用户名: 密码: 验证码:
全液压矫直机智能自学习的矫直模型及其电液伺服控制理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国钢铁产业的迅速发展,客户对板材的不平度精度的要求越来越高,这就使得各钢铁企业对矫直机的要求也越来越高。国外矫直机生产厂家对其设备的核心技术,比如矫直模型、电液伺服控制等技术进行封锁,而国内生产的矫直设备与国外的同类型先进设备相比,其矫直效率和矫后板材质量仍有相当大的差距,这就使得国内一些大型钢铁生产厂家,由于生产的需要,不得不投入巨资引进国外的先进设备,因此,国产化的新一代强力智能矫直机成为国内矫直机生产家的重要目标。
     新一代强力智能矫直机的核心技术为多液压缸同步伺服控制技术和智能自学习的矫直模型。本文以国内某钢铁公司轧线上的3300mm四重式十一辊热矫直机为建模设计对象,并参考其它热处理线上的矫直机,建立了新一代强力智能矫直机的多液压缸解耦控制模型及其智能自学习的矫直模型,在建模、仿真与现场实际应用的基础上,做了以下研究。
     (1)首先对国内外矫直机的已有电液伺服控制传递函数模型进行了详细分析,得到其不足之处以及可以借鉴的地方;分析了现有多缸同步控制解耦方法,得出其解耦方法的优缺点;对已有矫直机模型进行研究,为解决国产化的新一代强力智能矫直机的两个核心技术难题做好了准备。
     (2)从工程的角度出发,以高频响比例伺服阀的控制电压为输入量,以缸的活塞杆位移为输出量,建立了基于高频响非对称比例伺服阀控制非对称缸的阀控缸传递函数模型。其不同于以往的以伺服阀的阀芯偏置为输入量,以缸的活塞杆位移为输出量的阀控缸系统的传递函数模型,更切合实际。并以此为基础,推导并建立了矫直机的四缸控制模型。
     (3)设计了“组合给定曲线”,解决了大质量、大惯性系统在启停时的冲击问题。建立了改进的单控制量神经元控制器和多控制量神经元控制器,并证明了多控制量神经元控制器的稳定性,应用粒子群优化算法优化多控制量神经元控制器的权重值。分别对已经建立的矫直机单缸和多缸控制模型进行仿真,结果表明,多缸位移过程同步误差最大值为0.18mm,多缸位移稳态同步误差最大值为0.15mm,多缸速度同步过程误差最大值为0.1mm/s,改进的多控制量神经元控制器对矫直机多缸耦合控制对象解耦的有效性和实用性。
     (4)通过解析法建立了矫直机的矫直模型,并在此基础上增加了弯辊和边辊对矫直辊压下量的叠加作用计算公式,推导并建立了强化板材的矫直力预估解析式,以实际矫直机的结构参数为依据,针对某种型号的板材,给出了矫直模型运用的算法实例。
     (5)以模糊控制理论为基础,通过解析模型和矫直工艺专家的知识总结,建立了矫直机的智能自学习矫直模型,并通过矫直过程假设,针对某种板材进行矫后学习,得出了与矫直机操作人员和工艺人员近似相同的学习结果,其入口辊缝和出口辊缝的模糊补偿量均为1.02mm,而工艺人员的补偿量入口辊缝为1.20mm,出口辊缝为0.95mm,而且可以通过比较学习结果与工艺人员经验进一步完善模糊系统参数,从而获得完善的智能自学习的矫直模型,实现实际矫直过程的“无人”化。
     (6)通过实验室矫直机和工业现场矫直机数据分析可以得到,本文所建立的改进的多控制量神经元控制器与智能自学习的矫直模型完全满足新一代强力智能矫直机的性能要求,实验室矫直机的四缸大行程位移同步过程误差最大值为0.50mm,位移同步稳态误差最大值为0.07mm。工业现场的全液压矫直机的四缸大行程位移同步过程误差最大值为0.5mm,位移同步稳态误差最大值为0.3mm,在矫直板材的过程中各液压缸的最大弹跳量为0.25mm。其性能达到甚至超过国外同类产品的控制精度水平。
In recent years, with the rapid development of China's iron and steel industry, the requirements on the unflatness accuracy of the steel plate for the customers has been getting higher and higher, which makes the quality requirements of the leveler higher and higher for the iron and steel enterprises. The core technology of the leveling equipment, such as the intelligent leveling model and electro-hydraulic servo control etc., has been blocked by the leveler manufacturers abroad, and there is still a considerable gap in the straightening efficiency and straightened plate qulity between domestic leveler and the foreign same type equipment. Which makes the most large domestic steel manufacturers have invested heavily in the introduction of foreign advanced equipment for the production needs. Therefore, the localization of the new generation powerful intelligent leveler has become the top priority of the domestic leveler manufacturers.
     The core technology of the new generation powerful intelligent leveler is the multi-hydraulic-cylinder synchronous servo control technology and the intelligent self-learning leveling model. In this paper, based on four-heavy-style11-roll thermal leveler of a steel rolling line of domestic some steel producer and with reference to the levelers of other heat treatment line, multi-hydraulic-cylinder decoupling control model and its control algorithms, intelligent self-learning leveling model, of China's new generation powerful intelligent leveler have been established. Based on modeling, simulation and actual application, the following research has been made.
     (1)The existing transfer function models of hydraulic servo control system of the domestic leveler and abroad have been carried out a detailed analysis, and their research inadequacies and achievements have been gotten in this article. The existing multi-hydraulic-cylinder synchronous control decoupling methods have been analyzed and their advanteges and disadvantages have been obtained. The leveling models of domestic levelers and abroad levelers have been studied and their inadequacies have been gained. All of above gives a full preparation to solve the two key problems of the localization of the third generation powerful intelligent leveler.
     (2)According to the engineering practice, the control voltage of the high frequency response proportion servo valve is treated as the input signal and the displacement of the hydraulic cylinder piston is treated as the output signal. And the valve-control-cylinder transfer function model has been founded based on the high frequency response asymmetric proportional servo valve controlling asymmetric cylinder. It is different from a conventional transfer function model in which the spool bias of the servo valve is treated as the input signal. So the transfer function is more realistic in this paper. On the above, the four-cylinder control model has been derived and obtained.
     (3)A "combined given curve" has been designed and it can reduce the shocks of the system with the large mass and inertia at the start and end of the movement process. An improved single control variable neuron controller and an improved multiple control variables neuron controller have been established. The stability of the multiple control variables neuron controller has been proved and the weight value of the neuron controller is optimized using the particle swarm optimization algorithm. By the simulation of. the established single-cylinder and multi-cylinder servo control object transfer function models, the results show that the multi-cylinder displacement process synchronization error maximum is0.18mm, steady-state synchronization error maximum is0.15mm, speed process synchronization error maximum is0.1mm/s. it has been proved effective and practical for the improved multiple control variables neuron controller to decouple the multi-cylinder coupling control system of the full-hydraulic leveler.
     (4)The leveling model of the full-hydraulic leveler has been established by the analytic method and on this basis the superimposition of the bending roller and the side roller has been added to the roll reduction of the leveler. And the leveling force estimated formula of the reinforced plate has been deduced and established. Based on the structural parameters of the actual leveler, a algorithm instance for the use of the leveling model has been given for a certain type of plate.
     (5)Based on the fuzzy control theory, by the knowledge summary of the leveling process expert and the established analytical model, the intelligent self-learning leveling model of the full-hydraulic leveler has been established. By the assumption to the actual leveling process, for a certain type of plate after straightened, the learning result of the intelligent self-learning system comes to the approximate same learning outcome from the operators and craft persons of the full-hydraulic leveler. The fuzzy compensations of the entrance and export roll gap are all1.02mm, and the compensation of the entrance gap is1.20mm and the compensation of the export gap is0.95mm from the craft workers. By comparing the results of the learning system with the craft worker's experience, a perfect intelligent self-learning leveling model will be obtained and the "no-one" leveling process can be achieved.
     (6)By the data analysis of the laboratory and field, the requirements of industrial field can fully been met by the new generation powerful intelligent leveler based on the improved multiple control variables neuron controller and intelligent self-learning leveling model in this paper. The displacement synchronization process error maximum is2mm, and the displacement synchronization steady-state error maximum is0.07mm during the four-cylinder big stroke of the laboratoty leveler. The displacement synchronization process error maximum is0.5mm, and the displacement synchronization steady-state error maximum is0.3mm during the four-cylinder big stroke of the industrial site leveler an its maximum bouncing amount is0.25mm during its leveling plate process. Its performance has reached or exceeded the foreign same product.
引文
[1]康永林,中国中厚板产品生产现状及发展趋势[J],中国冶金,Vol.22,2012(9):1-4,14.
    [2]周存龙,中厚板辊式热矫直机矫直过程数学模型与数值模拟[D],沈阳:东北大学,2006.
    [3]杨固川,中厚板生产设备概述[J],轧钢,Vol.21,2004(1):38-41.
    [4]薛军安,中厚板矫直过程的理论分析及其控制系统[D],沈阳:东北大学,2008.
    [5]王磊,高强度桥梁用宽厚板的研制[D],沈阳:东北大学,2008.
    [6]俞慧,宝钢5m宽厚板热矫直机新工艺[J],宽厚板,Vol.11,2005(3):38-41
    [7]王效岗,黄庆学,新式中厚板矫直机的技术特点[J],山西冶金,Vol.29,2006(2):27-29
    [8]王效岗,十五辊组合矫直机关键技术及理论模型的研究[D],兰州:兰州理工大学,2008
    [9]胡晓峰,熊明鲜,中厚板车间冷矫直机与热处理矫直机工艺布置探讨[J],Vol.17,2011(4):33-36
    [10]唐倩,杜雪松,高瞻,徐杰,张元勋,冷矫直机矫直工艺参数数值模拟与实验[J],Vol.33,2010(3):36-40
    [11]李延芝,许方泉,董恩乐,陶建学,高强韧性钢板矫直工艺的研究与应用[J],宽厚板,Vol.14,2008(6):13-16
    [12]王志刚,王辉,李友荣,板带矫直机压下量的计算方法及其对矫直质量的影响[J],武汉科技大学学报,Vol.32,2009(4):347-350
    [13]赵杰锋,王景,李东宁,高丽霞,中板矫直工艺的研究与改进[J],Vol.12,2006(1):5-7
    [14]赵连玉,新型智能化校直加工装置理论与实验研究[D],天津:河北工业大学,2007
    [15]王昭东,田勇,赵忠,王国栋,中厚板厚度控制模型的自学习[J],东北大学学报(自然科学版),Vol.27,2006(7):771-774
    [16]Epp, Jurgen, Innovation in hot and cold leveling of heavy plate[J], MPT Metallurgical Plant and Technology International, Vol.35,2012(3):54-55
    [17]Ma Shucong, Wang Yongqin, Yan Xingchun, Liu Zhifang, Study on bending roll device for heavy plate leveller[C], Proceedings of the 10th International Conference on Steel Rolling, Beijing, Metallurgical Industry Press,2010:1-4
    [18]Seffen Keith A, Maurini Corrado, Growth and shape control of disks by bending and extension[J], Journal of the Mechanics and Physics of Solids, Vol.61,2013(1):190-204
    [19]Wang Xiaogang, Li Xiangnan, Research on force simulation of main leveler housing and roll cassettes in medium and heavy plate levelling[J], Journal of Convergence Information Technology, Vol.7,2012 (13):153-161
    [20]Liu Zhifang, Wang Yongqin, Yan Xingchun, A new model for the plate leveling process based on curvature integration method[J], International Journal of Mechanical Sciences, Vol.54,2012(1): 213-224
    [21]王春行,液压控制系统[M],北京:机械工业出版社,2011:181-232
    [22]许贤良,丁雪峰,杨球来,非对称伺服阀控制非对称液压缸的理论分析[J],液压与气动,2004(3):16-18
    [23]王栋梁,李洪人,李春萍,非对称阀控制非对称缸系统的静态及动态特性分析[J],机床与液压,2003(1):198-200
    [24]关景泰,王海滨,周俊龙,非对称阀控制非对称缸的动态特性[C],中国机械工程学会年会论文集(1),北京:机械工业出版社,2002:34-37,41
    [25]吴博,吴盛林,任好玲,非对称阀控非对称缸系统建模和仿真研究[J],机床与液压,2004(8):73-75
    [26]王栋梁,李洪人,张景春,非对称阀控制非对称缸的分析研究[J],山东建材学院学报,Vol.15,2001(2):123-127
    [27]李洪人,王栋梁,李春萍,非对称缸电液伺服系统的静态特性分析[J],机械工程学报,Vol.39,2003(2):18-22
    [28]Merritt H E.,液压控制系统[M],陈燕庆,译,北京:科学出版社,1976:120-180
    [29]吴根茂,邱敏秀,王庆丰,实用电液比例控制技术[M],杭州:浙江大学出版社,2006:58-80
    [30]管东方,黄效国,牛巍,矫直机液压压下装置伺服系统的建模与仿真[J],液压与气动,2005(3):4-5
    [31]路甬祥,胡大工,电液比例控制技术[M],北京:机械工业出版社,1988:100-150
    [32]王占林,近代液压控制[M],北京:机械工业出版社,1997:50-80
    [33]王正良,微机电液控制技术[M],大连:大连理工大学出版社,1987:60-100
    [34]李洪人,液压控制系统[M],北京:国防工业出版社,1981:100-120
    [35]乌建中,徐鸣谦,液压同步提升技术回顾与展望[J],同济大学学报,Vol.25,1997(2):230-233
    [36]苏东海,韩国惠,于江华,史洪林,液压同步控制系统及其应用[J],沈阳工业大学学报,Vol.27,2005(4):364-367
    [37]陈先惠,王野牧,吕振民等,3MN模具研配液压机的双缸同步系统的研制[J],机床与液压,1999(5):10-11
    [38]张绍九等,液压同步系统[M],北京:化学工业出版社,2010:1-100
    [39]郭猛,液压系统同步回路的分析与应用[J],机械与电子,2012(21):72-73
    [40]冯华,液压同步的实现与应用[J],中国科技信息,2006(9):296-298
    [41]王仁福,几种典型液压同步系统探讨[J],四川冶金,Vol.29,2007(3):44-47
    [42]佟立军,新型的液压缸同步系统的探索与研究[J],连铸,2011(9):272-273
    [43]倪敬,项占琴,潘晓弘,吕福在,多缸同步提升电液系统建模和控制[J],机械工程学报,Vol.42,2006(11):81-87
    [44]倪敬,项占琴,潘晓弘,吕福在,双缸同步提升电液系统建模和控制[J],机械工程学报,Vol.43,2007(2):81-86
    [45]倪敬,彭丽辉,陈国金,四缸驱动起模机非线性PID同步控制研究[J],中国机械工程,Vol.22,2011(14):1645-1651
    [46]施光林,史维祥,李天石,液压同步闭环控制及其研究[J],机床与液压,1997(4):3-7
    [47]Feng W, Reilly J O, Balance D J, MIMO Nonlinear PID Predictive Controller[J], Control Theory and Applications, Vol.149,2002 (3):203-208
    [48]宁淑荣,王益群,谢依含,热轧立辊系统同步性能研究[J],液压与气动,2007(8):29-32
    [49]宁淑荣,王益群,热轧立辊系统同步控制与实验研究[J],机床与液压,Vol.35,2007(9):118-119,175
    [50]张志伟,张福波,王国栋,一种双液压缸同步控制方法及其仿真研究[J],机床与液压,2003(3):232,239
    [51]李晓明,李鹏翔,基于虚轴法的高速液压同步控制策略研究[J],液压与气动,2008(11):32-36
    [52]田勇,李建生,曹宪周,赵会勇,董彬,管道效应对液压同步系统动态特性的影响研究[J],机床与液压,Vol.37,2009(9):93-96
    [53]罗艳蕾,液压同步回路及同步控制系统实现的方法[J],2004(4):65-67
    [54]王国栋,阎祥安,肖聚亮,郑东强,张承谱,电液比例压力控制系统的灰色预测模糊控制[J],煤炭学报,Vol.31,2006(4):525-528
    [55]Ruey Jinglian, Bai Fulin, Jyun Hanhuang, A grey prediction fuzzy controller for constant cutting force in turning[J], International Journal of Machine Tool & Manufacture, 2005 (45):1047-1056
    [56]王建铁,液压同步马达的正确使用[J],液压与气动,2001(7):32-33
    [57]田仲初,刘雪锋,颜东煌,丁毅,优化计算在拱桥液压同步提升转体施工控制中的应用[J],中国公路学报,Vol.21,2008(2):74-78
    [58]陈刚,柴毅,丁宝苍等,电液位置伺服系统的多滑模神经网络控制[J],控制与决策,Vol.24,2009(2):221-225
    [59]倪敬,彭丽辉,项占琴,扩扎管电液伺服系统非线性建模与控制[J],机械工程学报,Vol.45,2009(5):250-255
    [60]杨俭,液压压力机模型参考自适应控制系统的研究[J],机床与液压,Vol.37,2009(6):83-85
    [61]刘云峰,缪栋,导弹电液伺服机构的自适应模糊滑模跟踪控制[J],电光与控制,Vol.41,2007(1):76-80
    [62]马平,杨金芳,崔长春,胡胜坤,解耦控制的现状及发展[J],控制工程,Vol.12,2005(2):97-100
    [63]桑保华,薛晓中,多变量解耦控制方法[J],火力与指挥控制,Vol.32,2007(11):13-16
    [64]柴天佑,多变量自适应解耦控制及应用[M],北京:科学出版社,2001:5-105
    [65]陈雪波,多变量系统的非平衡补偿[J],控制与决策,Vol.4,1989(3):31-34
    [66]古孝鸿,周立群,线性多变量系统邻域法[M],上海:上海交通大学出版社,1990:1-50
    [67]杨辉,王金章,多变量解耦模糊控制器的研究[J],控制与决策,Vol.3,1988(1):17-21
    [68]王东风,王剑东,韩璞,一种多变量系统的内模解耦控制设计方法[J]控制工程,Vol.10,2003(5):463-465
    [69]薛美盛,樊弟,魏衡华,多变量系统的广义预测控制解耦设计[J],控制工程,Vol.18,2011(1):39-42
    [70]ChiH I, T sai C C, Adaptive decoupling predictive temperature control for an extrusion barred in a plastic injection molding process[J], IEEE Transaction on Industrial Electronics, Vol.48,2001 (5):968-975
    [71]Su B I, Chen Z Q, Yuan Z Z, Multivariable decoupling predictive control with input constraints and its application on chemical process[J], Chinese J Chen Eng, Vol.14, 2006 (2):216-222
    [72]王全良,甄新平,潘立登,闻光辉,多变量系统解耦内模控制及其PID转化应用方法的研究[J],北京化工大学学报,Vol.32,2005(6):87-89
    [73]Wang Qingguo, Zhang Yu, Chiu Minsen, Decoupling internal model control for Multivariable systems with multiple time delays[J], Chem Eng Science, Vol.57,2002 (5): 115-124
    [74]李明,林永君,马永光,自适应神经元非模型多变量系统解耦控制[J],计算机仿真,Vol.20,2003(3):68-71
    [75]刘国荣,多变量系统模糊解耦自适应控制[J],控制理论与应用,Vol.14,1997(2):152-156
    [76]焦竹青,屈百达,徐保国,基于RBF神经网络的多变量系统PID解耦控制[J],系统仿真学报,Vol.20,2008(3):627-634
    [77]舒怀林,PID神经元网络对强耦合带时延多变量系统的解耦控制[J],控制理论与应用,Vol.15,1998(6):920-924
    [78]Yao Jianyong, Jiao Zongxia, Shang Yaoxing, Huang Cheng, Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator[J], Chinese Journal of Aeronautics, Vol.23,2010 (6):720-733
    [79]Jiao Zong-xia, Gao Jun-xia, Hua Qing, Wang Shao-Ping, The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator[J], Chinese Journal of Aeronautics, Vol.17,20040 (1):39-46
    [80]Basile F., Chiacchio P., Del Grosso D., Implementation of hydraulic servo controllers with only position measure[J], International Journal of Robotics and Automation, Vol.24,2009 (1):20-37
    [81]Dachang Z.H.U., Sliding mode synchronous control for fixture clamps system driven by hydraulic servo systems[J], Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, Vol.221,2007 (9):1039-1045
    [82]Shibata Satoru, Yamamoto Tomonori, Jindai Mitsuru, A synchronous mutual position control for vertical pneumatic servo system[J], JSME International Journal, Series C Mechanical Systems, Machine Elements and Manufacturing, Vol.49,2006 (1):197-204
    [83]Zhu Guchuan, Dessaint Louis-A, Akhrif Ouassima, Kaddouri Azeddine, Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer[J], IEEE Transactions on Industrial Electronics, Vol.47,2000 (2):346-355
    [84]Liu Xingqiao, Chen Chong, Liang Xiuwen, Hu Jianqun, Liu Yangbiao, Study on double motor synchronous system of neural network control[J], International Journal of Modeling, Identification and Control, Vol.7,2009 (4):376-381
    [85]Wang Ming-Shyan, Chang Chia-Ming, Speed control of permanent magnet synchronous motors by adaptive auto-tuning[J], Electric Power Components and Systems, Vol.37,2009 (8):866-878
    [86]周存龙,王国栋,谢东钢,张勇安,矫直机入/出口矫直辊压弯量对板材不平度的影响[J],重型机械,2008(2):10-13
    [87]傅文祖,矫直机辊缝值的计算[J],上海宝钢工程设计,2000(1):13-17
    [88]刘怀正,辊式板材矫直机开口量的确定[J],锻压机械,1991(2):6-10
    [90]崔甫,矫直原理与矫直机械[M],北京:冶金工业出版社,2007:1-232
    [91]井永水,窦忠强,李忠富,辊式矫直机平行压下方案的计算机仿真[J],北京科技大学学报,Vol.23,2001(5):456-459
    [92]王志刚,王辉,李友荣,板带矫直机压下量的计算方法及其对矫直质量的影响[J],武汉科技大学学报,Vol.32,2009(4):347-350
    [93]井永水,窦忠强,李忠富,矫直理论的新探索[J],北京科技大学学报,Vol.24,2002(1):64-66
    [94]Bush A,Nicholls R, T unshall J, Strell levels for elastic buckling of rolled strip and plate[J], Ironmaking and Steelmaking, Vol.28,2001 (6):481-484
    [95]Kumar S, Removal of shape during roller leveling [J], Minerals and Metals Review, Vol.11,2001 (7):36-41
    [96]邹家祥,轧钢机械[M],北京:冶金工业出版社,2005:100-350
    [97]谢霄鹏,孙大乐,范群,基于屈服强度自适应的矫直机辊缝补偿[J],轧钢,Vol.26,2009(1):62-65
    [98]周存龙,徐静,王国栋,刘相华,中厚板热矫直机压下模型[J],钢铁研究学报,Vol.18,2006(8):28-31
    [99]薛军安,周娜,胡贤磊,刘相华,王建平,中厚板热矫直过程机在线控制应用软件的开发[J],Vol.24,2007(6):50-54
    [100]王效岗,黄庆学,马勤,十五辊组合矫直机矫直模型研究[J],四川大学学报(工程科学版),Vol.40,2008(6):181-185
    [101]孙大乐,王学敏,范群,姚利松,强化金属材料强化系数对矫直机辊缝设定的影响分析[J],重型机械,2008(1):26-29
    [102]W.J.爱德华兹,钢板热矫直机的自动化—一种在生产中获得良好结果的矫直预报模型[C],中国金属学会轧钢专业学术委员会科教组译,板带轧制科学与技术:第四届国际轧钢会议论文选集,北京:冶金工业出版社,1990:299-310
    [103]D.德蒙莱翁,厚板热矫研究[C],中国金属学会轧钢专业学术委员会科教组译,板带轧制科学与技术:第四届国际轧钢会议论文选集,北京:冶金工业出版社,1990:311-318
    [104]Doege E, Menz R, Huinink S, Analysis of the leveling process based upon an analytic forming model [J], Annals of the CIRP, Vol.51,2002 (1):191-194
    [105]Satoshi N, Hiroshi N, Akira K, et.al, Adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process[J], ISIJ International, Vol.40, 2002 (5):1216-1223
    [106]Juvinall R C, Stress, strain, and strength[M], New York:McGraw Hill, 1967:145-152
    [107]薛军安,周娜,胡贤磊,刘相华,王建平,中厚板热矫直过程机在线控制应用软件的开发[J],轧钢,Vol.24,2007(6):50-54
    [108]邱红雷,田勇,赵忠,胡贤磊,王国栋,张庆春,中厚板轧制过程机在线控制应用软件的开发[J],钢铁研究学报,Vol.18,2006(5):60-63
    [109]李家栋,李勇,王昭东,王国栋,中厚板加热过程在线控制应用软件的开发[J],东北大学学报(自然科学版),Vol.31,2010(8):1108-1112
    [110]孙涛,中厚板高精度厚度控制的研究与应用[D],沈阳:东北大学,2009
    [111]Elbayomy Karam M, Jiao Zongxaia, Zhang Huaqing, PID controller optimization by GA and its performances on the electro-hydraulic servo control system[J], Chinese Journal of Aeronautics, Vol.21,2008 (4):378-384
    [112]Chiang Mao-Hsiung, Chen Yih-Nan, Lee Lian-Wang, The parallel control of motion control and energy-saving control for electro-hydraulic servo systems using genetic algorithm based loop-shaping H∞ control[J], J Chin Soc Mech Eng Trans Chin Inst Eng Ser C, Vol.30,2009 (4):297-309
    [113]Gong Mingde, Zhao Dingxuan, Zhang Hongyan, Jia cuiling, Force feedback model of electro-hydraulic servo tele-operation robot based on velocity control[J], Chinese Journal of Mechanical Engineering (English Edition), Vol.21,2008 (6):1-5
    [114]Mili Vladimir, Situm Zeljko, Essert Mario, Robust H position control synthesis of an electro-hydraulic servo system[J], ISA Transations, Vol.49,2010 (4):535-542
    [115]Yao Jian-Jun, Fu Wei, Hu Sheng-Hai, Han Jun-Wei, Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm[J], Journal of Central South University of Technology (English Edition), Vol.18, 2011 (3):755-759
    [116]Chen C.-Y., Synchronous motion of two-cylinder electro-hydraulic system with unbalanced loading and uncertainties[J], Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering, Vol.221,2007(7):937-955
    [117]Jiao Xiaohong, Mei Zhisong, Reduced-order observer-based robust synchronization control of cold rolling mills with measurement delay[J], International Journal of Control, Vol.83,2010 (10):2080-2090
    [118]Kennedy J., Eberhart R.C., Particle swarm optimization[A], Proceedings of IEEE International Conference on neural Networks,1995,1942-1948.
    [119]梁军,程灿,改进的粒子群算法[J],计算机工程与设计,Vol.29,2008(11):2893-2896
    [120]Majumdar Kausik Kumar, Majumder Dwijesh Dutta, Fuzzy knowledge-based and model-based systems[J], Journal of Intelligent and Fuzzy Systems, Vol.18,2007(4):391-403
    [121]Xie Wen Fang, Rad A.B., Fuzzy adaptive internal model control[J], IEEE Transactions on Industrial Electronics, Vol.47,2000 (1):193-202
    [122]Xie Yi, Wang Xun, Web image automatic classification based on fuzzy pattern recognition and complexion model[J], WSEAS Transactions on Computers, Vol.5,2006 (6): 1274-1279
    [123]Liu S.-T., Optimization of a machining economics model with fuzzy exponents and coefficients[J], International Journal of Production Research, Vol.44,2006 (15): 3083-3104
    [124]Liu Yuli, Investigation into the effects of leveling roll diameter variation on coupling shear pin breakage of a hot plate leveler[J], Iron and Steel Technology, Vol.6,2009 (8):82-88
    [125]权龙,许小庆,李敏,张绍凯,王景财,电液伺服位置、压力复合控制原理的仿真及实验[J],机械工程学报,Vol.44,2008(9):100-105
    [126]柏艳红,权龙,电液位置速度复合伺服系统控制策略[J],机械工程学报,Vol.46,2010(24):150-155
    [127]杨德荣,权龙,用电液伺服阀补偿同步偏差的同步控制方法[J],液压与气动, 2001(9):7-9
    [128]权龙,李凤兰,许海,数字闭环控制电液速度伺服系统的仿真及实验研究[J],太原理大学学报,Vol.33,2002(2):115-117,124
    [129]王益群,宁淑荣,刘健,热轧立辊电液伺服系统的自适应模糊控制[J],机械工程学报,Vol.43,2007(12):1-4
    [130]KIM Minyoung, LEE Chungoh, An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies[J],Control Engineering Practice, Vol.14,2006 (2):137-147
    [131]李曦,唐小琦,周云飞,无模型算法在电液伺服系统运动控制中的研究与应用[J],液压与气动,2003(2):6-8.
    [132]刘金琨,先进PID控制MATLAB仿真(第3版),北京:电子工业出版社,2011:1-200.
    [133]董志奎,热轧带钢板凸度和板形在线控制模型及应用研究[D],秦皇岛:燕山大学,2010.
    [134]贾春玉,高精度宽带钢冷轧机板形模糊神经控制的研究[D],秦皇岛:燕山大学,2006.
    [135]孙士沂,弹塑性状态下梁的挠度计算[J],重型机械,1980(7):37-45.
    [136]齐滨,李森,李杉,刘强,宽厚板热矫直机中矫直模型的应用[J],自动化技术与应用,Vol.29,2010(11):114-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700