用户名: 密码: 验证码:
金属有机框架(MOF)化合物的合成及催化水介质清洁有机反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化学是资源与环境可持续发展的必然选择。绿色化学从节约资源和防止污染的角度出发,用创新的化学化工技术改革传统化学过程,从源头上避免污染,实现经济发展和环境保护的双重目标。化学工业的大多数过程都离不开催化剂,新型催化剂能增加反应活性和选择性,从而减少能耗和废物的排放。因此,催化过程是实现绿色化学的核心。有机化学反应通常需要有机溶剂作为介质,其挥发和排放是当前工业污染的主要原因之一。用无毒无害的水代替有机溶剂作为反应介质,实现清洁有机合成,是绿色化学的重要组成部分。目前的研究主要集中在均相催化剂,其缺点是分离困难,难以重复使用。非均相催化剂能够有效克服上述缺陷,但一般情况下其催化活性和选择性较差。
     金属有机框架化合物(MOF)是由金属离子或簇作为结点、多官能团的有机配体作为连接剂构成的新型的功能材料。其可控的拓扑学和几何学骨架及可调的孔功能化使其在催化、气体存储、化学分离、传感、药物传输和光捕获等多个领域显示出巨大的应用前景。MOF具有确定的晶体结构,无限延伸的网络骨架,金属离子作为中心离子位于网络结构的节点上,微孔尺寸和拓扑学结构随着配体的修饰或调变而改变。这些特征使其具有潜在的催化应用。设计和合成用于催化的MOF材料的关键是将催化活性位植入到MOF的微孔骨架中。MOF结构中植入催化活性位的方法包括:(1)直接合成法是在合成中直接采用具有潜在催化活性的官能化的有机配体和活性金属离子。(2)后合成修饰法:在MOF形成之后,通过一系列的化学转化将活性基团共价修饰到其有机骨架上或配位嫁接到未饱和的金属位上。
     本论文研究新型金属有机框架化合物(MOF)的设计、合成、结构表征及其在水介质清洁有机合成中的催化性能研究,为开辟清洁化工生产新途径提供理论依据和实验积累。通过直接合成和后合成修饰法,分别将多种催化活性组份植入到各种晶体结构的MOF骨架中;系统地研究所制备的新型MOF非均相催化剂在环境友好型有机反应体系中的催化性能并与传统负载型非均相催化剂以及商品化均相催化剂相比较;开发多功能MOF非均相催化剂,成功地实现多步有机反应“一锅”完成,既节约了能源又提高了合成效率;从晶体结构出发,系统研究新型MOF非均相催化剂中活性位的微化学环境包括孔径、与活性位相关的化学键的性质等因素对催化活性及选择性的影响;研究催化剂的回收和套用,探索催化剂失活机理。论文主要包括以下四部分:
     1.在微波加热条件下,将Pd2+和Y3+无机盐与2,2’-联吡啶-5,5’-二甲酸(bpydc)反应,合成了新型Pd/Y双金属MOF (Pd/Y-MOF)。通过XRD Rietveld精修、FT-IR、TG-DTA、XPS等表征,显示Pd/Y-MOF具有3D空间延伸的结晶框架结构,该框架由片形的Pd(bpydc)Cl2建筑单元组成,这些片形单元通过稀土金属Y3+与2,2’-联吡啶-5,5’-二甲酸的羧基O配位连接成层型的三维框架。由于Pd2+和Y3+的协同作用,Pd/Y-MOF在Suzuki-Miyaura和Sonogashira偶联反应中,表现出比Pd(bpydc)Cl2更高的催化活性。热过滤、三相测试、固相毒化测试、XPS分析证明了Pd/Y-MOF在Suzuki-Miyaura和Sonogashira偶联反应中的非均相催化机理。由于Pd2+活性中心位于MOF的微孔孔道中和微孔的扩散限制,Pd/Y-MOF表现出有趣的对底物分子尺寸的选择性,对于较低扩散限制的较小的底物分子,Pd/Y-MOF的催化活性与均相的Pd(OAc)2催化剂相当。而对于具有较大分子尺寸的4-叔丁基碘苯和4-碘代萘,由于无法扩散进入孔道,Pd/Y-MOF显示出极低的催化活性。同时,Pd/Y-MOF非均相催化剂易于回收并循环套用,一方面归因于其较高的热稳定性,另一方面,Y3+配位连接的MOF骨架对Pd2+的稳定作用,有效地抑制Pd2+活性位的流失。
     2.在微波加热条件下,将稀土Tb的硝酸盐与2-胺基对苯二甲酸反应,合成了胺基功能化的稀土MOF材料NH2-Tb-MOF,并用X射线单晶衍射确定了其晶体结构。作为碱催化剂,NH2-Tb-MOF在Knoevenagel和Henry缩合反应中显示出较高的活性和对缩合产物100%的选择性,由于胺基定向地分布于MOF的微孔中,且由于微孔限域效应,对小分子底物具有更好的反应活性。
     3.水热条件下,ZrCl4与2,2’-联吡啶-5,5’-二甲酸(dipydc)配位聚合形成Zr基金属-有机框架化合物(Zr-MOF)。将HAuCl4乙醇溶液引入Zr-MOF中,Au3+离子被原位还原,得到Au/Zr-MOF材料,由于其高度分散的Au纳米粒子(1.3nm)以及大比面积和微孔结构,有利于反应物的扩散和吸附,Au/Zr-MOF在水介质的A3-偶联反应中显示出较高的活性。该催化剂便于回收并可重复使用5次以上,归因于MOF结构优良的水热稳定性以及吡啶环上的N原子对Au纳米颗粒的锚定作用,能够有效抑制Au活性位的流失和团聚。
     4.由三价金属离子(Cr3+,Fe3+和Al3+)和对苯二甲酸配体形成的MIL系列配位聚合物是已知具有稳定结构以及介孔结构和大比表面积的MOF材料。通过微波合成法,简便地得到纯相的胺基功能化的NH2-MIL-101(Al)。用水杨醛对有机配体上的胺基进行后合成修饰,在NH2-MIL-101(Al)的骨架中形成相应的亚胺化合物,并进一步在其微孔中植入了CuCl-希夫碱化合物,由于活性位高度分散以及存在微孔结构,NH2-MIL-101(Al)-Schiff-CuCl该催化剂在A3-偶联反应中表现出高的活性,并具有底物适应性宽,催化剂可多次重复套用的优势。
Green chemistry is the inevitable trend for sustainable development of resourceand environment. To save resource and prevent pollution, green chemistry appliesinnovative chemical technology to change the traditional process of chemistry,promoting both the economical development and environmental protection. Mostprocesses in chemical industry are dependent on catalysts. Novel catalyst canenhance both the activity and the selectivity of chemistry reaction, leading to thereduced energy consumption and waste discharge. Therefore, catalysis is the coredomain of green chemistry. Most organic reactions are performed by using organicsolvents as reaction media. The volatilization and discharge of organic solventsconstitute the main sources of industrial pollution. Development of new organicreactions by using safe and clean water instead of organic solvents as reaction mediais one of the most important branches of green chemistry. To date, most studies arefocused on the homogeneous catalysis due to the dissolubility of organic compoundsin aqueous solution, which usually displays disadvantages in separation and reuse ofthe catalyst. Heterogeneous catalysts can solve the problem, but they commonlyexhibit poor activity and the selectivity in comparison with the correspondinghomogeneous catalysts.
     Metal-organic frameworks (MOFs) represent a new class of functional materialsformed by metal ions or clusters as nodes and polyfunctional organic ligands aslinkers. The controllable topology and geometry of framework and the tunable porefunctionality predict their versatile promising applications in catalysis, gas storage,chemical separations, sensors, drug delivery and light harvesting etc. MOFs arecharacterized by the defined crystal structure, the extended framework, metal ionsas nodes of the networks, and the ability to modulate the sizes of the micropores andthe topology by changing and modifying the organic ligand, which may make MOFsparticularly suitable for heterogeneous catalysts. The key to design and synthesizeMOFs-based catalysts is the incorporation of active sites into the frameworks. Twomethods are mainly employed.(1) Direct incorporation. The MOFs-based catalysts are directly synthesized by combining organic ligands with the active sites.(2) Postsynthesis modification. After the formation of MOFs, the active groups are modifiedinto the organic frameworks by covalent bond or coordinately grafted into theunsaturated metal sites.
     The paper involves design, preparation and characterization of novelMOFs-based materials with the aim to supplying powerful heterogeneous catalystsfor water-medium organic reactions. Through direct incorporation and postsynthesis modification, various active species are incorporated into the frameworksof MOFs with different crystal structure. By using different water-medium organicreactions as probes, their catalytic performances are carefully investigated andcompared with the heterogeneous catalysts prepared by traditional routes and thecommercial homogeneous catalysts. Meanwhile, MOFs-based multifunctionalcatalysts are synthesized and used in one-pot cascade reactions. Based on the crystalstructures of MOF, the influence of chemical microenvironment of active sitesincluding the micropore size, the chemical bond on the catalytic activity andselectivity are examined and discussed. In addition, the catalyst durability is alsodetermined and the reason of deactivation has been explored. This work includes thefollowing four parts:
     1. A novel Pd/Y heterobimetallic MOF (Pd/Y-MOF) catalyst is synthesized bycoordination of Pd2+and Y3+with2,2’-bipyridine-5,5’-dicarboxylate acid (bpydc)under microwave irradiation conditions. The crystal structure and other structuralcharacteristics are examined by XRD Rietveld refinement, FTIR, Raman, TG-DTA, XPSetc. It is found that the3D extended framework is constructed by linkingPd(bpydc)Cl2building blocks via Y3+coordinating to carboxylic groups. ThisPd/Y-MOF exhibits higher catalytic activity than Pd(bpydc)Cl2in water-mediumSuzuki-Miyaura coupling and Sonogashira coupling reactions owing to thecooperative effect between Pd2+and Y3+. The heterogeneity studies provide amechanistic evidence of the reaction proceeds on the surface of Pd2+ions in thecrystal framework. Thus, the Pd/Y-MOF exhibits remarkable size selectivity towardssubstrates. By using small-sized reactants in Suzuki-Miyaura coupling reaction, it displays comparable activities with the corresponding Pd(OAc)2homogeneouscatalyst. However, extremely poor activity is observed when bulk substrates1-iodonaphthalene and4-(tert-butyl) iodobenzene was used, which could beattributed to the inhibition of diffusion into the micropore channels taking intoaccount that the active sites are mainly incorporated in the pore channels ratherthan on the outer surface. Besides the high activity, the Pd/Y-MOF can be easilyrecycled and reused. The stabilizing coordination of Y3+with carboxylic group resultsin the high thermal stability of MOF framework. Meanwhile, the incorporation ofPd2+into the MOF framework could effectively prohibit Pd2+active species fromleaching.
     2. A facile approach has been developed to synthesize amine-functionalizedlanthanide MOF via the reaction between terbium and2-aminoterephthalic acidunder microwave conditions. The crystal structure is determined by XRD. Theas-prepared NH2-Tb-MOF is used as a basic catalyst in water-medium Knoevenagelcondensation and Henry reactions, which exhibits high activity and100%selectivityto the condensation product. Meanwhile, it can be easily recovered and reused.Moreover, we also find that the small-sized reactants favor while the bulk reactantssuppress the activity of NH2-Tb-MOF catalyst owing to the diffusion limit inmicroporous channels, which confirms that the amino groups are incorporated intomicropore channels rather than on the outer surface.
     3. One of the Uio series of Zr-based metal–organic framework (Zr-MOF) issynthesized by coordinated polymerization between ZrCl4and2,2’-bipyridine-5,5’-dicarboxylate acid under hydrothermal conditions. The Zr-MOF is used as supportsfor depositing Au nanoparticles. During the impregnation of Zr-MOF with HAuCl4ethanol solution, the Au/Zr-MOF is prepared by in situ reduction of Au3+into tiny Aunanoparticles (1.5nm). This catalyst exhibits high activity in various water-mediumA3-coupling reactions owing to the uniform dispersion of Au nanoparticles and themicroporous structure which facilitates the diffusion and adsorption of reactantmolecules. Moreover, the catalyst can be easily recycled and reused for at least5times without significant decrease in activity, which could be attributed to the excellent hydrothermal stability of the MOF structure. The strong interaction of Aunanoparticles with the MOF support inhibits the Au leaching.
     4. MIL series of materials formed by trivalent metal ions (Cr3+,Fe3+and Al3+)and1,4-benzenedicarboxylic acid are known MOFs with stable structure, giant poresand high surface area. Under microwave conditions, the NH2-MIL-101(Al) in purephase has been facilely synthesized via reaction between aluminum salt and organicligand containing amine functional groups. Then, after the amino group of theorganic ligand2-aminoterephthalate ligands is covalently modified withsalicylaldehyde to form the corresponding imine, NH2-MIL-101(Al)-Schiff, CuCl isfurther incorporated. With Cu-Schiff base complex lining on the pore walls, theNH2-MIL-101(Al)-Schiff-CuCl displayed high activity and selectivity in A3-couplingreactions of a wide range of reactants in water-medium, similar to the homogeneouscatalyst. More importantly, it could be easily recycled and used repetitively.
引文
[1] Khan, N.; Saleem, Z.; Wahid, A. Review of Natural Energy Sources and GlobalPower Needs. Renew. Sus. Energ. Rev.2008,12,,1959-1973.
    [2] Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Green Chem.:Science and Politics of Change. Science2002,297,807-810.
    [3] Clark, J. H. Green Chem.: Challenges and Opportunities. Green. Chem.1999,1,1-8.
    [4] Rubio, V.; Valverde, M.; Rojas, E. Effects of Atmospheric Pollutants on theSurvival Pathway. Environ. Sci.&Pollut. Res.2010,17,369-382.
    [5] Heathwaite, A. L. Multiple Stressors on Water Availability at Global to CatchmentScales: Understanding Human Impact on Nutrient Cycles to Protect Water Qualityand Water Availability in the Long Term. Freshwater Biol.2010,55,241-257.
    [6]张光寅.能源危机与对策.科学中国人2003,08,24-25.
    [7] Matlack, A. S., Introduction to Green Chemsitry, CRC Press, Talyor and Francis,2012.
    [8] Doble, M.; Kruthiventi, A. K., Green Chemistry and Processes/绿色化学与工程,北京:科学出版社,2009.
    [9] Poliakoff, M.; Licence, P. Sustainable Technology: Green Chemistry. Nature2007,450,810-812.
    [10]麻生明,1999年科学发展报告,科学出版社,北京,1999.
    [11]张钟宪,环境与绿色化学,科学出版社,北京,2005.
    [12] Paul, T. A. Green Chem.: Theory and Practice, Oxford Science Publications,London,2000.
    [13]李德华,绿色化学化工导论,科学出版社,北京,2006,12.
    [14]宋晓岚;詹益兴,绿色化工技术与产品开发,1Ed.,化学工业出版社,北京,2005,4.
    [15]王延吉;赵新强,绿色催化过程与工艺,化学工艺出版社,北京,2002,2.
    [16] Rowsell, J. L. C.; Yaghi, O. M. Metal–Organic Frameworks: A New Class ofPorous Materials. Micropor. Mesopor. Mater.2004,73,3-14.
    [17] Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives, VCHVerlagsgesellschaft Mbh, Weinheim,1995.
    [18] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.;Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large PoreVolumes and Surface Area. Science2005,309,2040-2042.
    [19] Farrusseng, D., Metal-Organic Frameworks: Applications from Catalysis to GasStorage, Wiley-VCH Verlag Gmbh&Co. Kgaa,2011,07.
    [20] Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routesto Various MOF Topologies, Morphologies, and Composites. Chem. Rev.2012,112,933-969.
    [21] Ni, T.; Xing, F.; Shao, M.; Zhao, Y.; Zhu, S.; Li, M. Coordination Polymers of1,3,5-Tris(Triazol-1-Ylmethyl)-2,4,6-Trimethylbenzene: Synthesis, Structure,Reversible Hydration, Encapsulation, and Catalysis Oxidation ofDiphenylcarbonohydrazide. Cryst. Growth Des.2011,11,2999-3012.
    [22] Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Design andPreparation of Porous Polymers. Chem. Rev.2012,112,3959-4015.
    [23] Hayashi, H.; Cote, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Zeolite AImidazolate Frameworks. Nat. Mater.2007,6,501-506.
    [24] Zhang, J.; Wu, T.; Zhou, C.; Chen, S.; Feng, P.; Bu, X. Zeolitic BoronImidazolate Frameworks. Angew. Chem., Int. Ed.2009,48,2542-2545.
    [25] Tian, Y.-Q.; Zhao, Y.-M.; Chen, Z.-X.; Zhang, G.-N.; Weng, L.-H.; Zhao, D.-Y.Design and Generation of Extended Zeolitic Metal–Organic Frameworks (ZMOFs):Synthesis and Crystal Structures of Zinc(II) Imidazolate Polymers with ZeoliticTopologies. Chem.—Eur. J..2007,13,4146-4154.
    [26] Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Ligand-Directed Strategy forZeolite-Type Metal–Organic Frameworks: Zinc (II) Imidazolates with UnusualZeolitic Topologies. Angew. Chem., Int. Ed.2006,45,1557-1559.
    [27] Zhang, J.-P.; Chen, X.-M. Crystal Engineering of Binary Metal Imidazolate andTriazolate Frameworks. Chem. Commun.2006,16,1689-1699.
    [28] Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Establishing Microporosity inOpen Metal Organic Frameworks: Gas Sorption Isotherms for Zn(BDC)(BDC=1,4-Benzenedicarboxylate). J. Am. Chem. Soc.1998,120,8571-8572.
    [29] Eddaoudi, M.; Li, H.; Yaghi, O. M. Highly Porous and Stable Metal OrganicFrameworks: Structure Design and Sorption Properties. J. Am. Chem. Soc.2000,122,1391-1397.
    [30] Li, H.; Davis, C. E.; Groy, T. L.; Kelley, D. G.; Yaghi, O. M. CoordinativelyUnsaturated Metal Centers in the Extended Porous Framework ofZn3(BDC)3·6CH3OH (BDC=1,4-Benzenedicarboxylate). J. Am. Chem. Soc.1998,120,2186-2187.
    [31] Ravon, U.; Domine, M. E.; Gaudillère, C.; Desmartin-Chomel, A.; Farrusseng, D.MOFs as Acid Catalysts with Shape Selectivity Properties. Chem. Soc. Rev.2008,32,937.
    [32] Ishida, S.; Hayano, T.; Furuno, H.; Inanaga, J. Hetero-Diels-Alder ReactionCatalyzed by Self-organized Polymeric Rare Earth Complexes Under Solvent-FreeConditions. Heterocycles2005,66,645-649.
    [33] Eddaoudi, M.; Li, H.; Yaghi, O. M. Highly Porous and Stable Metal-OrganicFrameworks: Structure Design and Sorption Properties. J. Am. Chem. Soc.2000,122,1391-1397.
    [34] Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. AChemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science1999,283,1148-1150.
    [35] Estermann, M.; Mccusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. ASynthetic Gallophosphate Molecular Sieve with a20-Tetrahedral-Atom Pore Opening.Nature1991,352,320-323.
    [36] Strohmaier, K. G.; Vaughan, D. E. W. Structure of the First Silicate MolecularSieve with18-Ring Pore Openings, ECR-34. J. Am. Chem. Soc.2003,125,16035-16039.
    [37] Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, T. L. M.; Buglass, J. G.Delaminated Zeolite Precursors as Selective Acidic Catalysts. Nature1998,396,353-356.
    [38] Corma, A.; Diaz-Cabanas, M. J.; Jorda, J. L.; Martinez, C.; Moliner, M.High-Throughput Synthesis and Catalytic Properties of A Molecular Sieve with18-and10-Member Rings. Nature2006,443,842-845.
    [39] Corma, A. State of the Art and Future Challenges of Zeolites as Catalysts. J.Catal.2003,216,298-312.
    [40] K. Cheetham, A.; Gerard Férey; Loiseau, T. Open-Framework InorganicMaterials. Angew. Chem., Int. Ed.1999,38,3268-3292.
    [41] Bu ar, D.-K.; Papaefstathiou, G. S.; Hamilton, T. D.; Chu, Q. L.; Georgiev, I. G.;Macgillivray, L. R. Template-Controlled Reactivity in the Organic Solid State byPrinciples of Coordination-Driven Self-assembly. Eur. J. Inorg. Chem.2007,2007,4559-4568.
    [42] Dinca, M.; Long, J. R. Hydrogen Storage in Microporous Metal-OrganicFrameworks with Exposed Metal Sites. Angew. Chem., Int. Ed.2008,47,6766-6779.
    [43] Llabrés i Xamena, F. X.; Abad, A.; Corma, A.; Garcia, H. MOFs as Catalysts:Activity, Reusability and Shape-Selectivity of A Pd-Containing MOF. J. Catal.2007,250,294-298.
    [44] Llabrés i Xamena, F. X.; Corma, A.; Garcia, H. Applications for Metal OrganicFrameworks (MOFs) as Quantum Dot Semiconductors. J. Phys.Chem. C2006,111,80-85.
    [45] Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos,D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal–OrganicFramework [Cu3(Btc)2](BTC=Benzene-1,3,5-Tricarboxylate). Chem.—Eur. J.2006,12,7353-7363.
    [46] Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.;Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Local Structure ofFramework Cu(II) in HKUST-1Metallorganic Framework: SpectroscopicCharacterization Upon Activation and Interaction with Adsorbates. Chem. Mater.2006,18,1337-1346.
    [47] Dincǎ, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R.Hydrogen Storage in A Microporous Metal Organic Framework with Exposed Mn2+Coordination Sites. J. Am. Chem. Soc.2006,128,16876-16883.
    [48] Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. HighH2Adsorption in A Microporous Metal-Organic Framework with Open Metal Sites.Angew. Chem., Int. Ed.2005,44,4745-4749.
    [49] Djakovitch, L.; K hler, K.; Vries, J. G. D. the Role of Palladium Nanoparticles asCatalysts for Carbon–Carbon Coupling Reactions, in: Nanoparticles and Catalysis:Wiley-VCH Verlag Gmbh&Co. Kgaa,2007, pp.303-348.
    [50] Duren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Design of New Materials forMethane Storage. Langmuir2004,20,2683-2689.
    [51] Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvág, H. HydrogenAdsorption in A Nickel Based Coordination Polymer with Open Metal Sites in theCylindrical Cavities of the Desolvated Framework. Chem. Commun.,2006,959-961.
    [52] Schlichte, K.; Kratzke, T.; Kaskel, S. Improved Synthesis, Thermal Stability andCatalytic Properties of the Metal-Organic Framework Compound Cu3(BTC)2.Micropor. Mesopor. Mater.2004,73,81-88.
    [53] Xiao, B.; Wheatley, P. S.; Zhao, X.; Fletcher, A. J.; Fox, S.; Rossi, A. G.; Megson,I. L.; Bordiga, S.; Regli, L.; Thomas, K. M.; Morris, R. E. High-Capacity Hydrogenand Nitric Oxide Adsorption and Storage in A Metal Organic Framework. J. Am.Chem. Soc.2007,129,1203-1209.
    [54] Noro, S.-I.; Kitagawa, S.; Yamashita, M.; Wada, T. New MicroporousCoordination Polymer Affording Guest-Coordination Sites at Channel Walls Chem.Commun.2002,222-223.
    [55] Kitagawa, S.; Noro, S.-I.; Nakamura, T. Pore Surface Engineering ofMicroporous Coordination Polymers. Chem. Commun.2006,701-707.
    [56] Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro, S.-I.; Kitagawa, S.Immobilization of A Metallo Schiff Base Into A Microporous Coordination Polymer.Angew. Chem., Int. Ed.2004,43,2684-2687.
    [57] Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. A Homochiral Porous Metal OrganicFramework for Highly Enantioselective Heterogeneous asymmetric Catalysis. J. Am.Chem. Soc.2005,127,8940-8941.
    [58] Llabresixamena, F.; Casanova, O.; Galiassotailleur, R.; Garcia, H.; Corma, A.Metal Organic Frameworks (MOFs) as Catalysts: A Combination of Cu2+and Co2+MOFs as An Efficient Catalyst for Tetralin Oxidation. J. Catal.2008,255,220-227.
    [59] Navarro, J. A. R.; Barea, E.; Salas, J. M.; Masciocchi, N.; Galli, S.; Sironi, A.;Ania, C. O.; Parra, J. B. H2, N2, CO, and CO2Sorption Properties of A Series ofRobust Sodalite-Type Microporous Coordination Polymers. Inorg. Chem.2006,45,2397-2399.
    [60] Tabares, L. C.; Navarro, J. A. R.; Salas, J. M. Cooperative Guest Inclusion by AZeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amineand Group1Metal Salts. J. Am. Chem. Soc.2000,123,383-387.
    [61] S.Park, K.; Z. Ni; P. C té, A.; Y. Choi, J.; R. Huang; F. J. Uribe-Romo; K.Chae,H.; M. O'Keeffe; Yaghi, O. M. Exceptional Chemical and Thermal Stability ofZeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci.2006,103,10186-10191.
    [62] Louis, B.; Detoni, C.; Carvalho, N. M. F.; Duarte, C. D.; Antunes, O. A. C. Cu(II)Bipyridine and Phenanthroline Complexes: Tailor-Made Catalysts for the SelectiveOxidation of Tetralin. Appl. Catal., A: General2009,360,218-225
    [63] Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal-OrganicFrameworks. Chem. Soc. Rev.2009,38,1315-1329.
    [64] Wang, Z.; Cohen, S. M. Tandem Modification of Metal–Organic Frameworks byAPostsynthetic Approach. Angew. Chem., Int. Ed.2008,47,4699-4702.
    [65] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and TheirApplication in Methane Storage. Science2002,295,469-472.
    [66] Wang, Z.; Cohen, S. M. Postsynthetic Covalent Modification of A NeutralMetal Organic Framework. J. Am. Chem. Soc.2007,129,12368-12369.
    [67] Tanabe, K. K.; Wang, Z.; Cohen, S. M. Systematic Functionalization of AMetal Organic Framework Via APostsynthetic Modification Approach. J. Am. Chem.Soc.2008,130,8508-8517.
    [68] Dugan, E.; Wang, Z.; Okamura, M.; Medina, A.; Cohen, S. M. CovalentModification of A Metal-Organic Framework with Isocyanates: Probing SubstrateScope and Reactivity. Chem. Commun.2008,0,3366-3368.
    [69] Costa, J. S.; Gamez, P.; Black, C. A.; Roubeau, O.; Teat, S. J.; Reedijk, J.Chemical Modification of A Bridging Ligand Inside A Metal–Organic FrameworkWhile Maintaining the3D Structure. Eur. J. Inorg. Chem.2008,2008,1551-1554.
    [70] Goto, Y.; Sato, H.; Shinkai, S.; Sada, K.“Clickable” Metal Organic Framework.J. Am. Chem. Soc.2008,130,14354-14355.
    [71] Ingleson, M. J.; Barrio, J. P.; Bacsa, J.; Dickinson, C.; Park, H.; Rosseinsky, M. J.Generation of A Solid Bronsted Acid Site in A Chiral Framework. Chem. Commun.2008,1287-1289.
    [72] Ingleson, M. J.; Barrio, J. P.; Guilbaud, J.-B.; Khimyak, Y. Z.; Rosseinsky, M. J.Framework Functionalisation Triggers Metal Complex Binding. Chem. Commun.,2008,2680-2682.
    [73] Zhang, X.; Llabrés i Xamena, F. X.; Corma, A. Gold(III)–Metal OrganicFramework Bridges the Gap Between Homogeneous and Heterogeneous GoldCatalysts. J. Catal.2009,265,155-160.
    [74] Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.;Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine Grafting on CoordinativelyUnsaturated Metal Centers of MOFs: Consequences for Catalysis and MetalEncapsulation. Angew. Chem., Int. Ed.2008,47,4144-4148.
    [75] Efraty, A.; Feinstein, I. Catalytic Hydrogenation and Isomerization of1-Hexenewith [RhCl(CO)(1,4-(CN)2C6H4)]nin the Dark and Under Irradiation. Inorg. Chem.1982,21,3115-3118.
    [76] Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, Clathration Ability,and Catalysis of A Two-Dimensional Square Network Material Composed ofCadmium(II) and4,4'-Bipyridine. J. Am. Chem. Soc.1994,116,1151-1152.
    [77] Ohmori, O.; Fujita, M. Heterogeneous Catalysis of A Coordination Network:Cyanosilylation of Imines Catalyzed by A Cd(II)-(4,4′-Bipyridine) Square GridComplex. Chem. Commun.2004,1586-1587.
    [78] Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M.Secondary Building Units, Nets and Bonding in the Chemistry of Metal-OrganicFrameworks. Chem. Soc. Rev.2009,38,1257-1283.
    [79] Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. AHomochiral Metal-Organic Porous Material for Enantioselective Separation andCatalysis. Nature2000,404,982-986.
    [80] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and Synthesis of AnExceptionally Stable and Highly Porous Metal-Organic Framework. Nature1999,402,276-279.
    [81] Horike, S.; Dincǎ, M.; Tamaki, K.; Long, J. R. Size-Selective Lewis AcidCatalysis in A Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. J. Am. Chem. Soc.2008,130,5854-5855.
    [82] Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Catalytic Properties ofMIL-101. Chem. Commun.2008,4192-4194.
    [83] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.;Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large PoreVolumes and Surface Area. Science2005,309,2040-2042.
    [84] Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero,C.; Snejko, N. In2(OH)3(BDC)1.5(BDC=1,4-Benzendicarboxylate): An in(III)Supramolecular3D Framework with Catalytic Activity. Inorg. Chem.2002,41,2429-2432.
    [85] Chang, J.-S.; Hwang, J.-S.; Jhung, S. H.; Park, S.-E.; Férey, G.; Cheetham, A. K.Nanoporous Metal-Containing Nickel Phosphates: A Class of Shape-SelectiveCatalyst. Angew. Chem., Int. Ed.2004,43,2819-2822.
    [86] Suslick, K. S.; Bhyrappa, P.; Chou, J. H.; Kosal, M. E.; Nakagaki, S.; Smithenry,D. W.; Wilson, S. R. Microporous Porphyrin Solids. Acc. Chem. Res.2005,38,283-291.
    [87] Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. A.Metal-Organic Framework Material That Functions as An Enantioselective Catalystfor Olefin Epoxidation. Chem. Commun.2006,0,2563-2565.
    [88] Baleiz o, C.; Garcia, H. Chiral Salen Complexes: An over view to Recoverableand Reusable Homogeneous and Heterogeneous Catalysts. Chem. Rev.2006,106,3987-4043.
    [89] J. Sabater, M.; Corma, A.; Domenech, A.; Fornes, V.; Garcia, H. Chiral SalenManganese Complex Encapsulated Within Zeolite Y: A HeterogeneousEnantioselective Catalyst for the Epoxidation of Alkenes. Chem. Commun.1997,1285-1286.
    [90] Kato, C.; Hasegawa, M.; Sato, T.; Yoshizawa, A.; Inoue, T.; Mori, W.Microporous Dinuclear Copper(II) Trans-1,4-Cyclohexanedicarboxylate:Heterogeneous Oxidation Catalysis with Hydrogen Peroxide and X-Ray PowderStructure of Peroxo Copper (II) Intermediate. J. Catal.2005,230,226-236.
    [91] Abad, A.; Concepción, P.; Corma, A.; García, H. ACollaborative Effect BetweenGold and A Support Induces the Selective Oxidation of Alcohols. Angew. Chem., Int.Ed.2005,44,4066-4069.
    [92] Abad, A.; Almela, C.; Corma, A.; Garcia, H. Unique Gold Chemoselectivity fortheAerobic Oxidation ofAllylic Alcohols. Chem. Commun.2006,3178-3180.
    [93] Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.;Grenèche, J.-M.; Margiolaki, I.; Férey, G. Synthesis and Catalytic Properties ofMIL-100(Fe), An Iron (III) Carboxylate with Large Pores. Chem. Commun.,2007,2820-2822.
    [94] Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.;Margiolaki, I. A Hybrid Solid with Giant Pores Prepared by A Combination ofTargeted Chemistry, Simulation, and Powder Diffraction. Angew. Chem., Int. Ed.2004,43,6296-6301.
    [95] Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M. Control ofVertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in theReticular Synthesis of Crystalline Metal Organic Frameworks and Polyhedra. J. Am.Chem. Soc.2008,130,11650-11661.
    [96] Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M.Porous Metal Organic Polyhedra:25Cuboctahedron Constructed from12Cu2(CO2)4Paddle-Wheel Building Blocks. J. Am. Chem. Soc.2001,123,4368-4369.
    [97] Surble, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Férey, G. A NewIsoreticular Class of Metal-Organic-Frameworks with the MIL-88Topology. Chem.Commun.2006,0,284-286.
    [98] Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; C té, A. P.; Kim, J.; Yaghi, O. M.Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Propertiesof Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra. J. Am. Chem.Soc.2005,127,7110-7118.
    [99] Farrusseng, D.; Aguado, S.; Pinel, C. Metal–Organic Frameworks: Opportunitiesfor Catalysis. Angew. Chem., Int. Ed.2009,48,7502-7513.
    [100] Jr., T. F. D. the Implications of the Fundamentals of Shape Selectivity for theDevelopment of Catalysts for the Petroleum and Petrochemical Industries. J. Catal.2003,216,32-46.
    [101] Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.;Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. HighlyControlled Acetylene Accommodation in A Metal-Organic Microporous Material.Nature2005,436,238-241.
    [102] Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S.Nanochannel-Promoted Polymerization of Substituted Acetylenes in PorousCoordination Polymers. Angew. Chem., Int. Ed.2006,45,4112-4116.
    [103] Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita,Y.; Kitagawa, S. Three-Dimensional Porous Coordination Polymer Functionalizedwith Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. J.Am. Chem. Soc.2007,129,2607-2614.
    [104] Corma, A.; Fornés, V.; Martín-Aranda, R. M.; H. García, J. P. Zeolites as BaseCatalysts: Condensation of Aldehydes with Derivatives of Malonic Esters. Appl. Catal.1990,59,237-248.
    [105] Corma, A.; Fornés, V.; R.M. Martín-Aranda, F. R. Determination of BaseProperties of Hydrotalcites: Condensation of Benzaldehyde with Ethyl Acetoacetate. J.Catal.1992,134,58-65.
    [106] Gascon, J.; Aktay, U.; Hernandezalonso, M.; Vanklink, G.; Kapteijn, F.Amino-Based Metal-Organic Frameworks as Stable, Highly Active Basic Catalysts. J.Catal.2009,261,75-87.
    [107] Arstad, B.; Fjellvág, H.; Kongshaug, K.; Swang, O.; Blom, R. AmineFunctionalised Metal Organic Frameworks (MOFs) asAdsorbents for Carbon Dioxide.Adsorption2008,14,755-762.
    [108] Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.;Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine Grafting on CoordinativelyUnsaturated Metal Centers of MOFs: Consequences for Catalysis and MetalEncapsulation. Angew. Chem., Int. Ed.2008,47,4144-4148.
    [109] Hermes, S.; Schr ter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.;Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of Highly Porous CoordinationPolymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angew. Chem.,Int. Ed.2005,44,6237-6241.
    [110] Hermes, S.; Schroder, F.; Amirjalayer, S.; Schmid, R.; Fischer, R. A. Loading ofPorous Metal-Organic Open Frameworks with Organometallic CVD Precursors:Inclusion Compounds of the Type [LM]@MOF-5. J. Mater. Chem.2006,16,2464-2472.
    [111] Kim, H.; Chun, H.; Kim, G.-H.; Lee, H.-S.; Kim, K. Vapor Phase Inclusion ofFerrocene and Its Derivative in AMicroporous Metal-Organic Porous Material and ItsStructural Characterization by Single Crystal X-Ray Diffraction. Chem. Commun.2006,2759-2761.
    [112] Houk, R. J. T.; Jacobs, B. W.; Gabaly, F. E.; Chang, N. N.; Talin, A. A.; Graham,D. D.; House, S. D.; Robertson, I. M.; Allendorf, M. D. Silver Cluster Formation,Dynamics, and Chemistry in Metal Organic Frameworks. Nano Lett.2009,9,3413-3418.
    [113] Yamaguchi, K.; Mizuno, N. Supported Ruthenium Catalyst for theHeterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem., Int. Ed.2002,41,4538-4542.
    [114] Yamaguchi, K.; Mizuno, N. Scope, Kinetics, and Mechanistic aspects ofAerobic Oxidations Catalyzed by Ruthenium Supported on Alumina. Chem.—Eur. J..2003,9,4353-4361.
    [115] Zhan, B.-Z.; White, M. A.; Pincock, J. A.; Robertson, K. N.; Cameron, T. S.;Sham, T.-K. Oxidation of Cyclohexane Using A Novel RuO2–Zeolite NanocompositeCatalyst. Canadian J. Chem.2003,81,764-769.
    [116] Zhan, B.-Z.; White, M. A.; Sham, T.-K.; Pincock, J. A.; Doucet, R. J.; Rao, K. V.R.; Robertson, K. N.; Cameron, T. S. Zeolite-Confined Nano-RuO2: A Green,Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation. J. Am. Chem. Soc.2003,125,2195-2199.
    [117] Greathouse, J. A.; Allendorf, M. D. the Interaction of Water with MOF-5Simulated by Molecular Dynamics. J. Am. Chem. Soc.2006,128,10678-10679.
    [118] Corma, A.; Garcia, H. Supramolecular Host-Guest Systems in Zeolites Preparedby Ship-in-A-Bottle Synthesis. Eur. J. Inorg. Chem.2004,2004,1143-1164.
    [119] Raymo, F. M.; Stoddart, J. F. Interlocked Macromolecules. Chem. Rev.1999,99,1643-1664.
    [120] Alkordi, M. H.; Liu, Y.; Larsen, R. W.; Eubank, J. F.; Eddaoudi, M. Zeolite-LikeMetal Organic Frameworks as Platforms for Applications: on Metalloporphyrin-based Catalysts. J. Am. Chem. Soc.2008,130,12639-12641.
    [121] Maksimchuk, N.; Timofeeva, M.; Melgunov, M.; Shmakov, A.; Chesalov, Y.;Dybtsev, D.; Fedin, V.; Kholdeeva, O. Heterogeneous Selective Oxidation CatalystsBased on Coordination Polymer MIL-101and Transition Metal-SubstitutedPolyoxometalates. J. Catal.2008,257,315-323.
    [122] Coronado, E.; Gómez-García, C. J. Polyoxometalate-Based Molecular Materials.Chem. Rev.1998,98,273-296.
    [123] Maksimchuk, N.; Melgunov, M.; Chesalov, Y.; Mrowiecbialon, J.; Jarzebski, A.;Kholdeeva, O. Aerobic Oxidations of Α-Pinene over Cobalt-SubstitutedPolyoxometalate Supported on Amino-Modified Mesoporous Silicates. J. Catal.2007,246,241-248.
    [124] De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Ordered Mesoporous andMicroporous Molecular Sieves Functionalized with Transition Metal Complexes asCatalysts for Selective Organic Transformations. Chem. Rev.2002,102,3615-3640.
    [125] Corma, A. from Microporous to Mesoporous Molecular Sieve Materials andTheir Use in Catalysis. Chem. Rev.1997,97,2373-2420.
    [126] Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.;Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks andApplication to CO2Capture. Science2008,319,939-943.
    [127] Corma, A.; García, H.; Llabrés I Xamena, F. X. Engineering Metal OrganicFrameworks for Heterogeneous Catalysis. Chem. Rev.2010,110,4606-4655.
    [128] Wang, Z.; Chen, G.; Ding, K. Self-Supported Catalysts. Chem. Rev.2008,109,322-359.
    [129] Dincǎ, M.; Long, J. R. Strong H2Binding and Selective Gas Adsorption Withinthe Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3. J. Am. Chem. Soc.2005,127,9376-9377.
    [130] Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. HighH2Adsorption in A Microporous Metal–Organic Framework with Open Metal Sites.Angew. Chem., Int. Ed.2005,44,4745-4749.
    [131] Li, J. R.; Sculley, J.; Zhou, H. C. Metal-Organic Frameworks for Separations.Chem. Rev.2012,112,869-932.
    [132] Rybak, J.-C.; H ller, Christoph J.; Matthes, P.; Müller-Buschbaum, K.; Mai, M.;Feldmann, C.; K hn, R.; Bein, T. Steps Towards MOF Based Sorption Sensors byRare Earth Luminescence. Z. Anorg. Allg. Chem.2010,636,2099-2099.
    [133] Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks forBiomedical Imaging and Drug Delivery. Acc. Chem. Res.2011,44,957-968.
    [134] Mckinlay, A. C.; Morris, R. E.; Horcajada, P.; Frey, G.; Gref, R.; Couvreur, P.;Serre, C. Biomofs: Metal–Organic Frameworks for Biological and MedicalApplications. Angew. Chem,. Int. Ed.2010,49,6260-6266.
    [135] Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. LightHarvesting in Microscale Metal–Organic Frameworks by Energy Migration andInterfacial Electron Transfer Quenching. J. Am. Chem. Soc.2011,133,12940-12943.
    [136] Pan, Y.; Yuan, B.; Li, Y.; He, D. Multifunctional Catalysis by Pd@MIL-101:One-Step Synthesis of Methyl Isobutyl Ketone over Palladium NanoparticlesDeposited onAMetal-Organic Framework. Chem. Commun.2010,46,2280-2282.
    [137] Lee, D.-H.; Kim, J.-H.; Jun, B.-H.; Kang, H.; Park, J.; Lee, Y.-S. MacroporousPolystyrene-Supported Palladium Catalyst Containing A Bulky N-HeterocyclicCarbene Ligand for Suzuki Reaction of Aryl Chlorides. Org. Lett.2008,10,1609-1612.
    [138] Schweizer, S.; Becht, J.-M.; Le Drian, C. Highly Efficient and ReusableSupported Pd Catalysts for Suzuki Miyaura Reactions of Aryl Chlorides. Org. Lett.2007,9,3777-3780.
    [139] Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. A Highly Active HeterogeneousPalladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of ArylChlorides in Aqueous Media. Angew. Chem., Int. Ed.2010,49,4054-4058.
    [140] Saha, D.; Sen, R.; Maity, T.; Koner, S. Anchoring of Palladium Onto Surface ofPorous Metal-Organic Framework Through Post-Synthesis Modification and Studieson Suzuki and Stille Coupling Reactions Under Heterogeneous Condition. Langmuir2013,29,3140-3151.
    [141] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T.Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev.2009,38,1450-1459.
    [142] Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki MiyauraCross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem.Res.2008,41,1461-1473.
    [143] Polshettiwar, V.; Len, C.; Fihri, A. Silica-Supported Palladium: SustainableCatalysts for Cross-Coupling Reactions. Coordin. Chem. Rev.2009,253,2599-2626.
    [144] Yang, X.; Zhu, F.; Huang, J.; Zhang, F.; Li, H. Phenyl@Rh(I)-Bridged PeriodicMesoporous Organometalsilica with High Catalytic Efficiency in Water-MediumOrganic Reactions. Chem. Mater.2009,21,4925-4933.
    [145] Zhang, F. L., G.; He, W.; Hong, Y.; Yang, X.; Li, H.; Zhu, J.; Li, H.; Lu, Y. Adv.Funct. Mater.2008,18,,3590.
    [146] Szeto, K. C.; Kongshaug, K. O.; Jakobsen, S.; Tilset, M.; Lillerud, K. P. Design,Synthesis and Characterization of A Pt-Gd Metal-Organic Framework ContainingPotentially CatalyticallyActive Sites. Dalt. Trans.2008,2054-2060.
    [147] Szeto, K. C.; Lillerud, K. P.; Tilset, M.; Bj rgen, M.; Prestipino, C.; Zecchina,A.; Lamberti, C.; Bordiga, S. A Thermally Stable Pt/Y-Based Metal OrganicFramework: Exploring the Accessibility of the Metal Centers with SpectroscopicMethods Using H2O, CH3OH, and CH3CN as Probes. J. Phys. Chem. B2006,110,21509-21520.
    [148] Szeto, K. C.; Prestipino, C.; Lamberti, C.; Zecchina, A.; Bordiga, S.; Bj rgen,M.; Tilset, M.; Lillerud, K. P. Characterization of A New Porous Pt-ContainingMetal-Organic Framework Containing Potentially Catalytically Active Sites: LocalElectronic Structure at the Metal Centers. Chem. Mater.2006,19,211-220.
    [149] Yin; Liebscher, J. Carbon Carbon Coupling Reactions Catalyzed byHeterogeneous Palladium Catalysts. Chem. Rev.2006,107,133-173.
    [150] Larson, A. C. V. D., R. B., Los Alamos National Laboratory Report LAUR; LosAlamos National Laboratory: LosAlamos.
    [151] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht, theNetherlands,2001.
    [152] Choudary, B. M. M., S.; Chowdari, N.S.; Kantam, M. L.; Sreedhar. B. J. Am.Chem. Soc.2002,124,127.
    [153] Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. A Highly Active HeterogeneousPalladium Catalyst for the Suzuki–Miyaura and Ullmann Coupling Reactions of ArylChlorides in Aqueous Media. Angew. Chem., Int. Ed.2010,49,4054-4058.
    [154] Kitamura, Y.; Sako, S.; Udzu, T.; Tsutsui, A.; Maegawa, T.; Monguchi, Y.; Sajiki,H. Ligand-Free Pd/C-Catalyzed Suzuki-Miyaura Coupling Reaction for the Synthesisof Heterobiaryl Derivatives. Chem. Commun.2007,5069-5071.
    [155] Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B.Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-,Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc.2002,124,14127-14136.
    [156] Richardson, J. M.; Jones, C. W. Poly(4-Vinylpyridine) and Quadrapure TU asSelective Poisons for Soluble Catalytic Species in Palladium-Catalyzed CouplingReactions–Application to Leaching from Polymer-Entrapped Palladium. Adv. Syn.Catal.2006,348,1207-1216.
    [157] Richardson, J.; Jones, C. Strong Evidence of Solution-Phase Catalysisassociated with Palladium Leaching from Immobilized Thiols During Heck andSuzuki Coupling of Aryl Iodides, Bromides, and Chlorides. J. Catal.2007,251,80-93.
    [158] Das, D.; Sayari, A. Applications of Pore-Expanded Mesoporous Silica6. NovelSynthesis of Monodispersed Supported Palladium Nanoparticles and Their CatalyticActivity for Suzuki Reaction. J. Catal.2007,246,60-65.
    [159] Ji, Y.; Jain, S.; Davis, R. J. Investigation of Pd Leaching from Supported PdCatalysts During the Heck Reaction. J. Phys. Chem. B2005,109,17232-17238.
    [160] Jana, S.; Dutta, B.; Bera, R.; Koner, S. Immobilization of Palladium inMesoporous Silica Matrix: Preparation, Characterization, and Its Catalytic Efficacy inCarbon-Carbon Coupling Reactions. Inorg. Chem.2008,47,5512-5520.
    [161] Koner, S. G., A.; Chaudhuri, N. R.; Mukherjee, M. Flexidentate Behaviour ofN-(2-Hydroxyethyl)-1,2-Ethanedlamine (L) in Palladium Halide Complexes.Thermal, IR and1HNMR Studies and Single Crystal X-Ray Analysis of (PdLCl2)Polyhedron1993,12,551-2555.
    [162] Thomas, A. C., Photoelectron and Auger Spectroscopy, Plenum, New York,1975.
    [163] Reineke, T. M.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. A MicroporousLanthanide–Organic Framework. Angew. Chem., Int. Ed.1999,38,2590-2594.
    [164]Yin, L.; Liebscher, J. Carbon-Carbon Coupling Reactions Catalyzed byHeterogeneous Palladium. Chem. Rev.2007,107,133-173.
    [165] Molnar, A. Efficient, Selective, and Recyclable Palladium Catalysts inCarbon-Carbon Coupling Reactions. Chem. Rev.2011,111,2251-2320.
    [166] Choi, M.; Lee, D. H.; Na, K.; Yu, B. W.; Ryoo, R. High Catalytic Activity ofPalladium (II)-Exchanged Mesoporous Sodalite and NaA Zeolite for Bulky ArylCoupling Reactions: Reusability Under Aerobic Conditions. Angew. Chem., Int. Ed.2009,48,3673-3676.
    [167] Ellis, P. J.; Fairlamb, I. J.; Hackett, S. F.; Wilson, K.; Lee, A. F. Evidence for theSurface-Catalyzed Suzuki-Miyaura Reaction over Palladium Nanoparticles: AnOperando XAS Study. Angew. Chem., Int. Ed.2010,49,1820-1824.
    [168] Augustine, R. L.; O’Leary, S. T. Heterogeneous Catalysis in Organic Chemistry.Part10Effect of the Catalyst Support on the Regiochemistry of the Heck ArylationReaction J. Mol. Catal. A: Chemical1995,95,277-285.
    [169] Wang, C.; Xie, Z.; Dekrafft, K. E.; Lin, W. Doping Metal-Organic Frameworksfor Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. J. Am.Chem. Soc.2011,133,13445-13454.
    [170] Dau, P. V.; Tanabe, K. K.; Cohen, S. M. Functional Group Effects onMetal-Organic Framework Topology. Chem. Commun.2012,48,9370-9372.
    [171] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T.Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev.2009,38,1450-1459.
    [172] Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. CooperativeCatalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres.Angew. Chem., Int. Ed.2005,44,1826-1830.
    [173] Wang, X.; Tseng, Y.; Chan, J.; Cheng, S. Catalytic Applications ofAminopropylated Mesoporous Silica Prepared by a Template-Free Route inFlavanones Synthesis. J. Catal.2005,233,266-275.
    [174] Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, andVariation of the Metal Oxide and Organic Linking Units on the Low-PressureHydrogen Adsorption Properties of Metal Organic Frameworks. J. Am. Chem. Soc.2006,128,1304-1315.
    [175] Serra-Crespo, P.; Ramos-Fernandez, E. V.; Gascon, J.; Kapteijn, F. Synthesisand Characterization of An Amino Functionalized MIL-101(Al): Separation andCatalytic Properties. Chem. Mater.2011,23,2565-2572.
    [176] Corma, A.; García, H. Lewis Acids: from Conventional Homogeneous to GreenHomogeneous and Heterogeneous Catalysis. Chem. Rev.2003,103,4307-4366.
    [177] Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. fromCondensed Lanthanide Coordination Solids to Microporous Frameworks HavingAccessible Metal Sites. J. Am. Chem. Soc.1999,121,1651-1657.
    [178] BrukerAXS. SAINT+, Version6.22; BrukerAXS,: Madison, WI,2001.
    [179] Sheldrick, G. M., SADABS, Empirical Absorption Corrections Program;University of Gottingen,1997.
    [180] Sheldrick, G. M., Shelxl-97, A Program for Crystal Structure Refinement;,University of Gottingen: Germany,1997.
    [181] Farrugia, L. J. Wingx, An Integrated System of Windows Program for Solution,Refinement and Analysis of Single-Crystal X-Ray Diffraction Data, Version1.70.01.2005.
    [182] Spek, A. L., PLATON, A Multipurpose Crystallographic Tool; UtrechtUniversity: Utrecht, the Netherlands,2001.
    [183] Tan, Y.; Fu, Z.; Zhang, J. A Layered Amino-Functionalized Zinc-TerephthalateMetal Organic Framework: Structure, Characterization and Catalytic Performance forKnoevenagel Condensation. Inorg. Chem. Commun.2011,14,1966-1970.
    [184] Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.;Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and Stability ofTagged Uio-66Zr-MOFs. Chem. Mater.2010,22,6632-6640.
    [185] Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Gold-Catalyzed HomogeneousOxidative Cross-Coupling Reactions. Angew. Chem., Int. Ed.2009,48,3112-3115.
    [186] Hashmi, A. S.; Hutchings, G. J. Gold Catalysis. Angew. Chem. Int. Ed.2006,45,7896-7936.
    [187] Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Deposition of Gold Clusters onPorous Coordination Polymers by Solid Grinding and Their Catalytic Activity inAerobic Oxidation ofAlcohols. Chem.—Eur. J..2008,14,8456-8460.
    [188] Chen, L.; Hu, J.; Richards, R. Intercalation of Aggregation-Free andWell-Dispersed Gold Nanoparticles Into the Walls of Mesoporous Silica as A Robust“Green” Catalyst for N-Alkane Oxidation. J. Am. Chem. Soc.2008,131,914-915.
    [189] Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: COOxidation over Gold Nanoparticles Deposited to Metal Organic Framework. J. Am.Chem. Soc.2009,131,11302-11303.
    [190] Mitsudome, T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.Supported Gold Nanoparticle Catalyst for the Selective Oxidation of Silanes toSilanols in Water. Chem. Commun.2009,5302-5304.
    [191] Zhu, F.-X.; Wang, W.; Li, H.-X. Water-Medium and Solvent-Free OrganicReactions over A Bifunctional Catalyst with Au Nanoparticles Covalently Bondedto HS/SO3H Functionalized Periodic Mesoporous Organosilica. J. Am. Chem. Soc.2011,133,11632-11640.
    [192] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.;Lillerud, K. P. a New Zirconium Inorganic Building Brick Forming Metal OrganicFrameworks with Exceptional Stability. J. Am. Chem. Soc.2008,130,13850-13851.
    [193] Miura, M.; Enna, M.; Okuro, K.; Nomura, M. Copper-Catalyzed Reaction ofTerminal Alkynes with Nitrones. Selective Synthesis of1-aza-1-buten-3-yne and2-azetidinone derivatives. J. Organ. Chem.1995,60,4999-5004.
    [194] Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. Synthesis of TertiaryPropargylamines by Sequential Reactions of in Situ Generated Thioiminium Saltswith Organolithium and-Magnesium Reagents. J. Am. Chem. Soc.2004,126,5968-5969.
    [195] Wei, C.; Li, C.-J. a Highly Efficient Three-Component Coupling of Aldehyde,Alkyne, and Amines Via C H Activation Catalyzed by Gold in Water. J. Am. Chem.Soc.2003,125,9584-9585.
    [196] Lo, V. K.-Y.; Liu, Y.; Wong, M.-K.; Che, C.-M. Gold(III) SalenComplex-Catalyzed Synthesis of Propargylamines Via a Three-Component CouplingReaction. Organ. Lett.2006,8,1529-1532.
    [197] Wei, C.; Li, Z.; Li, C.-J. the First Silver-Catalyzed Three-Component CouplingofAldehyde, Alkyne, and Amine. Organ. Lett.2003,5,4473-4475.
    [198] Sakaguchi, S.; Kubo, T.; Ishii, Y. A Three-Component Coupling Reaction ofAldehydes, Amines, and Alkynes. Angew. Chem., Int. Ed.2001,40,2534-2536.
    [199] Fischer, C.; Carreira, E. M. Direct Addition of TMS-Acetylene to AldiminesCatalyzed by ASimple, Commercially Available Ir (I) Complex. Organ. Lett.2001,3,4319-4321.
    [200] Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Iridium-CatalyzedCoupling of Simple Primary or Secondary Amines, Aldehydes andTrimethylsilylacetylene: Preparation of Propargylic Amines Chem. Commun.2004,14,1638-1639.
    [201] Li, C.-J.; Wei, C. Highly Efficient Grignard-Type Imine Additions Via C–HActivation in Water and Under Solvent-Free Conditions Chem. Commun.2002,2,268-269.
    [202] Wei, C.; Li, C.-J. Grignard Type Reaction Via C-H Bond Activation in WaterGreen Chem.2002,4,39-41.
    [203] Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Microwave-PromotedThree-Component Coupling of Aldehyde, Alkyne, and Amine Via C H ActivationCatalyzed by Copper in Water. Organ. Lett.2004,6,1001-1003.
    [204] Park, S. B.; Alper, H. An Efficient Synthesis of Propargylamines Via C–HActivation Catalyzed by Copper (I) in Ionic Liquids. Chem. Commun.2005,5,1315-1317
    [205] Kabalka, G. W.; Zhou, L.-L.; Wang, L.; Pagni, R. M. A Microwave-Enhanced,Solventless Mannich Condensation of Terminal Alkynes and Secondary Amines withPara-Formaldehyde on Cuprous Iodide Doped Alumina. Tetrahedron2006,62,857-867.
    [206] Kayaki, Y.; Yamamoto, M.; Suzuki, T.; Ikariya, T. Carboxylative Cyclization ofPropargylamines with Supercritical Carbon Dioxideelectronic SupplementaryInformation (ESI) Available: Experimental Section and Analytical Details of NewCompounds. Green Chem.2006,8,1019-1021
    [207] Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. HydroxyapatiteSupported Copper Catalyst for Effective Three-Component Coupling. TetrahedronLett.2004,45,7319-7321.
    [208] Vos, D. E.; Vankelecom, I. F. K.; Jacobs, P. A., Chiral Catalyst Immobilizationand Recycling, Wiley-VCH, Weinheim,2000.
    [209] Wu, M.-L.; Chen, D.-H.; Huang, T.-C. Preparation of Au/Pt BimetallicNanoparticles in Water-in-Oil Microemulsions. Chem. Mater.2001,13,599-606.
    [210] Kyriakou, G.; Beaumont, S. K.; Humphrey, S. M.; Antonetti, C.; Lambert, R. M.Sonogashira Coupling Catalyzed by Gold Nanoparticles: Does Homogeneous OrHeterogeneous Catalysis Dominate? Chemcatchem2012,2,1444-1449.
    [211] Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPSStudy of Supported Gold Catalysts: the Role of Au0and Au+δSpecies as Active Sites.Surf. Interf. Anal.2006,38,215-218.
    [212] Sachin, C.; V.Jenny, G.; Diego, G. H2Storage in Isostructural Uio-67andUio-66MOFs. Phys. Chem. Chem. Phys.2012,14,1614-1626.
    [213] Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P.Modulated Synthesis of Zr-Based Metal-Organic Frameworks: from Nano to SingleCrystals. Chem.—Eur. J..2011,17,6643–6651.
    [214] Volkringer, C.; Leclerc, H.; Lavalley, J.-C.; Loiseau, T.; Férey, G.; Daturi, M.;Vimont, A. Infrared Spectroscopy Investigation of the Acid Sites in theMetal–Organic Framework Aluminum Trimesate MIL-100(Al). J. Phys. Chem. C2012,116,5710-5719.
    [215] Wang, D.; Zhang, Y.; Cai, R.; Shi, X. Triazole-Au(I) Complex asChemoselective Catalyst in Promoting Propargyl Ester Rearrangements. Beilstein J.Org. Chem.2011,7,1014-1020.
    [216] Li, P.; Wang, L.; Zhang, Y.; Wang, M. Highly Efficient Three-Component(Aldehyde–Alkyne–Amine) Coupling Reactions Catalyzed by A ReusablePS-Supported NHC–Ag(I) Under Solvent-Free Reaction Conditions. Tetrahedron Lett.2008,49,6650-6654.
    [217] Snelders, D. J. M.; Van Koten, G.; Klein Gebbink, R. J. M. HexacationicDendriphos Ligands in the Pd-Catalyzed Suzuki Miyaura Cross-Coupling Reaction:Scope and Mechanistic Studies. J. Am. Chem. Soc.2009,131,11407-11416.
    [218] Rowsell, J. L.; Spencer, E. C.; Eckert, J.; Howard, J. A.; Yaghi, O. M. GasAdsorption Sites in A Large-Pore Metal-Organic Framework. Science2005,309,1350-1354.
    [219] Lun, D. J.; Waterhouse, G. I.; Telfer, S. G. A General Thermolabile ProtectingGroup Strategy for Organocatalytic Metal-Organic Frameworks. J. Am. Chem. Soc.2011,133,5806-5809.
    [220] Serre, C.; Millange, F.; Thouvenot, C.; NoguèS, M.; Marsolier, G.; Lou r, D.;Férey, G. Very Large Breathing Effect in the First Nanoporous Chromium (III)-BasedSolids: MIL-53or Cr(OH)·{O2C C6H4CO2}·{HO2C C6H4CO2H}X·H2Oy. J. Am.Chem. Soc.2002,124,13519-13526.
    [221] Dietzel, P. D. C.; Johnsen, R. E.; Blom, R.; Fjellv g, H. Structural Changes andCoordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb AnalogousMicroporous Metal–Organic Frameworks. Chem.—Eur. J.2008,14,2389-2397.
    [222] Kawamichi, T.; Kodama, T.; Kawano, M.; Fujita, M. Single-CrystallineMolecular Flasks: Chemical Transformation with Bulky Reagents in the Pores ofPorous Coordination Networks. Angew. Chem. Int. Ed.2008,478030-8032.
    [223] Burrows, A. D.; Frost, C. G.; Mahon, M. F.; Richardson, C. Post-SyntheticModification of Tagged Metal–Organic Frameworks. Angew. Chem., Int. Ed.2008,47,8482-8486.
    [224] Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals asMolecules: Postsynthesis Covalent Functionalization of Zeolitic ImidazolateFrameworks. J. Am. Chem. Soc.2008,130,12626-12627.
    [225] Kawamichi, T.; Kodama, T.; Kawano, M.; Fujita, M. Single-CrystallineMolecular Flasks: Chemical Transformation with Bulky Reagents in the Pores ofPorous Coordination Networks. Angew. Chem., Int. Ed.2008,47,8030-8032.
    [226] Ingleson, M. J.; Perez Barrio, J.; Guilbaud, J.-B.; Khimyak, Y. Z.; Rosseinsky,M. J. Framework Functionalisation Triggers Metal Complex Binding. Chem. Commun.2008,2680-2682.
    [227] Haneda, T.; Kawano, M.; Kawamichi, T.; Fujita, M. Direct Observation of theLabile Imine Formation Through Single-Crystal-to-Single-Crystal Reactions in thePores of a Porous Coordination Network. J. Am. Chem. Soc.2008,130,1578-1579.
    [228] Ingleson, M. J.; Barrio, J. P.; Bacsa, J.; Dickinson, C.; Park, H.; Rosseinsky, M.J. Generation of A Solid Bronsted Acid Site in a Chiral Framework. Chem. Commun.2008,1287-1289.
    [229] Gadzikwa, T.; Lu, G.; Stern, C. L.; Wilson, S. R.; Hupp, J. T.; Nguyen, S. T.Covalent Surface Modification of A Metal-Organic Framework: Selective SurfaceEngineering Via Cui-Catalyzed Huisgen Cycloaddition. Chem. Commun.2008,5493-5495.
    [230] Wang, X.-S.; Ma, S.; Sun, D.; Parkin, S.; Zhou, H.-C. A MesoporousMetal Organic Framework with Permanent Porosity. J. Am. Chem. Soc.2006,128,16474-16475.
    [231] Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J. R. M.; Férey, G. R.;Stock, N. High-Throughput assisted Rationalization of the Formation of MetalOrganic Frameworks in the Iron (III) Aminoterephthalate Solvothermal System. Inorg.Chem.2008,47,7568-7576.
    [232] Xu, L.-W.; Xia, C.-G.; Li, L. Transition Metal Salt-Catalyzed DirectThree-Component Mannich Reactions of Aldehydes, Ketones, and Carbamates:Efficient Synthesis of N-Protected Β-Aryl-Β-Amino Ketone Compounds. J. Organ.Chem.2004,69,8482-8484.
    [233] Youngman, M. A.; Dax, S. L. Solid-Phase Mannich Condensation of Amines,Aldehydes, and Alkynes: Investigation of Diverse Aldehyde Inputs. J. Comb. Chem.2001,3,469-472.
    [234] Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S. NovelOne-Pot Cu-Nanoparticles-Catalyzed Mannich Reaction. Tetrahedron Lett.2009,50,1355-1358.
    [235] Lebedev, O. I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. First DirectImaging of Giant Pores of the Metal Organic Framework MIL-101. Chem. Mater.2005,17,6525-6527.
    [236] Espinos, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.;Gonzalez-Elipe, A. R. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. J. Phys. Chem. B.2002,106,6921-6929.
    [237] Bera, P.; Priolkar, K. R.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.;Lalla, N. P. Structural Investigation of Combustion Synthesized Cu/CeO2Catalysts byEXAFS and Other PhysicalTechniques: Formation of A Ce1-xCuxO2-δSolid Solution.Chem. Mater.2002,14,3591-3601.
    [238] Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Porous ChromiumTerephthalate MIL-101with Coordinatively Unsaturated Sites: SurfaceFunctionalization, Encapsulation, Sorption and Catalysis. Adv. Funct.Mater.2009,19,1537-1552.
    [239] Juan-Alca iz, J.; Ramos-Fernandez, E. V.; Lafont, U.; Gascon, J.; Kapteijn, F.Building MOF Bottles Around Phosphotungstic Acid Ships: One-Pot Synthesis ofBi-Functional Polyoxometalate-MIL-101Catalysts. J. Catal.2010,269,229-241.
    [240] Chowdhury, P.; Bikkina, C.; Gumma, S. Gas Adsorption Properties of theChromium-Based Metal Organic Framework MIL-101. J. Phys. Chem. C2009,113,6616-6621.
    [241] Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; DeWeireld, G.; Chang, J.-S.; Hong, D.-Y.; Kyu Hwang, Y.; Hwa Jhung, S.; Férey, G. R.High Uptakes of CO2and CH4in Mesoporous Metal Organic Frameworks MIL-100and MIL-101. Langmuir2008,24,7245-7250.
    [242] Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z.; Tran, S.; Lin, W. PostsyntheticModifications of Iron-Carboxylate Nanoscale Metal Organic Frameworks forImaging and Drug Delivery. J. Am. Chem. Soc.2009,131,14261-14263.
    [243] Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Shen, W.; Xu, H.; Fan, K. Cu/SiO2Catalysts Prepared by the Ammonia-Evaporation Method: Texture, Structure, andCatalytic Performance in Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. J.Catal.2008,257,172-180.
    [244] Marchi, A. J.; Fierro, J. L. G.; Santamaría, J.; Monzón, A. Dehydrogenation ofIsopropylic Alcohol on A Cu/SiO2Catalyst: A Study of the Activity Evolution andReactivation of the Catalyst. Appl. Catal. A1996,142375-386
    [245] Chang, F.-W.; Yang, H.-C.; L. Selva Roselin; Kuo, W.-Y. EthanolDehydrogenation over Copper Catalysts on Rice Husk ash Prepared by IonExchange. Appl. Catal. A2006,304,30-39.
    [246] Shimokawabe, M.; Takezawa, N.; Kobayashi, H. Characterization ofCopper-Silica Catalysts Prepared by Ion Exchange. Appl. Catal.1982,2,379-387.
    [247] González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Homogeneous andHeterogenized Au(III) Schiff Base-Complexes as Selective and General Catalysts forSelf-Coupling ofAryl Boronic Acids. Chem. Commun.5,1990-1992.
    [248] González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez;, F. EnantioselectiveHydrogenation of Alkenes and Imines by A Gold Catalyst Chem. Commun.2005,5,3451-3453.
    [249] Constable, E. C.; Zhang, G.; Housecroft, C. E.; Neuburger, M.; Schaffner, S.;Woggon, W.-D. in Search of Enantioselective Catalysts for the Henry Reaction: AreTwo Metal Centres Better Than One? New J. Chem.2009,33,1064-1069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700