用户名: 密码: 验证码:
天然彩色棉色素组分、结构及其相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然彩色棉是纤维本身具有自然色彩的棉花品种的统称,其颜色呈现是棉纤维细胞在分化和发育过程中色素物质沉积的结果。目前,通过国家审定并大规模种植同时成功应用于纺织品开发的只有绿色和棕色两大品系。天然彩色棉制品具有色泽自然、柔和典雅、质地柔软等特点,用天然彩色棉纤维生产的纺织品无需染色,可降低加工成本,减少污水排放,是名副其实的生态纺织品。但是,目前能纺织应用的天然彩色棉色谱不全、颜色单调、色素不稳定、纤维品质相对较差,这些问题已成为影响彩色棉产业发展的瓶颈。因此,影响天然彩色棉颜色的色素种类和性质,目前已成为研究和开发天然彩色棉产品的关键问题。本文主要研究绿色和棕色两种天然彩色棉纤维色素的提取、分离和组分的结构鉴定,并对绿色棉纤维颜色稳定性的改善及它们的抗菌性能和紫外可见漫反射光谱性能进行了初步探讨。
     本文首先系统研究了天然绿色棉和棕色棉纤维色素的溶解性能,通过比较分别选用无水乙醇和70%乙醇水溶液为溶剂进行绿色棉和棕色棉纤维色素提取,然后利用初步纯化的色素进行化学性质和光谱分析。结果表明两种天然彩色棉色素类型不同,天然绿色棉色素为极性较弱的碱溶性化合物,含有一种羟基被苷化、并且具有邻二酚羟基的黄酮醇类化合物;天然棕色棉色素为极性较强的水溶性化合物,含有缩合单宁或是缩合单宁氧化而成的苯醌类化合物。
     针对天然绿色棉色素提取较困难,采用无水乙醇为提取剂,运用正交实验设计方法,探索了天然绿色棉色素在超声波辅助下的最佳萃取工艺条件,并建立一种测定天然绿色棉纤维色素萃取效率的相对定量方法;同时探讨了超声波辅助萃取时不同的工艺条件对色素萃取效率的影响,并与普通浸提效率进行对比分析;文中对天然绿色棉色素的超临界萃取方法也进行了初步探索。研究结果发现:超声波辅助萃取比普通浸提有明显优势,在同等实验条件下,超声辅助萃取20min可达到普通浸提5h的效果,同时,超声波辅助萃取对天然绿色棉色素成分和结构无明显影响。研究表明在超声频率为40KHz、功率为100W时的萃取天然绿色棉色素的最佳工艺条件为:温度70℃,萃取时间100min,料液比为1:125。超临界流体萃取实验发现在压力30MPa、80℃萃取5h,同时加适量夹带剂的条件下可提取部分天然绿色棉色素。在一定的工艺条件下,超临界流体萃取可使天然绿色棉色素向外部转移,增深天然绿色棉纤维表层的颜色。
     研究获得了一种天然绿色棉色素物质并对结构进行了鉴定。通过对天然绿色棉色素成分用超声波辅助提取法萃取、采用C18反相硅胶柱进行分离纯化,并利用紫外光谱、红外光谱、质谱、核磁共振谱图进行结构表征。研究发现,天然绿色棉色素由多组分组成,其中一种主要组分具有类黄酮化合物的性质,分离干燥后该组分为淡黄色粉末,分子量为592。这种主要组分具有pH依赖性,在碱溶液中颜色随着pH的升高而加深,其颜色变化与碱处理使天然绿色棉纤维的颜色变化规律一致。通过结构鉴定得知,这种主要色素组分可能结构为具有3',4'-OH、6,7-OH、5-OCH3,并且在6-C上连有葡萄糖基、3-OH被取代的黄酮醇类化合物。分离到的其它两种组分也属于性质类似的黄酮类化合物,其具体分子结构需进一步分离和鉴定。
     通过对天然棕色棉色素成分萃取,采用聚酰胺柱层析、反相高效液相色谱(RP-HPLC)、制备型液相色谱分离,并利用MADLI-TOF MS和ESI-MS进行分子鉴定,结果表明天然棕色棉色素提取物组分复杂,分子量主要分布在850-1250之间。高效液相色谱反相C18柱可大致将天然棕色棉色素分离,天然棕色棉色素提取液至少含有5种成分,包括4种在反相色谱柱上保留性较差的组分和1簇分子量跨度较大的混合组分。以聚酰胺为吸附剂,依次用蒸馏水、50%丙酮、pH=9.0的氨水和0.3%尿素水溶液为洗脱剂的柱层析体系可有效地将天然棕色棉色素提取液分为4部分。采用反相C18制备柱只能将蒸馏水洗脱部分的组分有效分离,得到了两种有色组分和两种无色组分。分离得到的两种有色成分不属于同一类物质,一种判断为除缩合单宁外的其它酚类化合物,另一种判断为B型缩合单宁的三聚或者更高聚体。分离得到的两种无色成分的结构相似,只相差一个苯环,推测两者可能为含多个芳环的木脂素类物质。
     针对天然绿色棉色素不稳定,研究获得了一种改善天然绿色棉纤维颜色稳定的新方法。用石油醚预处理天然绿色棉纤维,可提高天然绿色棉色泽的热稳定性和日晒牢度。通过GC-MS研究发现用石油醚预处理可去除天然绿色棉纤维中部分不利于颜色保持稳定的化学成分。石油醚预处理工艺对需高温整理的天然彩色棉产品具有潜在应用价值。
     发现了天然棕色棉的天然抗菌性。采用改良的AATTCC100-2004《纺织品抗菌性能的定量评估》对经脱脂处理后的天然彩色棉纤维抗菌性能进行定量测定,并用药敏纸片扩散法(抑菌圈法)对天然彩色棉色素进行抑菌实验分析。实验发现经石油醚进行脱脂处理后的天然棕色棉纤维表现出一定的抗菌性能。脱脂处理后的天然深棕色棉对肺炎克雷伯氏菌和金黄色葡萄球菌的抑菌率分别达到96.4%和89.1%;棕色棉颜色越深,抗菌性能越好;而普通白棉与天然绿色棉纤维抑菌效果不明显。天然棕色棉色素类物质影响天然棕色棉的抑菌性能,抑菌圈法测试结果表明天然棕色棉色素具有较好的抑菌效果并且有一定的抑菌耐久性。棕色棉色素在人体汗液环境处理中抑菌性能不变,在高温短时间处理后抑菌能力有所下降,并且处理温度越高,色素的抑菌能力下降越大,但抑菌能力仍有较好地保留。
     利用天然彩色棉的颜色特性,对两种天然彩色棉纤维的紫外可见漫反射光谱性能进行初步探讨。实验发现天然彩色棉纤维的紫外可见漫反射光谱与染色棉、白棉不同,用紫外可见漫反射光谱法在鉴别天然彩色棉、快速定量测定天然彩色棉与白棉纤维混纺比方面具有潜在应用价值。对本文研究的天然彩色棉与白棉混纺,在450nm波长处具有较好的定量关系,反射率与天然绿色棉含量的关系满足方程y=-14.165Ln(x)+16.3,其R2达到0.9918;反射率与天然棕色棉含量的关系满足方程为y=-14.799Ln(x)+6.0894,其R2达到0.9903。
Naturally colored cotton (NCC) is a kind of cotton with natural color in its fiber. Theappearance of fiber color is the result of production and accumulation of the fiber pigment infiber cell. Up to now, only the brown and green NCC fiber can be used in machine spinningtextiles. NCC fibers are of interest in the textile industry because they require little dyeing andresult in less environmental pollution. NCC produces have some excellent properties, such asnatural luster, elegant, soft, and so on. But some of their shortcomings have restricted the furtherdevelopment of NCC industry, such as its monotonous color, poor fiber quality and bad colorstability. Therefore, the type and property of pigment of NCC fiber have become hot issues forthe development of NCC production. The main aim of this paper was to extract, separate andidentify the pigment of green NCC and brown NCC fiber. Also, the improvement of colorchange, the antibacterial performances and UV-visible diffuse reflectance spectral UV-VisDRS properties were analyzed preliminarily.
     At first, solubility of the pigment in green NCC and brown NCC fiber was researchedsystemically. Absolute ethyl alcohol and70%ethanol aqueous solution were selected as pigmentextraction solvent for green NCC and brown NCC, respectively. According to the chemicalcharacteristics and the wave spectra analysis, pigment types of two kinds NCCs are different.The pigment of green NCC is weaker polarity and alkali-soluble compound, and it may belong toflavonol with two adjacent hydroxide groups and indican replaced a hydroxide group. Thepigment of brown NCC is strong polarity and water-soluble compound, and it may belong tocondensed tannin (CT) or quinine from condensed tannin oxidation.
     Because of difficult extraction of green NCC pigment, this paper analyzed the optimumextraction process of green NCC pigment with ultrasonic-assisted by using orthogonal testdesign and using absolute ethyl alcohol as extractant, and built a method for the relativequantitative test of pigment in extract liquor of green NCC using an ultravioletspectrophotometer. Comparing with the ordinary extraction, effects of different processconditions with ultrasonic-assisted on pigment extraction efficiency were discussed. In the paper,the supercritical extraction method of green NCC pigment was also explored. The resultsindicated that the pigment composition extracted by ultrasonic-assisted method was as same as that extracted by ordinary extraction, while the extraction efficiency was significantly increased.At the same condition, the efficiency of ultrasonic-assisted extraction of green NCC pigment for20min was equivalent to that of ordinary extraction for5h. By orthogonal experiment, theoptimum extraction technology with ultrasonic frequency40KHz and power100W was:temperature70℃, time100min, solid-liquid ratio1陶奉125ml. At the condition of pressure30MPa,80℃,5h with right amount entainer, the green NCC pigment could be extracted bysupercritical fluid extraction method. In a certain process, supercritical fluid extraction can makegreen NCC pigment to external transfer, and deepen the color of fiber surface.
     This paper got a kind of pigment material in green NCC and identified its structure. Afterextraction with ultrasonic-assisted, the extracted pigments of green NCC were purified with C18reversed-phase silica gel column, and identified with UV-vis, IR, MS and NMR. Resultsindicated that green NCC pigment is multicomponent. One of the main ingredients was separated,and it has properties of flavonoid compound. After drying, this separated main component islight yellow powder, and molecular weight is592. It has intensive pH value dependence. Inalkali solution, its color darkens with the increase of pH value. This color change is consistentwith the color change rule of green NCC fiber with alkali treatment. Results indicated that thisgreen cotton pigment is a kind of flavonoid also, it has6,7–OH,5–OCH3,6–C–Glu in ring A and3’,4’–OH in ring B, in addition,3–OH is possibly being substituted. Other two separatedcomponents belong to flavonoid compounds also, and their properties are similar. Theirmolecular structure needs to separate and identify in the further.
     The extracted pigments of brown NCC were purified with polyamide columnchromatography, reverse-phase high-performance liquid chromatography (RP-HPLC) andpreparative liquid chromatography, and identified with UV-vis, MADLI-TOF MS and ESI-MS.Results indicated that there were many ingredients in brown NCC pigment extract, most ofwhich were in the850~1250molecular-weight (MW) region. The pigment extracts of brownNCC could be successfully separated by preparative C18-Reversed-phase chromatography, thepigment extracts consists of five components at least, including four poor reservationscompositions on reverse phase column and one cluster mixture with span bigger MW. Usingdistilled water,50%acetone, pH=9.0ammonia water and0.3%urea solution for elution agent inturn, the pigment extract could be effectively divided into four part fraction by polyamidecolumn chromatography. Two colored and two colorless compositions were isolated from thewater elusion segment by preparative C18-Reversed-phase chromatography. The two colored components didn't belong to the same kind of substance. One belongs to another phenoliccompound in addition to the CT, the other may be the trimer or tetramer of B type CT. Thestructures of two colorless components were extremely similar. A phenyl was the only difference,and they probably belonged to lignans with multiple aromatic rings.
     This paper reports a novel treatment method for improving the color stability of green NCC.Pretreatment with petroleum ether can improve color thermal stability and light fastness. Ethanolextracts from green NCC were analyzed by Gas chromatography-mass spectrometry (GC-MS).Results indicated that treatment with petroleum ether can remove certain components which maybe detrimental to the color stability of green NCC. This treatment method is useful for thatneeding high-temperature finishing of green NCC products.
     The antibacterial property of brown NCC was discovered. The antibacterial activity ofNCCs was evaluated though improved AATCC Test Method100-2004, and the antibacterialperformance of the pigments in NCCs was analyzed with the K-B programe (Inhibition zonemethod). The experiment found that pigments in NCCs influence antibacterial properties ofNCCs. After degreasing process with petroleum ether, brown NCC shows excellent antibacterialproperties with a reduction rate of96.4%and89.1%, when contacting with Klebsiellapeneumoniae and Staphylococcus aureus, respectively. While the antibacterial effect of greenNCC and white cotton were not obvious. The darker was brown NCC, the better wasantibacterial performance. The antibacterial activity of brown NCC is relevant to its pigment.Inhibition zone methods showed that the pigment of brown NCC has good and durableantibacterial ability. The antibacterial effect of the pigment extract in brown NCC shows aninsignificant change under human body sweat conditions. General textile high temperaturecuring conditions will decrease its antibacterial activity, but the antibacterial activity still hassatisfied retention.
     Finally, using of the color character, UV-Vis DRS properties of NCCs were analyzedpreliminarily. It was found that UV-Vis DRS of NCC is different from dyeing cotton and whitecotton. UV-Vis DRS can identify NCC and rapidly determinate the blended ratio of NCC andwhite cotton fiber. For the investigative NCC and white cotton fiber,450nm wavelength can beused for characteristic wavelength to quantitatively predict. The relationships of reflectivity andgreen NCC content meet the equation: y=尼14.165Ln (x)+16.3, R2reaches0.9918; the relationships of reflectivity and brown NCC content meet the equation: y=尼14.799Ln (x)+6.0894, R~2reaches0.9903.
引文
[1]邱新棉.天然彩色棉研究策略及发展设想[C]//中国棉花学会2011年年会.中国安徽安庆,2011:95-96.
    [2]崔淑芳,张海娜,李俊兰,等.彩色棉研究进展[J].中国棉花,2011,38(2):2-5.
    [3]Oktem T, Gurel A, Akdemir H. The characteristics attributes and performance of naturally colored cotton [J]. AATCC Review,2003,3(5):24-27.
    [4]Leary R H. Colored cotton [J]. Textile Asia,2000(1):42-43.
    [5]王淑民.彩色棉溯源与研究[J].世界农业,2000(9):19-21.
    [6]Murthy M S. Never say dye:the story of coloured cotton [J]. Resonance,2001(9):29-35.
    [7]Wasif A Ⅰ, Singh V L. Naturally coloured cotton:Growing awareness [J]. Colourage,2005(52):89-92.
    [8]Kimmel L B, Day M P. New Life for an old fiber:Attributes and advantages of naturally colored cotton [J]. AATCC Review,2001,1(10):32-36.
    [9]Vreeland J M. Naturally colored and organically grown cottons:anthropological and historical perspectives [C]//Proceedings of the1993Beltwide cotton Conference, American:National Cotton Council of American,1993:49-53.
    [10]Fox, Salley. Naturally coloured cotton [J]. Spin off,1987,46(12):29-31.
    [11]徐生强,李贤清,徐成,等.国际天然彩色棉及绿色纤维的研究动态[J].中国标准化,2005(9):13-16.
    [12]熊晓坤,朱庆骅.2010-2015年中国彩棉产业投资分析及前景预测报告[EB/OL].中投顾问[2012-07-14]. http://www.dragonraj.
    [13]赵小林.中国天然彩色棉产业未来发展与展望[N].中国特产报.2007-09-22(003).
    [14]汤寿伍.天然彩色棉花与棉业可持续发展[C]//中国棉花学会2010年年会.中国吉林延吉,2010:87-88.
    [15]于万春.天然彩色棉花与现代纺织[J].中国棉麻流通经济,2011(4):17-18.
    [16]胡伯陶.天然彩色棉具有较大的发展潜力[J].纺织信息周刊,2004(26):19.
    [17]唐志荣,李茂松,周文龙,等.天然彩色棉发展中存在的问题及对策[J].丝绸,2004(2):38-40.
    [18]杜雄明,张天真,袁有禄.有色棉的研究利用现状及展望[J].中国农学通报,1997,13(3):30-32.
    [19]Kohel R J. Geneticals analysis of fiber color variants in cotton [J]. Crop Science,1985(25):793-796.
    [20]田新惠.彩色棉GhF3'H与GhF3'5'H基因的克隆、鉴定及四种类黄酮物质的HPLC分析[D].新疆:石河子大学,2010.
    [21]Singh V V, Mohan P, Kothandaraman R. Naturally colored lint genetic resources in National Cotton Gene Bank, their character istics and utilization [J]. Cotton Improve,1996,21(2):151-158.
    [22]马轩.彩色棉生物化学和分子生物学的初步研究[D].北京:中国农业科学院,2004.
    [23]尤春源,聂新辉,吕军,等.新疆彩色棉育种进展现状及存在的问题[J].中国棉花,2011,38(2):6-8.
    [24]占卫国.论长江流域棉区天然彩色棉的开发与利用[J].江西棉花,2011,33(3):3-6.
    [25]汤寿伍,赵天鹏,张振南.新疆天然彩色棉的研发现状与应用[J].中国棉花,2005,32(5):4-5.
    [26]John B. Price assessing the quality of four naturally coloured cotton [J]. Textile Res.J,2001,71(11):993-1002.
    [27]Basra A S, Malik C P. Development of the cotton fiber [J]. Inter.Rev.Cytology,1984(89):65-113.
    [28]赵向前.彩色棉的纤维色素与品质形成机理[D].杭州:浙江大学,2003.
    [29]Waghmare V N, Koranne K D. Colored cotton:present status, problems and future potentials [J]. Geneties&Plant Breeding,1998,58(1):1-15.
    [30]邱新棉.天然彩色棉研究进展与发展前景[J].棉花学报,2004,16(4):249-254.
    [31]潘兆娥,杜雄明,孙君灵,等.遮光对彩色棉的色泽及纤维品质的影响[J].棉花学报,2006,18(5):264-268.
    [32]詹少华.天然棕色棉纤维色素合成机理及其SRAP分子标记[D].合肥:安徽农业大学,2007.
    [33]Hua S J, Wan X D, Yuan S N, et al. Characterization of pigmentation and cellulose synthesis in colored cotton fibers [J]. Crop Science,2007,47(7):1540-1547.
    [34]李悦有.有色棉的纤维特性研究与杂种优势利用[D].杭州:浙江大学,2001.
    [35]Ware J O. Inheritance of lint colours in upland cotton [J]. SOC Agron,1932(24):550-562.
    [36]Harland S C. Reversal of dominance in the interspecific cross G. barbadense L. x G. hirsutum L. and its bearing on Fisher's Theory of Dominance [J]. Genets,1932,25:262-270.
    [37]Harland S C. The inhertance of brown lint in new world cottons [J]. Genets,1995(2):31-37.
    [38](苏)西蒙古良.陆地棉纤维色泽的遗传[J].国外农学,1984(3):17-19.
    [39]Kohel R J. Genetic analysis of fiber color variants in cotton [J]. Crop Science,1985,25:793-797.
    [40]华水金,袁淑娜,赵向前,等.棕色、绿色和白色棉品系光合特性的比较[J].棉花学报,2009,21(2):121-126.
    [41]石玉真,杜雄明,刘国强,等.天然有色棉纤维和短绒色泽遗传分析[J].棉花学报,2002,14(4):242-248.
    [42]孙东磊,孙君灵,杜雄明,等.棕色棉纤维和短绒色泽遗传研究[J].安徽农业科学,2008,36(15):6254-6255.
    [43]Joshipc, Wadhwani A M, Johri B M. Morphological and embryological studies of Gossypium [J]. PROC NAT INST SCI India,1967,33(1):37-93.
    [44]Meinertmc, Delmer D P. Changes in bioehemical composition of the cellwall in cotton fiber during development [J]. Plant Physiol,1977,59(2):1088-1097.
    [45]Tang Z R, Ma M B, Zhou W L. Effects on structure and performance of naturally green cotton after various extractions [J]. Advanced Materials Research,2012(441):666-672.
    [46]朱育平,曹秋玲,陈晓,等.天然彩棉的结晶度和取向度研究[J].东华大学学报(自然科学版),2009,35(6):626-631.
    [47]Chen H L, Alex Y. X-ray diffractometric study of microcrystallite size of naturally colored cottons [J]. Journal of Applied Polymer Science,2000,76(9):1466-1471.
    [48]程明,柯娜.彩棉和白棉结构和性能的比较[J].中国化纤,2006(3):29-30.
    [49]艾比拜·买买提,杨忠.新疆彩色棉纤维化学成份分析及与白棉对比[J].新疆纺织,2005(3):18-20.
    [50]Parmar M S, Girl C C. Spectral characterization and study on naturally coloured cotton [J]. Colourage,2001,49(9):21-26.
    [51]张镁,胡伯陶,赵向前.天然彩色棉的基础和应用[M].北京:中国纺织出版社,2005.
    [52]Pan Z, Sun D L, Sun J L, et al. Effects of fiber wax and cellulose content on colored cotton fiber quality [J]. Euphytica,2010,173(2):141-149.
    [53]Yatsu L Y, Mod R R, Kolattukudy P E. Cytochemical studies of green-colored cotton fibers[J]. Plant Physiol,1983,72(1):72-73.
    [54]Yatsu L Y, Espelie K E, Kolattukudy P E. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized [J]. Plant Physiol,1983,73(2):521-524.
    [55]Schmutz A. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum associated fatty acid elongases [J]. Plant Physiology,1996,110(2):403-411.
    [56]Schmutz A. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin [J]. Phytochemistry,1994,36(6):1343-1346.
    [57]Richards A F, Rowe T, Elesini U S. Structure of naturally coloured cottons [J]. International Journal of Polymeric Materials,2001,47(4):549-557.
    [58]李悦有,王学德.彩色棉纤维的超微结构观察[J].浙江大学学报:农业与生命科学版,2002,28(4):379-382.
    [59]Huang G. Research on the properties of the naturally coloured cottons [J]. Journal of Donghua University (Eng. Ed.),2004,21(6):63-65.
    [60]陈英,宋心远,刘书芳.彩色棉中色素对纤维微结构的影响[J].印染,2004(6):4-6.
    [61]Chen Y, Song X Y. Effect of coloring materials on microstructure of naturally colored cotton [J]. Colourage,2006,55(4):55-58.
    [62]张镁,吴红霞,马长华,等.彩棉纤维的形态结构、超微结构和主要化学组成[J].印染,2002(6):1-5.
    [63]詹少华,林毅,蔡永萍,等.天然棕色棉色素分布规律及色素合成与纤维发育的关系[J].棉花学报,2006,18(3):170-174.
    [64]张美玲,宋宪亮,孙学振,等.彩色棉纤维分化及色素沉积过程观察[J].作物学报,2011,37(7):1280-1288.
    [65]赵向前,王学德.天然彩色棉纤维色素成分的研究[J].作物学报,2005,31(4):456-462.
    [66]Xiao Y H, Zhang Z S, Yin M H, et al. Cotton flavonoid structural genes related to the pigmentation in brown fibers [J]. Biochemical and Biophysical Research Communication,2007,358(1):73-78.
    [67]Ryser U. Cotton fiber initiation an histodifferentiation. Cotton fiber developmental biology, quality improvement and textile procession [M]. New York:New York Food Products Press,1999:1-45.
    [68]马明波,李荣霞,李海祥,等.天然棕色棉色素与白棉棉籽壳色素成分的比较[J].纺织学报,2012,33(1):1-5.
    [69]吕凯,詹少华,林毅.棉籽壳棕色素的提取纯化及其稳定性研究初报[J].中国农学通报,2006,22(9):81-84.
    [70]Halloin J M. Localization and changes in catechin and tannins during development and ripening of cotton seeds [J]. New Phytol,1982,90(3):651-657.
    [71]陈艳成,吴韬,刘海峰,等.新疆棕色棉纤维中原花青素的提取及鉴定[J].西北农业学报,2012,21(3):92-96.
    [72]冀荣.棕色棉色素相关基因RNA干扰载体构建及表达分析[D].北京:中国农业科学院,2011.
    [73]Tian J H, Jia Y H, He S P, et al. The differential expression of fiber Pigment-related genes in coloredcotton[C]//第十二届全国植物基因组学大会.中国河南安阳,2011:128.
    [74]田家欢.彩色棉纤维色素相关基因的表达差异及CHI基因的克隆与分析[D].雅安:四川农业大 学,2011.
    [75]Schmutz A. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres [J]. Planta,1993,189(3):453-460.
    [76]刘书芳.天然彩色棉色素稳定性研究[D].北京:北京服装学院,2001.
    [77]王学德,李悦有.彩色棉纤维色素提取和测定方法的研究[J].浙江大学学报:农业与生命科学版,2002,28(6):596-600.
    [78]Dubravka R, Ankica S, Nives S. Color fastness of naturally dyed cotton under perspiration conditions [J]. Chemical Abstract,1998(12):8.
    [79]Sho Y K, Helen H E. Effect of scouring on the color of naturally-colored cotton and the mechanism of color change [J]. AATCC Review,2008(7):38-43.
    [80]Zhou W L, Bao Y Q, Li M S. The effects of1,2,3,4-butanetetracarboxylic acid (BTCA) finishing on the color of naturally colored cotton fabrics [J]. Research Journal of Textile and Apparel,2009,13(4):26-33.
    [81]Dickerson D K. Naturally colored cotton:resistance to changes in color and durability when refurbished with selected laundry aids [D]. California:California Agricultural Technology Institute,1999:1-6.
    [82]周文龙,邱新棉.天然有色棉湿处理色变规律初探[J].纺织学报,2002,23(3):15-17.
    [83]张镁,胡伯陶.绿色彩棉色素稳定性研究[J].印染,2003(3):1-6.
    [84]Gu Z W, Shi S C. Study of the pigments of the colored cotton [J]. Journal of Donghua University (Eng. Ed.),2004,21(6):115-120.
    [85]於琴,许良英,岳仕芳.天然棕棉色素稳定性探讨[J].染整技术,2008,30(3):19-22.
    [86]关海娣.天然绿色棉的颜色性能研究[D].北京:北京服装学院,2008.
    [87]顾艳,符正申,周文龙.干热处理温度对天然彩色棉色泽性能的影响[J].纺织学报,2009,30(1):60-63.
    [88]胡伟,刘云昌,李茂松,等.高温短时间处理对天然彩色棉色泽的影响[J].纺织学报,2009,30(6):76-79.
    [89]Zhou W L, Gu Y, Cai X J, et al. PH dependence of the color of pigments in naturally colored cotton [C]//Proceedings of the International Conference on Adv. Hangzhou,2008:209-214.
    [90]梁光雁,顾肇文.天然彩色棉色素变化机理探讨及其应用研究[J].纺织学报,2004(3):11-13.
    [91]韩光亭,郑春晓,王秋美,等.pH值对彩棉纤维颜色的影响[J].青岛大学学报(工程技术版), 2003,18(1):55-57.
    [92]詹少华,林毅,蔡永萍,等.天然彩棉棕色素稳定性及其机理研究[J].激光生物学报,2006,15(4):354-358.
    [93]刘书芳,陈英.pH值对天然绿色棉颜色的影响[J].中原工学院学报,2005,16(3):19-21.
    [94]梁光雁.天然彩色棉的固色工艺探讨[D].上海:东华大学,2003..
    [95]于伯龄.天然绿色棉的金属盐固色试验[J].纺织导报,2001(3):80-82.
    [96]廖镜华,黄丽群,吴英杰,等.天然彩色棉绿色环保针织丝光面料[J].化纤与纺织技术,2004(2):13-14.
    [97]顾艳,蔡先君,李茂松,等.金属盐处理对天然彩色棉颜色特性的影响[J].浙江理工大学学报,2008,25(1):10-14.
    [98]向洪平,葛建芳,张蓝月.超声波辅助萃取功能性天然色素的研究与应用进展[J].江苏农业科学,2010(3):360-362.
    [99]Wang J, Zhao Y M, Guo C Y, et al. Ultrasound-assisted extraction of total flavonoids from Inula helenium [J]. Pharmacognosy Magazine,2012,8(30):166-170.
    [100]Wang X S, Wu Y F, Dai S L, et al. Ultrasound-assisted extraction of geniposide from Gardenia jasminoides [J]. Ultrasonics Sonochemistry,2012,19(6):1155-1159.
    [101]Brunner G. Supercritical fluids:technology and application to food processing [J]. J.Food Eng.,2005(67):21-33.
    [102]于娜娜,张丽坤,朱江兰,等.超临界流体萃取原理及应用[J].化工中间体,2011(8):38-43.
    [103]闫秋成,高坤.浅谈微波辅助萃取的应用研究[J].山东畜牧兽医,2012(1):75-77.
    [104]Uysal B, Sozmen F, Kose E O, et al. Solvent-free microwave extraction and hydrodistillation of essential oils from endemic Origanum husnucanbaseri H. Duman, Aytac&A. Duran:comparison of antibacterial activity and contents [J]. Natural Product Research,2010,24(17):1654-1663.
    [105]李政辉.分子蒸馏技术在中药提取中的应用[J].机械设计与制造,2011(5):96-98.
    [106]Liang G, Qiao X, Bi Y, et al. Studies on purification of allicin by molecular distillation [J]. Journal of the Science of Food and Agriculture,2012,92(7):1475-1478.
    [107]范芳.双水相萃取技术的应用进展[J].化学与生物工程,2011,28(7):16-20.
    [108]Lakshmi M, Madhusudhan M, Raghavarao K. Extraction and purification of lipoxygenase from soybean using aqueous Two-Phase system [J]. Food and Bioprocess Technology,2012,5(1):193-199.
    [109]Ketnawa, Sunantha, Chaiwut, et al., Aqueous two-phase extraction of bromelain from pineapple peels ('Phu Lae'cultv.) and its biochemical properties [J]. Food Science and Biotechnology,2011,20(5):1219-1226.
    [110]Anyzewska M, Wojtasik E, Arent Ⅰ. The development and validation of the HLPC method for morphine content determination in poppy straw [J]. ACTA Poloniae Pharmaceutica,2001,58(2):121-126.
    [111]Quan G H, Chin Y W, Lee H K, et al. Preparative isolation and purification of deoxypodophyllotoxin from the rhizomes of Anthriscus sylvestris by high-speed counter-current chromatography [J]. Journal of the Korean Society for Applied Biologic,2010,53(1):110-113.
    [112]邸多隆,郑媛媛,陈小芬,等.高速逆流色谱技术分离纯化天然产物中黄酮类化合物的研究进展[J].分析化学,2011,39(2):269-275.
    [113]Kakehi, Kazuaki, Honda, et al. Analysis of carbohydrates in glycoproteins by high-performance liquid chromatography and high-performance capillary electrophoresis [J]. Applied Biochemistry and Biotechnology,1993,43(1):55-71.
    [114]刘长付,陈媛梅.高效毛细管电泳的进展[J].广州化工,2011,39(17):15-17,72.
    [115]Yi B, Kim C, Yang M. Biological monitoring of bisphenol A with HLPC/FLD and LC/MS/MS assays [J]. Journal of Chromatography. B, Analytical Technolog,2010,878(27):2606-2610.
    [116]顾肇文,梁光雁.天然彩色棉色素的提取、测试与研究[J].印染,2005(13):10-13.
    [117]Sun W G, Xu Y. Study on the composition of pigments in the Nature colored cotton [J]. Journal of Xi'an Polytechnic University,2009,23(2):119-123.
    [118]张小均,田新惠,李明月,等.天然彩色棉纤维色素提取及光谱特性研究[J].棉花学报,2008,20(2):133-136.
    [119]杨永林,张新宇,李艳军,等.天然绿色棉纤维色素提取及薄层色谱分析[J].石河子大学学报(自然科学版),2009(5):554-556.
    [120]茹宗玲.彩色棉纤维的超微结构和化学特性研究[D].北京:中国农业科学院,2010.
    [121]张祥.天然彩色棉品种生长生理特征及其调节研究[D].扬州:扬州大学,2008.
    [122]Schmutz A, Buchala A J, Ryser U. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic Reticulum-Associated fatty acid elongases [J]. Plant Physiology,1996,110(2):403-411.
    [123]詹少华,林毅,蔡永萍,等.天然棕色棉纤维色素光谱学特性及其化学结构初步推断[J].植物学通报,2007,24(1):99-104.
    [124]田新惠,李艳军,张新宇,等.绿色棉纤维类黄酮3',5'羟基化酶基因GhF3',5'H的克隆及实时定量表达分析[J].棉花学报,2010,22(5):403-408.
    [125]吴立军.实用天然有机产物化学[M].北京:人民卫生出版社,2007:6-38.
    [126]黄量,于德泉.紫外光谱在有机化学中的运用[M].北京:科学出版社,1988:15-24.
    [127](美)KR马卡姆.黄酮类化合物结构鉴定技术[M].北京:科学出版社,1990:84-97.
    [128]吴立军.天然药物化学[M].北京:人民卫生出版社,2007:150-155.
    [129]孙达旺.植物单宁化学[M].北京:中国林业出版社,1992:27-28.
    [130]段文贵,耿哲,覃柳妹.黑荆树皮中缩合单宁的提取[J].广西大学学报(自然科学版),2007,32(2):138-142.
    [131]詹少华,林毅,蔡永萍,等.天然棕色棉色素提取、纯化及其UV光谱研究[J].激光生物学报,2004,13(5):324-328.
    [132]AJI库尔萨诺夫.单宁质在茶树内的合成和转化[M].北京:科学出版社,1956:37-40.
    [133]何书美,乔兰侠,刘敬兰.红外光谱法测定芹菜叶提取物中总黄酮的含量[J].分析科学学报,2008,24(2):201-204.
    [134]Zhang L, He J X, Wang S. Structure and thermal properties of natural colored cottons and bombax cotton [J]. Journal of Thermal Analysis and Calorimetry,2009,95(2):653-659.
    [135]唐浩国.黄酮类化合物研究[M].北京:科学出版社,2009:172-174.
    [136]Yatsu L Y, Espelie K E, Kolattukudy P E. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized [J]. Plant Physiology,1983,73(2):521-524.
    [137]Zhang X J, Wu J M, Xia C T, et al. Extraction of rape seed proanthocyanidin with ultrasonic wave [J]. Zhong Yao Cai,2010,33(1):114-118.
    [138]田琴,张小均,张新宇,等.基于UV光谱扫描天然彩色棉色素定量测定方法研究[J].新疆农业科学,2009,46(6):1188-1191.
    [139]任晓燕.天然彩棉色素分光光度计定量测定色素方法的建立[J].安徽农学通报(上半月刊),2009(5):190-191.
    [140]张培成.黄酮化学[M].北京:化学工业出版社,2008:3-4.
    [141]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2001:5-12.
    [142]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,2003:267-269.
    [143]宁永成.有机波谱学谱图解析[M].北京:科学出版社,2010:106-115.
    [144]李海祥,唐志荣,李丹,等.天然绿色棉色素的提取与光谱性质研究[J].浙江理工大学学报,2012, 29(1):32-35.
    [145]周大勇,徐青,薛兴亚,等.高效液相色谱-电喷雾质谱法测定枳壳中黄酮苷类化合物[J].分析化学,2006,34(s):31-35.
    [146]Bate S. Vegetable tannin [M]. London:Academic Press,1962:10-11.
    [147]Bruyne T D, Pieters L, Hendrik D, et al. Condensed vegetable tannins:Biodiversity in structure and biological activities[J]. Biochemical Systematics and Ecology,1999,27(2):445-459.
    [148]向平.植物单宁的MALDI-TOF质谱分析[D].厦门:厦门大学,2007.
    [149]Clenilson M R, Daniel R, Lourdes C S. Metabolic finger printing using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks of Hancornia speciosa [J]. Mass Spectrom,2007,21(1):1907-1914.
    [150]Meister, Ute. New method of citrinin determination by HPLC after polyamide column clean-up [J]. European Food Research and Technology,2004,218(4):394-399.
    [151]蔡鹰,陆晓和,魏群利.聚酰胺柱层析法分离回心草总黄酮的研究[J].药学实践杂志,2009,27(1):58-60.
    [152]吴朝霞,孟宪军,吴朝晖.聚酰胺柱层析提纯原花青素及其产物清除·OH自由基能力的研究[J].食品科学,2005,26(8):113-116.
    [153]马明波,李荣霞,唐志荣,等.天然棕色棉色素的液相色谱分离[J].纺织学报,2012,33(7):12-16.
    [154]张镁,胡伯陶.彩棉纤维的结构特点与加工性能[J].纺织学报,2004,25(5):7-9.
    [155]李茂松,周文龙,唐志荣.天然彩色棉机织物果胶酶处理的色变规律[J].纺织学报,2004,25(5):61-63.
    [156]胡伯陶.浅议天然彩色棉的色彩及其产品加工中的几个问题[J].棉纺织技术,2002,30(5):9-12.
    [157]EP6. Instrumental color measurement [G]. AATCC Technical Manual. USA:AATCC,2001:381-387.
    [158]李海祥.天然绿色棉色素的提取分离与结构研究[D].杭州:浙江理工大学,2010.
    [159]田慧敏,叶静,蒲丛丛.彩棉与木棉的结构及热性能研究[J].棉纺织技术,2010(1):30-33.
    [160]Corradini E, Teixeira E M, Paladin PD, et al. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis [J]. Journal of Thermal Analysis and Calorimetry,2009,97(2):415-419.
    [161]Parmar M S, Chakraborty M. Thermal and burning behavior of naturally colored cotton [J]. Textile Research Journal,2001,71(12):1099-1102.
    [162]Sally V F. Naturally flame resistant cotton fiber:United States, Patent number:54966[P].1994-01-28.
    [163]Vanzandt M J, Horridge P, Dever J K. Flame resistance and physical characteristics of upholstery weight naturally colored cotton [J]. Clothing and Textiles Research Journal,1997,15(4):246-251.
    [164]Morais Teixeira E De, Corrca A C, Manzoil A, et al. Cellulose nanofibers from white and naturally colored cotton fibers [J]. Cellulose,2010,17(3):595-606.
    [165]Gwendoly N H, Patricia C C. The ultraviolet protection factor of naturally-pigmented cotton [J]. The Journal of Cotton Science,2005(9):47-55.
    [166]高敏君.天然彩色棉产品抗紫外线处理的研究[D].上海:东华大学,2002.
    [167]Hsioulien C, Brigitte C. Biodegradation and mildew resistance of naturally colored cottons [J]. Textile Research Journal,2010,80(20):2188-2194.
    [168]Ciegler A, Klich M. Inhibition of expression of fusarium semitectum and other fungi in immature cotton seed [J]. Applied and Environmental Microbiology,1982,44(2):351-354.
    [169]Barbara R E. Effect of cellulases on the biodegradation and morphology of naturally colored cotton fibers [D]. San Francisco, USA:Proceedings of the1997ACS symposium,1997:13-17.
    [170]Marjorie M C. Plant products as anti-microbial agents [J]. CLIN Microbiol REV,1999,12(4):564-582.
    [171]AATCC100. Antibacterial finishes on textile materials:assessment of textile materials [S],2004.
    [172]ASTM E2149. Standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions [S],2001.
    [173]AATCC147. Antibacterial activity assessment of textile materials:parallel streak method [S],2004.
    [174]JIS L1902. Testing for antibacterial activity and efficacy on textile products [S],2008.
    [175]GB/T20944.1.纺织品抗菌性能的评价第1部分:琼脂平皿扩散法[S],2007.
    [176]GB/T20944.2.纺织品抗菌性能的评价第2部分:吸收法[S],2007.
    [177]郭丽,王建坤.纺织品抗菌性能测试方法及比较[J].河北纺织,2010(3):9-16.
    [178]周永凯,张建春,张华.大麻纤维的抗菌性及抗菌机制[J].纺织学报,2007,28(6):12-15.
    [179]孙居娟.竹纤维抗菌性能的研究[D].天津:天津工业大学,2007.
    [180]Shake Flask法[G].纤维制品卫生加工协议会编.[S.1.]:纤维制品卫生加工协议会,1985:1-5.
    [181]吕锐,苏冬梅,孟林,等.罗布麻纤维的抗菌性能研究[J].青岛大学医学院学报,2006,42(1):71-72.
    [182]黄涛,张劲,连文伟,等.菠萝叶纤维抗菌性能及应用研究[C]//第10功能性纺织品及纳米技术应用研讨会,2010:358-362.
    [183]陈红梅,杨文杰,朱春华.3种AATCC纺织品抗菌测试标准比较[J].上海纺织科技,2010,38(10): 54-56.
    [184]高春朋,高铭,刘雁雁,等.纺织品抗菌性能测试方法及标准[J].染整技术,2007,29(2):38-42,56.
    [185]徐亚军,赵龙飞.野生艾篙浸提物对大肠杆菌的抑制作用[J].江苏农业科学,2012,40(4):306-308.
    [186]赵雪,展义臻.抗菌纺织品的性能测试方法[J].上海毛麻科技,2009(1):31-36.
    [187]魏厚刚.植物色素的提取及其对酸碱的适应性试验[J].林产化工通讯,1998(1):22-24.
    [188]赵秀苇,孙卫国,陈莉,等.天然绿棉与染色棉混纺纱中彩棉定性分析研究[J].陕西纺织,2009(1):5-7.
    [189]刘芳,张坤宝,顾莉琴,等.天然彩色棉与染色棉鉴别方法[J].东华大学学报:自然科学版,2008,34(5):540-544.
    [190]陈莉,孙卫国,聂欣,等.棕棉/白棉混纺纱线中纤维定量分析方法的研究[J].上海纺织科技,2008,36(9):21-22,28.
    [191]陈莉,孙卫国,刘玉森.绿棉/棉混纺纱中绿棉定性鉴别与混纺比测定[J].西安工程大学学报,2008,22(6):696-699.
    [192]洪华,徐鑫华,吴浩.天然彩色棉纤维与染色棉纤维鉴别方法的研究[J].检验检疫科学,2007,17(11:23-28.
    [193]褚小立,袁洪福,陆婉珍.近年来我国近红外光谱分析技术的研究与应用进展[J].分析仪器,2006(2):1-10.
    [194]Wahr J A, Tremper K K, Samra S. Near-infrared spectroscopy:Theory and applications [J]. Journal of Cardiothoracic and Vascular Anesthesia,1996,10(3):406-418.
    [195]Ferrari, Marco. Principles, techniques, and limitations of near infrared spectroscopy [J]. Canadian Journal of Applied Physiology,2004,29(4):463-487.
    [196]陈慰来,普丹丹,朱丽萍,等.天然彩色棉/白棉混纺纱线色泽的预测[J].纺织学报,2008,29(2):57-58.
    [197]王宏菊,陈旭辉,王成云.FTIR-ATR无损快速鉴定纺织纤维[J].印染,2001(3):45-46,52.
    [198]陆永良,沈维,刘艳.红外光谱差减技术在纺织品定性分析中的应用[J].上海纺织科技,2010,38(7):1-4.
    [199]Chung C, Lee M, Choe E K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy [J]. Carbohydrate Polymers,2004,58(4):417-420.
    [200]Elizabeth A C, Fredericks P M, Jeffrey S C, et al. FT-Ramanspectroscopy of wool-I, preliminary studies [J]. Spectrochimica ACTA Part a:Molecular Spectroscopy,1994,50(11):1927-1936.
    [201]Jahn A, Schroder M W, Futing M, et al. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy [J]. Spectrochimica ACTA Part a:Molecular and Biomolec,2002,58(10):2271-2279.
    [202]汤顺青,朱正芳.积分球的系统误差分析[J].计量技术,2005(12):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700