用户名: 密码: 验证码:
海带渣与淀粉类真姬菇发酵多糖分离技术及生物活性解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为农业大国,中国拥有丰富的淀粉类生物质资源;而海带产品加工产业的逐渐兴起也形成了大量的海带废渣,开发高效的淀粉类生物质和海带渣资源化利用途径,不仅避免海带渣对环境的潜在污染,还可以提升淀粉类生物质产业附加值。真菌多糖在医学领域的巨大应用潜力,使其成为医学和药物学研究的热点。本研究以海带渣和淀粉类生物质为基质进行真姬菇多糖发酵,研究活性多糖发酵的可行性,探索基于真姬菇多糖发酵的海带渣和淀粉类生物质资源化利用新途径,并在此基础上对真姬菇发酵产生的多糖高效制备工艺、径向色谱纯化工艺以及多糖的生物活性和构效关系进行系统研究。旨在开拓新的海带渣和淀粉类生物质资源化利用新思路,揭示多糖的药用活性与化学结构之间的内在关系。
     本课题首先评价了基于真姬菇多糖发酵的海带渣及淀粉类生物质资源化利用的可行性。结果表明海带渣和淀粉类生物质资源均可以作为真姬菇生长发酵的营养基质,为真姬菇深层发酵提供充足的营养成分和必要的剪切力。从发酵产物中分离的部分多糖组分具有极高的补体结合活性,单糖组成分析表明来自海带废渣发酵的活性多糖组分FSH-N主要由岩藻糖、葡萄糖和半乳糖组成;而来自淀粉类生物质发酵的活性多糖组分B-II则主要由半乳糖酸、鼠李糖、阿拉伯糖和半乳糖构成。
     其次,课题以淀粉类生物质真姬菇发酵所产生的胞外多糖为材料,研究了多糖乙醇沉淀制备工艺中乙醇浓度、发酵液pH值、沉淀温度、时间和干燥温度对多糖的产量和抗肿瘤活性的影响,通过响应面优化确定最适的多糖醇沉制备工艺为乙醇浓度85.00%,发酵液pH7.70,12℃沉淀1h,40℃干燥。模型预测粗多糖产率能达到9.93g/L,对肿瘤细胞体外抑制率为84.37%,验证实验结果与模型预测值基本吻合。
     为了建立高效的多糖纯化工艺,本课题对适于装填在径向色谱柱内进行真菌多糖富集、纯化的树脂进行了筛选,确定了树脂D4020和DEAE-SepharoseCL-6B适合进行真菌发酵上清液多糖的富集和纯化;其次,对径向色谱柱纯化真菌多糖的条件、参数进行考察,详细对比径向色谱柱和传统轴向柱进行真菌多糖纯化的效率,并探讨了径向色谱柱线性放大的可行性,最终建立了一套完整的纯化和线性放大工艺。多糖经装填D4020的径向色谱柱富集后,总回收率达到97.51%,色素的去除率达88.9%,蛋白去除率达71.5%,多糖纯度提高3.14倍;经径向离子交换层析纯化后分为四个不同的多糖组分,总多糖回收率超过80%,且主要多糖组分纯度超过90%。此外,还证实了径向色谱柱应用于真菌多糖的富集和纯化工艺具有良好的线性放大效果,并证明径向色谱柱装填凝胶树脂能实现多糖样品的高效脱盐。
     本研究分别检测了纯化所获多糖的体外抗肿瘤活性、补体结合活性和巨噬细胞诱导活性,并采用GC、GC-MS等方法分析多糖化学结构。结果表明酸性多糖组分B-I具有良好的体外抗肿瘤活性,且对人正常细胞几乎无毒副作用;进一步纯化所得四种高分子量多糖尤其是组分B-II-I具有极高的补体结合活性和良好巨噬细胞诱导能力。采用GC、GC-MS等手段对活性多糖的结构分析表明中性组分B-N-I为1-4-葡聚糖;B-I-I是主链为1→2连接的甘露聚糖,并带有甘露糖残基和1→3连接的甘露糖侧链。酸性多糖组分B-II-I和B-II-II则主要由1→4连接的半乳糖酸聚糖主链构成,其中交替连有一定数量的1→2连接的鼠李糖。构效关系分析表明多糖中酸性基团的存在以及多糖的分子量会影响其生物活性,果胶多糖中典型的RG-I型区域及AG-II型结构对B-II-I发挥免疫调节活性至关重要。
     综上所述,本课题证实了基于真姬菇多糖发酵的海带渣及淀粉类生物质资源化利用的可行性,并确立了一种高效、低能耗的多糖乙醇沉淀制备方法,建立了一套完整的真菌多糖径向色谱富集、纯化、脱盐和放大工艺;阐述了活性多糖的生物活性和化学结构及其构效关系。本课题为海带渣和淀粉类生物质资源化提供了新的思路,也为真菌多糖制备工艺、高效纯化及放大技术、生物活性及构效关系研究提供了新的实验依据。
As an agricultural country, there are abundant starch biomass and also lots ofkelp waste from related industry. A new pathway for utilization of kelp waste andstarch biomass would be searched in order to avoid potential contamination andimprove the added value of some related domain. The potential value of medicinalmushroom polysaccharides for application in medicine and immunology areaattracted more and more scientific attention. In this study, the medicinal mushroomHypsizigus marmoreus was incubated in the media mainly composed of kelp wasteand starch biomass respectively, to search a new pathway to utilize these two partsof natural resources with high value. Based on the results, the activepolysaccharides from the fermtation would be prepared and separated. Theirbiologicial activities and molecular structures would be investigated, so that we canset up a new pathway to utilize these two parts of natural resources and reveal therelationships between the activities and molecular structures of the polymers.
     First of all, the feasibility of kelp waste and starch biomass used forfermentation of mushroom polysaccharides was evaluated. The results showed thatthese two natural resources could be used for submerged cultivation of H.marmoreus to afford the necessary nutrients and shear force for the fermentation.Some of the isolated polysaccharide fractions from the fermentations exhibited highcomplement fixating activities. The active fraction FSH-N, which is from kelpwaste fermentation, is mainly composed of fucose, glucose and galactose. The otheractive fraction B-II mainly composed of galactouronic acid, arabinose, mannose andgalactose.
     And then, the supernatant from fermentation based on starch biomass was usedfor preparation of active polysaccharides. The effects of some factors in traditionaltechniques for production of mushroom polysaccharides on yield and antitumoractivity were investigated, such as ethanol concentration, pH of the broth, the timeand temperature for precipitation and the temperature for drying of the products.The conditions for ethanol precipitation were optimized as85%of ethanolconcentration, pH7.7of the fermentation broth, precipitate at12℃for1hour,and dry at40℃. The yield and antitumor activity of the product were calculated as9.93g/L and84.37%of inhibitory rate to cancer cell line which agree with theresults of verification.
     In order to set up the efficient techniques for purification of polysaccharides,the media suitable to be packed in radial flow chromatography column were screened. The macroporous resin D4020and anion exchange media DEAESepharose CL-6B were selected for capture and immediate purification ofpolysaccharides from fermentation broth. And then, the condition for purification inradial chromatography column for purification of mushroom polysaccharides wereinvestigated; the efficiency of radial and axial flow chromatography columns werecompared with each other; and the feasibility for radial flow column to scale up wasalso investigated. Finally, a systematic technique for efficient purification and scaleup of polysaccharides was set up. After purification in radial flow chromatographycolumn packed with D4020,97.5%of the polysaccharides were recovered,88.9%of the pigments and71.5%of the proteins were cleared away. The purity of thepolysaccharides was enhanced for3.14times. After isolation in radial anionexchange chromatography column, four different fractions were obtained and morethan80%of the products were recovered. The technique possesses nice effect forline scale up of radial flow chromatography column for purification ofpolysaccharides. The radial flow chromatography system was confirmed that couldbe employed for efficient desalt of the products for the first time.
     In our study, antitumor activities in vitro, complement fixating activities andmacrophage stimulating activities of the polymers obtained from purification wereinvestigated with MTT, complement assays and macrophage stimulating test,respectively. The structures of the active fractions were analyzed with GC andGC-MS. The results showed that the active fraction B-I possess nice antitumoractivity in vitro, and no side-effect to normal human cell line. Four fractionsobtained from further purification were verified that possess high complementfixating activities and significant effects for macrophage stimulating, especially thefraction B-II-I. The molecular structures of the active fractions were determinedwith GC and GC-MS. The results showed that neutral fraction B-N-I is basically a1→4glucan with branches on C6; B-I-I is a heavily branched mannan. The other twopolymers, B-II-I and B-II-II, have a backbone of rhamno-galacturonan with1→2linkedrhamnose interspersed with1→4linked galacturonic acid. The analysis ofactivities-structure relationships indicating that the acidic groups in the molecularchains, the molecular weight and the backbone of rhamnogalacturonan (RG), with neutralAG-I and AG-II side chains in B-II-I; should be responsible for exhibiting potentcomplement fixating and macrophage-stimulating activities.
     In short, the feasibility of kelp waste and starch biomass used for fermentationof mushroom polysaccharides was comfirmed. Based on the fermentation of starchbiomass, an efficient and low energy consumption method was set up forpreparation of polysaccharides with ethanol precipitation. A systematic techniquefor capture, purification and scale-up, and desalt of the msuhroom polysaccharides was established. Finally, the biological activities, molecular structures andactivity-structure relationships of the active fractions were elaborated. These resultswould afford new data for utilization of kelp waste and starch biomass with highvalue, and also for production, purification, biological activities and molecularstructures of mushroom polysaccharides.
引文
[1] Lindequist U, Niedermeyer T H J, Jülich W D. The PharmacologicalPotential of Mushrooms[J]. Evidenced-Based Complementary AlternativeMedicine,2005(2):285-299.
    [2] Igor A S, Mark T Q. Botanical polysaccharides: Macrophage immune-modulation and therapeutic potential[J]. International Immunopharmacology,2006(6):317-333.
    [3] Zhang M, Cui S W, Cheung P C K, et al. Antitumor polysaccharides frommushrooms: a review on their isolation process, structural characteristicsand antitumor activity[J]. Trends in Food Science&Technology,2007(18):4-19.
    [4]张俊杰,段蕊,许可,等.海带工业中海带渣应用的研究及展望[J].水产科学,2010,29(10):620-623.
    [5]甘纯玑,彭时尧,施木田,等.海带工业废弃物综合利用现状和展望[J].环境科学进展,1999,7(1):50-53.
    [6]甘纯玑,施木田,彭时尧.海藻工业废料的组成及其利用价值[J].天然产物研究与开发,1994,6(2):88-91.
    [7]甘纯玑,彭时尧,施木田,等.罗非鱼饲料中海带渣含量对氨基酸表观消化率的影响[J].中国水产科学,1997,4(3):95-96.
    [8]王文娟,杨维仁,杨在宾,等.海带渣对肉鸡代谢率影响的研究[J].饲料工业,2009,30(11):59-60.
    [9]王红芳,杨维仁,杨在宾,等.日粮中添加海带渣对蛋鸡生产性能的影响[J].中国饲料添加剂,2009,7:17-20.
    [10] Michael R B, Chula V, John J, et al. Method for absorbing liquids usingdealginate kelp: United States Patent, Patent number:5,009,790[P].1990-4-23.
    [11] John J, Renaker J. Method and apparatus for decomposition of oil, UnitedStates Patent. Patent No.: US6780631b2[P].2004-08-24.
    [12]青岛明月海藻集团有限公司,一种海藻有机肥的制备方法.中国:200810238420.8[P].2009-05-27.
    [13]樊文乐,武文杰.以提取褐藻糖胶的废渣制备膳食纤维[J].中国食物与营养,2006(4):42-44.
    [14]赵亮.海带加工厂废渣液中褐藻糖胶的提取和褐藻寡糖的制备及其吸湿、保湿活性的研究[D].上海:上海海洋大学,2008.
    [15]赵太全.我国玉米生产现状与发展前景展望[J].种子科技,2009,11:24-26.
    [16]张水洞,张玉荣,汪秀丽,等.用于制备热塑性塑料的双醛玉米淀粉的研究[J].四川大学学报,2007,3:649-652.
    [17]邱威扬,喻继文,陈云,等.全淀粉热塑性塑料的研制[J].塑料工业,1998,4:106-108.
    [18]郝国东,徐磊,段志林.提高玉米淀粉糖化率新工艺[J].黑龙江农业科学,2009,4:102-103.
    [19]孟昭宇.玉米芯生产木糖的工艺技术[J].杭州食品科技,2009,2:30-31.
    [20]卢晓霆,张太日,闫峻,等.玉米生料发酵生产燃料乙醇工艺研究[J].中国酿造,2009,7:128-132.
    [21]胡爱明.用玉米废渣提取氨基酸走俏国外.再生资源研究,2006,5:46.
    [22]徐晓颖,张春雷.后补玉米浆提高青霉素发酵水平.黑龙江医药,2003,4:195-196.
    [23] Amuneke E H, Dike K S, Ogbulie J N. Cultivation of Pleurotus ostreatus:An edible mushroom from agro base waste products[J]. Journal ofMicrobiology and Biotechnology Research,2011,1(3):1-14.
    [24]赵群友,蒋德俊.中药渣循环栽培鸡腿菇、草菇新技术[J].栽培技术,2007,(5):21-22.
    [25]王世东,周学政.酒糟栽培鸡腿菇高产技术[J].中国食用菌,2004,23(6):31-32.
    [26]姚满生,张福元,李湘.醋糟培养料对平菇矿质元素与氨基酸含量的影响[J].食用菌,1991,6:12-13.
    [27]朱忠贤,李萍萍,张树庭.造纸业有机废弃物芦苇末栽培秀珍菇技术研究[J].中国食用菌,2004,23(3):24-25.
    [28] Gülser C, Peksen A. Using tea waste as a new casing material in mushroom(Agaricus bisporus (L.) Sing) cultivation[J]. Bioresource Technology,2003(88):153-156.
    [29] Das N, Mukherjee M. Cultivation of Pleurotus ostreatus on weed plants[J].Bioresource Technology,2007(98):2723-2726.
    [30]梁枝荣,张清文,周志强.玉米秸秆栽培双孢蘑菇高新技术研究[J].中国食用菌,2002,21(3):11-13.
    [31]郑社会,余建妹,鲁浙安.蚕菌循环利用是蚕桑经济可持续发展的新模式[J].食用菌,2008(1):5-6.
    [32]张丕奇,刘佳宁,孔祥辉.沙棘果渣栽培木耳生产工艺及产品营养成分分析[J].东北林业大学学报,2011,39(5):123-124.
    [33]石木标.甘薯渣栽培鲍鱼菇的技术研究[J].华南农业大学学报,1994,15(1):73-77.
    [34]徐会侠.苹果渣栽培平菇配方对比试验[J].食用菌,2007(3):32-33.
    [35]李长喜,王文成.蕨根渣栽培平菇试验初报[J].食用菌,2002(2):23-24.
    [36]苏小建,龚受基,黄丽萍.汉果渣栽培平菇试验[J].食用菌,2007(6):28-29.
    [37] Chen X X, Jiang Z H, Chen X, et al. Use of biogas fluid-soaked waterhyacinth for cultivating Pleurotus geesteranus[J]. Bioresource Technology,2010(101):2397-2400.
    [38]杨箐,林代炎,吴飞龙.利用猪粪渣栽培姬松茸技术的研究[J].中国食用菌,2010,29(4):20-21.
    [39] Lospwsky M S, Dietary F. Current Developments of importance to Health
    [M]. Westport:Food and Nutrition Press,1995:157-162.
    [40] Chandan R C. Nutritional and Health Properties[J]. National YogurtAssociation,1989(2):41-42.
    [41] Kimura Y, Sumiyoshi M, Suzuki T. et a1. Antitumor and antimetastaticactivity of a novel water-soluble low molecular weight beta-1,3-D-glucan(branch beta-1,6) isolated from Aureobasidium pullulans strain blackyeast[J]. Anticancer Research,2006,26(68):413l-4141.
    [42] Chang R. Bioactive polysaccharides from traditional Chinese medicine herbsas anticancer adjuvants[J]. Journal of Alternative&CompelementaryMedicine,2002,8(5):559-565.
    [43] Lee K Y, Lee M H, Chang I Y, et al. Macrophage activation byPolysaccharide fraction isolated from Salicomia herbacea[J]. Journal ofEthnopharmacology,2006,103(3):372-378.
    [44] Zheng R, Jie S, Han C D, et a1. Characterization and inununomodulatingactivities of polysaccharide from Lentinus edodes[J]. Immunopharmacology,2005,5(5):811-820.
    [45] Lin Z B, Zhang H N. Anti-tumor and immunoregulatory activities ofGanoderma lucidum and its possible mechanisms[J]. Acta PharmacologicaSinica,2004,25(11):1387-1395.
    [46] Fisher M, Yang L X. Anticancer effects and mechanisms ofpolysaccharide-K (PSK): implications of cancer Immunothempy[J].Anticancer Research,2002,22(3):1737-1754.
    [47] Kodama N, Murata Y, Nanba H, et al. Administration of a polysaccharidefrom Grifola frondosa stimulates immune function of normal mice[J].Journal of Medicinal Food,2004,7(2):141-145.
    [48] Kobayashi H, Yoshida R, Kanada Y, et a1.Suppressing effects of daily oralsupplementation of beta-glucan extracted from Agaricus blazei Murill onspontaneous and peritoneal disseminated metastasis in mouse model[J].Journal of Cancer Research and Clinical Oncology,2005,131(8):527-538.
    [49] Cheng J J, Huang N K, Chang T T, et a1. Study for anti-angiogenic activitiesof polysaccharides isolated from Antrodia einnamomea in endothelialcells[J]. Life Science,2005,76(26):3029-3042.
    [50] Ito M, Baba M, Sato A, et a1. Inhibitory effect of dextran sulfate and heparinon the replication of human immunodeficiency virus (HIV) in vitro[J].Antiviral Research,1987,7:361-367.
    [51] Tochikura T S, Nakashima H, Ohashi Y, et al. Inhibition (in vitro) ofreplication and of the cytopathic effect of human immunodeficiency virus byan extract of the culture medium of Lentinus edodes mycelia[J]. MedicalMicrobiology and Immunology.1988(177):235-244.
    [52] Kito T, Sobue S. Structural features and hypoglycemic activities of twopolysaccharides from a hot-water extract of Agrocybe cylindracea[J].Carbohydrate Research,1994,252:81-87.
    [53] Kiho T, Yamane A, Hui J, et al. Hypoglycemic activity of a polysaccharidefrom the cultural mycelium of Cordyceps sinensis and its effect on glucosemetabolism in mouse liver[J]. Biological and Pharmaceutical Bulletin,1996(19):294-296.
    [54] Itoh T, Kita N, KurokawaY, et al. Suppressive effect of a hot water extract ofadzuki beans(Vigna angularis) on hyperglycemia after sucrose loading inmice and diabetic rats[J]. Bioscience Biotechnology and Biochemistry,2004,68(12):2421-2426.
    [55] Lindsay J O, Whelan K, Stagg A J, et al. Clinical, microbiological, andimmunological effects of fructo-oligosaccharide in patients with Crohn’sdisease[J]. Gut,2006,55(3):348-355.
    [56] Akindele A J, Adeyemi O O. Antiinflammatory activity of the aqueous leafextract of Byrsocarpus coccineus[J]. Fitoterapia,2007,78(1):25-28.
    [57] Lee J H, Shim J S, Lee J S, et al. Pectin-like acidic polysaccharide fromPanax ginseng with selective antiadhesive activity against pathogenicbacteria[J]. Carbohydrate Research,2006,341(9):1154-l163.
    [58]陈黎.隐孔菌发酵物及多糖的制备与抗炎活性的研究[D].杭州:浙江大学硕士学位论文,2008.
    [59] Adachi Y, Ohno N, Yadomae T. Activation of kupffer cells by administrationwith gel-forming (1→3)-β-D-Glucan from Grifola frondosa[J]. Biologicaland Pharmaceutical Bulletin,1988,21(3):278-283.
    [60] Marx J L. Oxygen free radicals linked to many diseases[J]. Science,1987,235:529-531.
    [61]李小定,荣建华,吴谋成.真菌多糖生物活性研究进展[J].食用菌学报,2002,9(4):50-58.
    [62]孙培龙,魏红福,杨开,等.真姬菇研究进展[J].食品科技,2005,(9):54-57.
    [63] Yuuichi U, Hitoshi I, Makoto H, et al. Antitumor effects of (1-3)-β-D-glucan and (1-6)-β-D-glucan purified from new cultivated mushroomHatakesshimeji (Lyophyllum decastes Sing)[J]. Journal of Bioscience andBioengineering,2000,90(1):98-104.
    [64] Bao H H, Choi W S, You S G. Effect of Sulfated Modification on theMolecular Characteristics and Biological Activities of Polysaccharides fromHypsizigus marmoreus[J]. Bioscience, Biotechnology, and Biochemistry.2010(74):1408-1414.
    [65]李顺峰,张丽华,付娟妮,等.真姬菇子实体多糖体外抗氧化特性研究[J].西北农业大学学报,2008(4):302-305.
    [66]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报,1984,19(10):46-52.
    [67] Chaplin M F. Neutral polysacchrides Carbohydrate Analysis[M]. SecondEdition, Oxford University Press,1994:73-96.
    [68] Ding K, Fang J. Characterization of a rhamnogalacturonan and a xyloglucanfrom Nerium indicum&their activities on pc-12pheochromocytoma cells[J].Journal of Natural Products,2003(66):7-10.
    [69] Hopf P. Radial chromatography in industry[J]. Industrial&EngineeringChemistry,1947,39:938-940.
    [70]姜慧燕,邵平,孙培龙.径向流色谱分离技术原理及应用分析[J].核农学报,2009,23(1):118-122.
    [71] Heftmann E, Krochta J M, Daniel F, et al. The chromatofuge, an apparatusfor preparative rapid radial column chromatography[J]. Journal ofChromatography,1972,66(2):365-369.
    [72]谭天伟.生物化学工程[M].北京:化学工业出版社,2008:284.
    [73] Charlotte C, Marcel R, Emil Z, et al. Evaluation of radial chromatographyversus axial chromatography, practical approach[J]. Journal ofChromatography B,2007(845):191-199.
    [74] Gu T Y, Tsai G J, Tsao G T. Atheoretical study of multicomponent radialflow chromatography[J]. Chemical Engineer Science,1991,46(5-6):1279-1288.
    [75] Peter R L. Large-scale ion-exchange column chromatography of proteinscomparison of different formats[J]. Journal of Chromatography B,2003(790):17-33.
    [76]陈戈.液相色谱分离血浆蛋白的研究与应用[D].北京科技大学,2000.
    [77] Sun T, Chen G, Liu Y, et al. Purification of human prothrombin fromNitschmann fraction III: using DEAE membrane radial flowchromatography[J]. Journal of Chromatography B,2000(742):109-114.
    [78]郭立安,阎哲,杨晓东,等.促卵泡激素的径向色谱纯化工艺[J].色谱,2000,18(6):577-579.
    [79]杨利,贾凌云,郭玉夙,等.径向色谱柱用金属螯合亲和膜色谱介质的合成方法[P].中国专利:97105052. X,1998-07-29.
    [80]徐明波,董晓杰,阎国珍,等.径向离子交换色谱柱在生物工程产品下游纯化中的应用[J].色谱,1991,9(5):284-287.
    [81] Lay M C, Fee C J, Swan J E. Continuous radial flow chromatography ofproteins[J]. Food and Bioproducts Processing,84(C1):78-83.
    [82]陈国良,张晓慧,商德发,等.多孔整体固定相的制备与色谱性能[J].分析化学,2006,10(10):1496-1500.
    [83]杨长龙.径向整体柱的制备与色谱性能研究[D].大连理工大学博士学位论文,2004.
    [84] Lay M C, Fee C J, Swan J E. Continuous radial flow chromatography ofproteins. Food and Bioproducts Processing,2006,84(C):78-83.
    [85]孙涛,刘一平,卜凤荣,等.膜径向离子交换色谱分离凝血酶原复合物[J].色谱,2000,7,18(4):350-353.
    [86]刘传暄,张艳红,马请钧.径向离子交换色谱分离纯化分泌表达地重组霍乱毒素B亚单位[J].军事医学科学院院刊,1998,22(3):238-239.
    [87]张正光,肖成祖,郭志霞,等.用国产径向色谱柱和羟基磷灰石纯化细胞工程尿激酶原[J].军事医学科学院院刊,1997,21(1):47-50.
    [88] Gustavsson P E, Larsson P O. Continuous superporous agarose beds in radialflow columns[J]. Journal of Chromatography A,2001,925:69-78.
    [89]刘国诠.生物工程下游技术[M].北京:化学工业出版社,1993,260-269.
    [90] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method fordetermination of sugars and related substances[J]. Analytical Chemistry,1956(28):350-356.
    [91]赵凯,许鹏举,谷广烨.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008,29(8):534-536.
    [92] Bonjoch N P, Tamayo P R. Protein content quantification by Bradfordmethod[M]. Handbook of plan ecophysiology techniques.2003:283-295.
    [93] Chen Y L, Lin S Z, Chang J Y, et al. In vitro and in vivo studies of a novelpotential anticancer agent of isochaihulactone on human lung cancer A549cells[J]. Biochemical Pharmacology,2006(72):308-319.
    [94] Inngjerdingen K T, Coulibaly A, Diallo D, et al. A complement fixingpolysaccharides from Biophytum pertersianum Klotzsch, a medicinal plantfrom Mali, West Africa[J]. Biomacromolecules,2006(7):48-53.
    [95] Gr nhaug T E, Ghildyal P, Barsett H, et al. Bioactive arabinogalactans fromthe leaves of Opilia celtidifolia Endl. ex Walp.(Opiliaceae)[J]. Glycobiology,2010(20):1654-1664.
    [96] Barsett H, Paulsen B S, Habte Y. Further characterization of polysaccharidesin seeds from Ulmus glabra Huds[J]. Carbohydrate Polymers,1992(18):125–130.
    [97] Kim J B, Carpita N C. Changes in esterification of the uronic acid groups ofcell wall polysaccharides during elongation of maize coleoptiles[J]. PlantPhysiology,1992(98):646-653.
    [98] Edelstein L, Hadar Y. A model for pellet size distribution in submergedmycelial cultures[J]. Journal of theoretical biology,1983(105):427~452.
    [99] Lin P J, Scholz A, Krull R. Effect of volumetric power input by aeration andagitation on pellet morphology and product formation of Aspergillus niger[J].Biochemical Engineering Journal,2010,49(2):213-220.
    [100] Dunkelberger J R, Song W C. Complement and its role in innate andadaptive immune responses[J]. Cell Research,2010(20):34-50.
    [101] Diallo D, Paulsen B S, Lijeback T H, et al. The Malian medicinal plantTrichilia emetica, studies on polysaccharides with complement fixingability[J]. Journal of Ethnopharmacology,2003(84):279-287.
    [102] Song C H, Jeon Y J, Yang B K, et al. Anti-complementary activity ofendopolymers produced from submerged mycelial culture of higher fungiwith particular reference to Lentinus edodes[J]. Biotechnology Letters,1998,20(8):741-744.
    [103] Yang B K, Gu Y A, Jeong Y T, et al. Anti-complementary activities of Exo-and Endo-biopolymers by submerged mycelial culture of eight differentmushrooms[J]. Mycobiology,2007,35(3):145-149.
    [104] Jeong S C, Yang B K, Ra K S. et al. Characteristics of anti-complementarybiopolymers extracted from Coriolus versicolor[J]. Carbohydrate Polymers,2004(55):255-263.
    [105]张宁,彭志英,范瑞,等.农副产品发酵产微生物胞外多糖PS-9415的研究[J],食品科技,2003,11:9-11.
    [106]朱国振,真姬菇液体发酵工艺优化及其多糖活性的研究[D],哈尔滨工业大学,2009.
    [107] Sun H H, Mao W J, Chen Y, et al. Isolation, chemical characteristics andantioxidant properties of the polysaccharides from marine fungusPenicillium sp. F23-2[J]. Carbohydrate Polymers,2009(78):117–124.
    [108] Yang X B, Gao X D, Han F, et al. Sulfation of a polysaccharide produced bya marine filamentous fungus Phoma herbarum YS4108alters its antioxidantproperties in vitro[J]. Biochimica et Biophysica Acta,2005,1725:120-127.
    [109] Oh J Y, Cho E J, Nam S H, et al. Production of polysaccharide-peptidecomplexes by submerged mycelial culture of an entomopathogenic fungus[J].Process Biochemistry,2007(42):352-362.
    [110] Schepetkin I A, Xie G, Kirpotina L N, et al. Macrophage immunomodulatoryactivity of polysaccharides isolated from Opuntia polyacantha[J].International Immunopharmacology,2008(8):1455-1466.
    [111] Li F, Yuan Q P, Rashid F. Isolation, purfication and immunobiologicalactivity of a new water-soluble bee pollen polysaccharide from Crataeguspinnatifida Bge. Carbohydrate Polymers,2009(78):80-88.
    [112] Leung M Y, Fung K P, Choy Y M. The isolation and characterization of animmunomodulatory and anti-tumor polysaccharide preparation fromFlammulina velutipes[J]. Immunopharmacology,1997(35):255–263.
    [113] Yalin W, Ishurd O, Cuirong S, et al. Structure analysis and antitumor activityof (1→3)-β-D-glucans (Cordyglucans) from the mycelia of Cordycepssinensis. Planta Medica,2005(71):381–384.
    [114] Kim G Y, Park H S, Nam B H, et al. Purifcation and characterization ofacidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk.&M. A. Curtis) Teng[J]. Bioresource Technology,2003(89):81–87.
    [115] Kim G Y, Choi G S, Lee S H, et al. Acidic polysaccharide isolated fromPhellinus linteus enhances through the up-regulation of nitric oxide andtumor necrosis factor-α from peritoneal macrophages[J]. Journal ofEthnopharmacology,2004(95):69–76.
    [116] Yang X B, Gao X D, Han F, et al. Purification, characterization andenzymatic degradation of YCP, a polysaccharide from marine filamentousfungus Phoma herbarum YS4108[J]. Biochimie,2005(87):747-754.
    [117] Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis andantioxidant activity of a polysaccharide from the fruiting bodies ofGanoderma atrum[J]. Food Chemistry,2008(107):231-241.
    [118] Pang X B, Yao W B, Yang X B, et al. Purification, characterization andbiological activity on hepatocytes of a polysaccharide from Flammulinavelutipes mycelium[J]. Carbohydrate Polymers,2007(70):291–297.
    [119] Qin C G, Huang K X, Xu H B. Isolation and characterization of a novelpolysaccharide from the mucus of the loach, Misgurnus anguillicaudatus[J].Carbohydrate Polymers,2002(49):367-371.
    [120] Xie G, Schepetkin I A, Quinn M T. Immunomodulatory activity of acidicpolysaccharides isolated from Tanacetum vulgare L[J]. InternationalImmunopharmacology,2007(7):1639-1650.
    [121]陈木森,上官新晨,徐睿庸.大孔树脂纯化青钱柳多糖的研究[J],西北农业学报,2007,16(4):275-278.
    [122]高美凤,俞婷婷.黄芪多糖中脱蛋白方法的研究[J].中华中医药学刊,2008,26(3):614-615.
    [123]李瑞军,李德耀,张显峰,等.大孔树脂法去除淫羊藿多糖中蛋白质的研究[J].高等学校化学学报,2006,27(1):67-70.
    [124]夏玮,吕庆,张文清,等.大孔吸附树脂脱色桑叶多糖的研究[J].食品与发酵工业,2007,33(2):141-144.
    [125]赵凤春.树脂吸附发分离纯化黄芪多糖的研究[J].食品与发酵工业,2009,35(1):179-181.
    [126] Jiang H Y, Sun P L, He J Z, et al. Rapid purification of polysaccharidesusing novel radial flow ion-exchange by response surface methodology fromGanoderma lucidum[J]. Food and Bioproducts Processing,2012(90):1-8.
    [127]姜慧燕,邵平,孙培龙.径向流色谱分离技术原理及应用分析[J].核农学报,2009,23(1):118-122.
    [128] Dai Y J, Wang J W, Jia S R, et al. Study on the Purification ofPolysaccharides from Noscoc flagelliforme with Radial FlowChromatography[J]. Biotechnology and Bioprocess Engineering,2009(14):377-382.
    [129] Sutherland I A. Recent progress on the industrial scale-up of counter-currentchromatography[J]. Journal of Chromatography A,2007(1151):6-13.
    [130] Sun T, Chen G, Liu Y P, et al. Chromatography of human prothrombin fromNitschmann fraction III on DEAE Sepharose Fast Flow using axial andradial flow column[J]. Biomedical Chromatography,2000(14):478-482.
    [131] Cabanne C, Raedts M, Zavadzky E, et al. Evaluation of radialchromatography versus axial chromatography, practical approach[J]. Journalof chromatography B,2007(845):191-199.
    [132] Kim Y H, Lee E K. Comparison of axial and radial flow chromatography onprotein separation speed and resolution[J]. Korean Journal of ChemicalEngineering,1996(13):466-472.
    [133] Ikekawa T, Saitoh H, Feng W, et al. Matsuzawa T. Antitumor activity ofHypsizigus marmoreus. I. Antitumor activity of extracts andpolysaccharides[J]. Chemical Pharmaceutical bulletin journal,1992(40):1954-1957.
    [134] Bao H H, Choi W S, You S G. Effect of Sulfated Modification on theMolecular Characteristics and Biological Activities of Polysaccharides fromHypsizigus marmoreus[J]. Bioscience, Biotechnology, and Biochemistry,2010(74):1408-1414.
    [135] Chihara G, Hamuro J, Maeda Y Y, et al. Fractionation and purification of thepolysaccharides with marked antitumor activity, especially Lentinan, fromLentinus edodes(Berk.) Sing.(an edible mushroom)[J]. Cancer Research,1970(30):2776-2781.
    [136] Furue H. Clinical evaluation of Schizophyllan (SPG) in gastriccancer-randimised control studies[J]. Internationa Journal ofImmunopharmacology,1985(7):333-336.
    [137] Taguchi T, Furue H, Kimura T, et al. End point result of a randomizedcontrolled study of the treatment of gastrointestinal cancer with acombination of lentinan and chemotherapeutic agents[J]. Experpta Medica:151-165.
    [138] Mao F, Xiao B, Jiang Z, et al. Anticancer effect of Lycium barbarumpolysaccharides on colon cancer cells involves G0/G1phase arrest[J].Medical Oncology,2011,28(1):121-126.
    [139] Lee J S, Cho J Y, Hong E K. Study on macrophage activation and structuralcharacteristics of purified polysaccharides from the liquid culture broth ofHericium erinaceus[J]. Carbohydrate Polymers,2009,78(1):162-168.
    [140] Li F, Wang F F, Yu F, et al. In vitro antioxidant and anticancer activities ofethanolic extract of selenium-enriched green tea[J]. Food Chemistry,2008(111):165-170.
    [141] Fang X B, Jiang B, Wang X L. Purification and partial characterization of anacidic polysaccharide with complement fixing ability from the stems ofAvicennia Marina[J]. Journal of Biochemistry and Molecular Biology,2006(39):546-555.
    [142] Samulesen A B, Paulsen B S, Wold J K, et al. Characterization of abiologically active pectin from Plantago major L[J]. Carbohydrate Polymers,1996(30):37-44.
    [143] Gordon S. The role of the macrophage in immune regulation[J]. Research inImmunology,1998(149):685-688.
    [144] Paulnock D M. Macrophage activation by T cells[J]. Current Opinion inImmunology,1992(4):344-349.
    [145] Jeong S C, Koyyalamudi S R, Jeong Y T, et al. MacrophageImmunomodulating and Antitumor activities of Polysaccharides Isolatedfrom Agaricus bisporus White Button Mushrooms. Journal of MedicinalFood.2012(15):58-65.
    [146] Kim G Y, Choi G S, Lee S H, et al. Acidic polysaccharide isolated fromPhellinus linteus enhances through the up-regulation of nitric oxide andtumor necrosis factor from peritoneal macrophages[J]. Journal ofEthnopharmacology,2004(95):69–76.
    [147] Cho S M, Park J S, Kim K P, et al. Chemical features and purification ofimmunostimulating polysaccharides from the fruit bodies of Agaricusblazei[J]. Korean Jounal of Medical Mycology,1999(27):170-174.
    [148] Ray T L, Hanson A, Ray L F, et al. Purification of a Mannan from Candidaalbicans which activates serum complement[J]. Journal of InvestigativeDermatology,1973(73):269-274.
    [149] Coenen G J. Structural characterization of native pectins[D]. Ph.D. thesisWageningen University, the Netherlands.2007, Chapter1, p.6.
    [150] Gr nhaug T E, Kiyohara H, Sveaass A, et al. Beta-D-(1→4)-galactancontaining side chains in RG-I regions of pectic polysaccharides fromBiophytum petersianum Klotzsch. contribute to expression ofimmunomodulating activity against intestinal Peyer’s patch cells andmacrophages[J]. Phytochemistry,2011(72):2139-2147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700