewski M, Grzeszczuk M, Kalenik J, et al. Evaluation of the PotentialDependence of2D-3D Growth Rates and Structures of Polypyrrole Films inAqueous Solutions of Hexafluorates [J]. Journal of Electroanalytical Chemistry,2010,647:169-180.
    [156] Liang W, Lei J, Martin C R. Effect of Synthesis Temperature on the Structure,Doping Level and Charge-transport Properties of Polypyrrole [J]. SynthenicMetals,1992,52:227-239.
    [157] Kassim A, basar,Z B, Mahmud H N M E. Effects of Preparation Temperatureon the Conductivity of Polypyrrole Conducting Polymer [J]. Proceedings ofThe Indian Academy of Sciences-mathematical Sciences,2002,114:155-162.
    [158] Yang K H, Liu Y C, Yu C C. Temperature Effect of ElectrochemicallyRoughened Gold Substrates on Polymerization Electrocatalysis of Polypyrrole[J]. Analytica Chimica Acta,2009,631:40-46.
    [159] Salmon M, Diaz A F, Logan A J, et al. Chemical Modification of ConductingPolypyrrole Films [J]. Molecular Crystals and Liquid Crystals,1982,83:265-276.
    [160] Hakansson E, Lin T, Wang H X, et al. The Effects of Dye Dopants on theConductivity and Optical Absorption Properties of Polypyrrole [J]. SynthenicMetals,2006,156:1194-1202.
    [161] Lim V W L, Kang E T, Neoh K G. Electroless Plating of Palladium andCopper on Polypyrrole films [J]. Synthenic Metals,2001,123:107-115.
    [162] Chen G, Wang Z Y, Yang T, et al. Electrocatalytic Hydrogenation of4-chlorophenol on the Glassy Carbon Electrode Modified by CompositePolypyrrole/Palladium Film [J]. The Journal of Physical Chemistry B,2006,110(10):4863-4868.
    [163] Evangelisti C, Panziera N, Pertici P, et al. Palladium Nanoparticles Supportedon Polyvinylpyridine:Catalytic Activity in Heck-type Reactions and XPSStructural Studies [J]. Journal of Catalysis,2009,262:287.
    [164] Seo M H, Lim E J, Choi S M, et al. Synthesis, Characterization, andElectrocatalytic Properties of a Polypyrrole-composited Pd/C Catalyst [J].International Journal of Hydrogen Energy,2011,36:11545.
    [165] Malinauskas A. Electrocatalysis at Conducting Polymers [J]. SynthenicMetals,1999,107:75-83.
    [166] Delvalle M A, Diaz F R, Bodini M E, et al. Polythiophene, Polyaniline andPolypyrrole Electrodes Modified by Electrodeposition of Pt and Pt+Pb forFormic Acid Electrooxidation [J]. Journal of Applied. Electrochemistry,1998:28:943-946.
    [167] Wallace G G, Conductive Electroactive Polymers [J]. Journal of IntelligentMaterial Systems and Structures.2003,http://www.amazon.com/Conductive-Electroactive-Polymers-Intelligent-Polymer/dp/1420067095.
    [168] Raudsepp T. Influence of Dopant Anions on the Electrochemical Properties ofPolypyrrole Films [D]. University of Tartu,2010,10-16.
    [169] Vork F T A, Barendrecht E. The Reduction of Dioxygen atPolypyrrole-modified Electrodes with Incorporated Pt Particles [J].Electrochimica. Acta,1990,35:135-139.
    [170] Hepel M, Seymour E, Yogev D, et al. Electrochemical Quartz CrystalMicrobalance Monitoring of Cadmium Sulfide Generation in Polypyrrole andPolypyrrole-poly (styrenesulfonate) Thin Films [J]. Chemistry of Materials,1992,04:209-213.
    [171] Partridge A C, Milestonea C B, Toob C O, et al. Polypyrrole Based CationTransport Membranes. Journal of Membrane Science,1999,152:61-70.
    [172] Bufon C C B, Vollmer J, Heinzel T, et al. Relationship between Chain Length,Disorder, and Resistivity in Polypyrrole Films [J]. The Journal of PhysicalChemistry B,2005,109:19191-19199.
    [173] Han J, Deming R L, Tao F M. Theoretical Study of Molecular Structures andProperties of the Complete Series of Chlorophenols [J]. The Journal ofPhysical Chemistry A,2004,108:7736.
    [174] Wei J J, Xu X H, Liu Y, et al. Catalytic Hydrodechlorination Of2,4-Dichlorophenol over Nanoscale Pd/Fe: Reaction Pathway and SomeExperimental Parameters[J]. Water Research,2006,40:348-354.
    [175] Yang B, Yu G, Huang J. Electrocatalytic Hydrodechlorination of2,4,5-trichlorobiphenyl on a Palladium-modified Nickel Foam Cathode [J].Environment Science and Technology,2007,41:7503-7508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700