用户名: 密码: 验证码:
镍镀层金属薄板冲压成形的失效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镀层金属薄板是指在金属薄板基底上镀覆上一层具有耐腐蚀、耐磨损、高强度等特殊功能金属层的一种复合材料。由于这些优良的功能,镀层金属薄板在建筑行业、机械设备、航空航天、仪器仪表以及车辆制造等行业发挥着重要的作用。然而,很多镀层金属薄板材料在应用之前都要经历冲压成形,这一过程包含几何非线性(大位移和大变形等)、材料非线性(弹塑性变形等)以及边界非线性(接触和摩擦引起)等多重非线性问题,导致在冲压成形过程中出现起皱、断裂和镀层剥落等失效现象。这些非线性问题造成镀层金属薄板冲压成形过程的变形机理复杂化,失效的模式多样化,使得传统的依赖单一成形极限图的方法不能够对其失效行为进行宏观、具体的描述,必须另辟蹊径,探究解决这一问题的有效方法。本文从理论分析、有限元数值模拟和实验三个方面来研究镀层金属薄板在冲压成形中的失效行为,力图最终建立镀层金属薄板冲压成形过程中的失效机制图,取得的主要创新性研究结果如下:
     (1)将量纲分析的方法引入到镀层金属薄板冲压成形的失效分析中,应用量纲分析的基本原理——Π定理,建立了冲压成形中失效时的最大冲头位移与工艺参数(包括压边力,板材料与冲压模具之间的摩擦系数等)、模具几何参数(包括冲头与凹模的圆角半径以及冲头与凹模之间的间隙)和板材力学性能参数之间关系的理论框架;并研究了镀层金属薄板冲压成形中最大冲压力与板材力学性能之间的关系,通过理论分析的方法验证了量纲分析的正确性,为采用量纲分析法建立镀层金属薄板冲压成形的失效机制图奠定理论基础。
     (2)将镀层金属薄板冲压成形中的失效问题简化为其在简单的应力状态下的塑性失稳问题。采用复合材料的基本理论,将镀层金属薄板冲压成形中常见的失效现象,冲头圆角处的断裂,简化为复合板材料在单轴拉伸载荷作用下的失稳问题,利用分散颈缩失稳理论,得到了镀层金属薄板在拉伸失稳(断裂)时的临界应力和应变值与其组分材料失稳参数之间的关系。将镀层金属薄板冲压成形中珐琅部分的起皱现象,简化为环形板在径向拉伸,环向压缩作用下的拉压失稳问题进行了研究,基于能量分析的方法,得出了无压边力与有压边力这两种情况下的起皱产生的准则。
     (3)基于连续介质损伤力学结合有限元数值模拟,研究了镀层金属薄板冲压成形中的失效行为。确定了有限元方法模拟冲压成形问题的定解条件,并基于连续介质的损伤力学材料模型,建立了镀层金属薄板冲压过程的ABAQUS有限元模型。结果表明,镀层金属薄板冲压成形中主要存在两种失效模式,即起皱和断裂。在此基础上,结合量纲分析建立的冲压成形中失效时的最大冲头位移与工艺参数(包括压边力,板材料与冲压模具之间的摩擦系数等)、模具几何参数(包括冲头与凹模的圆角半径以及冲头与凹模之间的间隙)和板材力学性能参数之间关系的理论框架,提出了一种建立镀层金属薄板冲压成形中失效机制图的方法,并以镍镀层金属薄板为研究对象,建立了基于工艺参数和几何参数的失效机制图。
     (4)以镍镀层金属薄板为研究对象,对镀层金属薄板冲压成形中的失效问题进行了实验研究。根据自行设计的冲压成形模具,结合万能拉伸机对镍镀层金属薄板进行了冲压成形的实验研究,采用高精度Argus网格应变测试系统对成形件中的应变分布进行了测定。镍镀层金属薄板的冲压成形中,产生了两种失效模式,即珐琅部分的起皱和冲头圆角处的断裂。通过对比冲压过程中实验与数值模拟结果的冲力冲程曲线、成形件的形状和应变分布等,证明了有限元预测的准确性,并进一步从实验上验证了镀层金属薄板冲压成形中失效机制图的有效性。
     总之,本论文主要对镀层金属薄板在冲压成形中的失效问题进行了理论分析,包括采用量纲分析的方法对冲压成形中的最大载荷以及失效前的最大冲压深度进行了分析;采用复合板理论对镀层金属薄板在拉伸和拉压状态下的塑性失稳问题进行了理论推导;基于连续介质损伤力学的材料模型并结合有限元数值模拟,根据量纲分析的理论模型,建立了镀层金属薄板冲压成形中基于工艺参数和几何参数的失效机制图。最后,以镍镀层金属薄板为研究对象,研究了镀层金属薄板冲压成形实验中的失效行为,验证了有限元数值模拟的正确性和基于量纲分析结合有限元模拟建立镀层金属板冲压成形中失效机制图的可行性与有效性。
Coated metal sheet is a kind of composite materials, which a metal layer withresistant to corrosion and wear, high strength, and other special functions is depositedon metal substrates. Due to these excellent properties, it plays a very important role inbuilding industry, mechanical equipment, aeronautics and astronautics, instrument andvehicle manufacturing industry. However, in the process of deep drawing of coatedmetal sheet, it contains many multi-nonlinearity problems, such as geometricalnonlinearity (large displacement and large deformation), material nonlinearity(elastic-plastic deformation) and nonlinear boundary (contact and friction), whichresults in many kinds of failure modes such as wrinkling, fracture and spalling of thecoating. Nonlinear problems cause the complexion of deformation principles duringdeep drawing of coated metal sheet, and the variety of the failure modes. So thetraditional onefold Forming Limit Diagram(FLD) method can’t study the failuremacroscopically and comprehensively. It is necessary to develop other methods tosolve the problem. In the thesis, the failure problems of the coated metal sheet in thedeep drawing process were studied by theoretical analysis, finite element modelingand experiments, respectively. And the achieved main contents and results are asfollows:
     (1) The dimensional analysis was introduced into failure analysis of coated metalsheet in the deep drawing. When the failure happened in the process of deep drawing,the frame relation between the maximum punch displacement and process parameters,geometry parameters, and material parameters was established according to the Пtheorem of the dimensional analysis. The relationship between the maximum punchload and the mechanical properties of the coated metal sheets was also analyzed bythe П theorem of the dimensional analysis. And the relationship was verified by thetheoretical analysis, which provide theoretical guidance for establishing the failuremechanism map.
     (2) The failure of coated metal sheet in the deep drawing was converted into theplastic instability of coated metal sheet under simple stress state. The fracturephenomenon in the corner radius of punch was considered as the plastic instabilityunder the uniaxial tension. The relationship between the critical fracturing stress andstrain point of coated metal sheet and those of the component’s was obtained based onthe basic theory of composite sheet. The wrinkle problems of the flange part during deep drawing coated metal sheet was also studied according to the basic theory ofcomposite sheet and energy, the rules when wrinkles start emerging were formed withand without consideration the blank holder force.
     (3) The finite element modeling of failure behavior of the coated metal sheet inthe deep drawing process was built based on the continuum damage mechanics modelin Chapter3. The definite conditions for the simulation of the deep drawing withfinite element modeling were ensured. According to the finite element, there are maintwo failure modes in the deep drawing of coated metal sheet, i.e. fracture andwrinkling. A method of establishing failure mechanism map was suggested based onthe dimensional analysis and finite element modeling. The nickel coated metal sheetbeen treated as the research object, the failure mechanism map was built based onboth the process parameters and the geometry parameters.
     (4) Deep drawing experiments was made on the nickel coated metal sheet withself-designed drawing tools and the universal drawing machine. Two kinds of failuremodes occurred in the deep drawing process. These were the wrinkle of the flangepart and the fracture at the punch fillet. The experimental results were consistent withthe results of the finite element modeling by comparing the punch load displacementcurve, the shape of drawn parts and the distribution of strain, which demonstrated theaccuracy of the finite element modeling, and verified the effectiveness of failuremechanism map in the deep drawing process of the coated metal sheet via combinedthe finite element modeling with dimensional analysis.
     In general, the failure problem during deep drawing the coated metal sheet wasanalyzed theoretically in the thesis. The detailed contents were as following: themaximum load in the deep drawing process and the maximum drawing depth beforefailure were discussed via dimensional analysis; theoretical derivation on the fractureand wrinkle problems were carried according to the composite sheet theory; thefailure modes were predicted via the finite element modeling, and demonstrated theaccuracy of the finite element modeling by deep drawing experiment; the failuremechanism map was built based on the process parameters and geometry parametersin the deep drawing process of the coated metal sheet.
引文
[[1]国务院.《国务院关于加快培育和发展战略性新兴产业的决定》[N].北京:国发(2010)32号.2010.
    [2]国务院.“十二五”国家战略性新兴产业发展规划[N].北京:新华网.2012.
    [3]马丽红.我国新材料产业发展回顾与展望[J].中国科技投资,2011,10:35-37.
    [4] N. Jia, Z. H. Cong, X. Sun, S. Cheng, Z. H. Nie, Y. Ren, P. K. Liaw, Y. D. Wang. An in situhigh-energy X-ray diffraction study of micromechanical behavior of multiple phases in advancedhigh-strength steels [J]. Acta Materialia,2009,57:3965-3977.
    [5] D. Mohr, M. Dunand, K. H. Kim. Evaluation of associated and non-associated quadratic plasticitymodels for advanced high strength steel sheets under multi-axial loading [J]. International Journalof Plasticity,2010,26:939-956.
    [6] H. Kim, S. Han, Q. Yan, T. Altan. Evaluation of tool materials, coatings and lubricants in forminggalvanized advanced high strength steels (AHSS)[J]. CIRP Annals-Manufacturing Technology,2008,57:299-304.
    [7] Y. Li, M. Luo, J. Gerlach, T. Wierzbicki. Prediction of shear-induced fracture in sheet metal forming[J]. Journal of Materials Processing Technology,2010,210:1858-1869.
    [8] G. S. Fox-Rabinovich, N. A. Bushe, A. I. Kovalev, S. N. Korshunov, L. S. Shuster, G. K. Dosbaeva.Impact of ion modification of HSS surfaces on the wear resistance of cutting tools with surfaceengineered coatings [J]. Wear,2001,249:1051-1058.
    [9] J. Shi, C. Ding, Y. Wu. Biomimetic apatite layers on plasma-sprayed titanium coatings after surfacemodification [J]. Surface and Coatings Technology,2001,137:97-103.
    [10] S. Govender, P. Swart. Surfactant formulations for multi-functional surface modification [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,331:97-102.
    [11] V. P. Rotshtein, D. I. Proskurovsky, G. E. Ozur, Y. F. Ivanov, A. B. Markov. Surface modificationand alloying of metallic materials with low-energy high-current electron beams [J]. Surface andCoatings Technology,2004,180–181:377-381.
    [12] K. Duan, A. Tang, R. Wang. A new evaporation-based method for the preparation of biomimeticcalcium phosphate coatings on metals [J]. Materials Science and Engineering: C,2009,29:1334-1337.
    [13] Y. Shimada, N. Matsushita, M. Abe, K. Kondo, T. Chiba, S. Yoshida. Study on initial permeabilityof Ni–Zn ferrite films prepared by the spin spray method [J]. Journal of Magnetism and MagneticMaterials,2004,278:256-262.
    [14] S. Karadeniz, N. Tu luo lu, T. Serin. Substrate temperature dependence of series resistance inAl/SnO2/p-Si (111) Schottky diodes prepared by spray deposition method [J]. Applied SurfaceScience,2004,233:5-13.
    [15] V. K. Bulasara, H. Thakuria, R. Uppaluri, M. K. Purkait. Combinatorial performancecharacteristics of agitated nickel hypophosphite electroless plating baths [J]. Journal of MaterialsProcessing Technology,2011,211:1488-1499.
    [16] K. N. Srinivasan, S. John. Electroless nickel deposition from methane sulfonate bath [J]. Journalof Alloys and Compounds,2009,486:447-450.
    [17] L. Shi, C. F. Sun, P. Gao, F. Zhou, W. M. Liu. Electrodeposition and characterization ofNi–Co–carbon nanotubes composite coatings [J]. Surface and Coatings Technology,2006,200:4870-4875.
    [18] A. Basile, A. I. Bhatt, A. P. O’Mullane, S. K. Bhargava. An investigation of silverelectrodeposition from ionic liquids: Influence of atmospheric water uptake on the silverelectrodeposition mechanism and film morphology [J]. Electrochimica Acta,2011,56:2895-2905.
    [19] M. T. Crespo. A review of electrodeposition methods for the preparation of alpha-radiation sources[J]. Applied Radiation and Isotopes,2012,70:210-215.
    [20] M. Ebadi, W. J. Basirun, Y. Alias, M. R. Mahmoudian, S. Y. Leng. Investigation ofelectrodeposition of Ni–Co–Fe–Zn alloys in DMSO with MHD effect [J]. MaterialsCharacterization,2012,66:46-55.
    [21]李宁.化学镀实用技术[M].北京:化学工业出版社,2004.
    [22]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [23]张景双.电镀溶液与镀层性能测试[M].北京:化学工业出版社,2003.
    [24]弓晓芸,严虹.彩色涂层钢板在房屋建筑中的应用[J].钢结构,2007,22:23-26.
    [25]徐春.汽车用合金化热镀锌板镀层剥离行为的分析[J].材料保护,2009,42:15-17.
    [26]吕雪山,王先进,苗延达.薄板成形与制造[M].北京:机械工业出版社,1993.
    [27]崔令江,郝滨海.材料成形技术基础[M].北京:机械工业出版社,2003.
    [28] Z. Marciniak, J. L. Duncan, S. J. Hu. Mechanics of Sheet Metal Forming [M]. Oxford:Butterworth-Heinemann,2002.
    [29]邓陟.金属薄板成形技术[M].北京:兵器工业出版社,1993.
    [30]郑家贤.冲压工艺模具设计实用技术[M].北京:机械工业出版社,2005.
    [31]王孝培.冲压手册[M].2ed.北京:机械工业出版社,2004.
    [32]李寿萱.钣金成形原理与工艺[M].西安:西北工业大学出版社,1985.
    [33]李硕本.冲压工艺理论与新技术[M].北京:机械工业出版社,2002.
    [34] J. Mackerle. Finite element analyses and simulations of sheet metal forming processes [J].Engineering Computations,2004,21:891-940.
    [35] Y. L. Bai, T. Wierzbicki. Predicting fracture of ahss sheets on the punch and die radii and side wall
    [C]. Numisheet2008, Interlaken Switzerland,2008,297-306.
    [36] F. Xu, Z. Q. Lin, S. H. Li, W. L. Xu. Study on the influences of geometrical parameters on theformability of stretch curved flanging by numerical simulation [J]. Journal of Materials ProcessingTechnology,2004,145:93-98.
    [37] N. Fang. Influence of the geometrical parameters of the chip groove on chip breaking performanceusing new-style chip formers [J]. Journal of Materials Processing Technology,1998,74:268-275.
    [38] R. Paisarn, N. Yugi, N. Koga. Air bending of AZ31magnesium alloy sheets [J]. Journal of JapanInstitute of Light Metals,2005,55:181-185.
    [39] R. Paisarn, N. Koga. Effects of tool radius on formability during deep drawing of AZ31magnesium alloy sheets [J]. Journal of Japan Institute of Light Metals,2005,53:152-156.
    [40] M. Gavas, M. Izciler. Effect of blank holder gap on deep drawing of square cups [J]. Materials&Design,2007,28:1641-1646.
    [41] M. Gavas, M. Izciler. Design and application of blank holder system with spiral spring in deepdrawing of square cups [J]. Journal of Materials Processing Technology,2006,171:274-282.
    [42] F. K. Chen, T. B. Huang, C. K. Chang. Deep drawing of square cups with magnesium alloy AZ31sheets [J]. International Journal of Machine Tools and Manufacture,2003,43:1553-1559.
    [43] L. Figueiredo, A. Ramalho, M. C. Oliveira, L. F. Menezes. Experimental study of friction in sheetmetal forming [J]. Wear,2011,271:1651-1657.
    [44] L. Fratini, S. Lo Casto, E. Lo Valvo. A technical note on an experimental device to measurefriction coefficient in sheet metal forming [J]. Journal of Materials Processing Technology,2006,172:16-21.
    [45] H. Darendeliler, M. Akk k, C. A. Yücesoy. Effect of variable friction coefficient on sheet metaldrawing [J]. Tribology International,2002,35:97-104.
    [46] P. Carlsson. Surface engineering in sheet metal forming [D]. Uppsala. Uppsala universitet,2005.
    [47] M. Murakawa, N. Koga, T. Kumagai. Deep-drawing of aluminum sheets without lubricant by useof diamond-like carbon coated dies [J]. Surface and Coatings Technology,1995,76–77, Part2:553-558.
    [48] M. Murakawa, S. Takeuchi. Evaluation of tribological properties of DLC films used in sheetforming of aluminum sheet [J]. Surface and Coatings Technology,2003,163–164:561-565.
    [49] H. Kim, J. H. Sung, R. Sivakumar, T. Altan. Evaluation of stamping lubricants using the deepdrawing test [J]. International Journal of Machine Tools and Manufacture,2007,47:2120-2132.
    [50] T. S. Yang. Full film lubrication of deep drawing [J]. Tribology International,1999,32:89-96.
    [51] E. Doege, L. E. Elend. Design and application of pliable blank holder systems for the optimizationof process conditions in sheet metal forming [J]. Journal of Materials Processing Technology,2001,111:182-187.
    [52] T. Yagami, K. Manabe, Y. Yamauchi. Effect of alternating blank holder motion of drawing andwrinkle elimination on deep-drawability [J]. Journal of Materials Processing Technology,2007,187-188:187-191.
    [53] K. Manabe, Y. Yamauchi, T. Yagami. FE simulation on blank holder control using frictionreducing algorithm in deep drawing process [J]. JSME International Journal Series A SolidMechanics and Material Engineering,2005,48:341-345.
    [54] R. Kergen, P. Jodogen. Computerized control of blank holder pressure on deep drawing process[R]. NASATechnical Memorandum,1992.
    [55] M. Traversin, R. Kergen. Closed-loop control of the blank-holder force in deep-drawing:finite-element modeling of its effects and advantages [J]. Journal of Materials ProcessingTechnology,1995,50:306-317.
    [56] K. Neil, J. Cao. Estimation of optimal blank holder force trajectories in segmented binders usingan ARMA model [J]. Journal of Manufacturing Science and Engineering,2003,125:763-770.
    [57] F. Vollertsen, Z. Hu, H. S. Niehoff, C. Theiler. State of the art in micro forming and investigationsinto micro deep drawing [J]. Journal of Materials Processing Technology,2004,151:70-79.
    [58] Z. Wei, Z. L. Zhang, X. H. Dong. Deep drawing of rectangle parts using variable blank holderforce [J]. The International Journal of Advanced Manufacturing Technology,2006,29:885-889.
    [59] C. K. Chao, C. H. Liu, H. J. Wu. Numerical and failure analysis on the drawing of a circularcylindrical cup [J]. Engineering Fracture Mechanics,1993,45:439-450.
    [60] Y. W. Lee. Fracture Prediction in Metal Sheets [D]. Massachusetts. Massachusetts Institute ofTechnology,2005.
    [61] M. Khelifa, M. Oudjene, A. Khennane. Fracture in sheet metal forming: Effect of ductile damageevolution [J]. Computers and Structures,2007,85:205-212.
    [62] J. B. Kim, J. W. Yoon, D. Y. Yang, F. Barlat. Investigation into wrinkling behavior in the ellipticalcup deep drawing process by finite element analysis using bifurcation theory [J]. Journal ofMaterials Processing Technology,2001,111:170-174.
    [63] N. Jillella, J. Peddieson. Modeling of wrinkling of thin circular sheets [J]. International Journal ofNon-Linear Mechanics,2012,47:85-91.
    [64] M. A. Shafaat, M. Abbasi, M. Ketabchi. Investigation into wall wrinkling in deep drawing processof conical cups [J]. Journal of Materials Processing Technology,2011,211:1783-1795.
    [65] H. Mei, C. M. Landis, R. Huang. Concomitant wrinkling and buckle-delamination of elastic thinfilms on compliant substrates [J]. Mechanics of Materials,2011,43:627-642.
    [66]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [67] A. J. Aghchai, M. Shaken, B. Mollaei-Dariani. Theoretical and experimental formability study oftwo-layer metallic sheet (Al1100/St12)[J]. Proceedings of the Institution of Mechanical Engineers,Part B (Journal of Engineering Manufacture),2008,222:1131-1138.
    [68] D. Besdo. Material laws denoting the influence of textures due to spring back simulations [J].Computational Materials Science,2012,52:82-89.
    [69] A. Muthler, A. Düster, W. Volk, M. Wagner, E. Rank. High order thin-walled solid finite elementsapplied to elastic spring-back computations [J]. Computer Methods in Applied Mechanics andEngineering,2006,195:5377-5389.
    [70] R. Lingbeek, J. Huétink, S. Ohnimus, M. Petzoldt, J. Weiher. The development of a finite elementsbased springback compensation tool for sheet metal products [J]. Journal of Materials ProcessingTechnology,2005,169:115-125.
    [71]柳玉起.板材成形塑性流动规律及起皱破裂回弹的数值研究[博士学位论文].吉林工业大学,1995.
    [72]黄平华.汽车典型覆盖件曲面重构及成形过程缺陷分析[硕士学位论文].上海交通大学,2007.
    [73] H. K. Kim, W. J. Kim. Failure prediction of magnesium alloy sheets deforming at warmtemperatures using the Zener-Holloman parameter [J]. Mechanics of Materials,2010,42:293-303.
    [74] H. Takuda, K. Mori, H. Fujimoto, N. Hatta. Prediction of forming limit in deep drawing of Fe/A1laminated composite sheets using ductile fracture criterion [J]. Journal of Materials ProcessingTechnology,1996,60:291-296.
    [75] T. X. Yu, W. Johnson. The buckling of annular plates in relation to the deep-drawing process [J].International Journal of Mechanical Sciences,1982,24:175-188.
    [76] T. X. Yu, L. C. Zhang. The elastic wrinkling of an annular plate under uniform tension on its inneredge [J]. International Journal of Mechanical Sciences,1986,28:729-737.
    [77] E. Chu, Y. Xu. An elastoplastic analysis of flange wrinkling in deep drawing process [J].International Journal of Mechanical Sciences,2001,43:1421-1440.
    [78] M. R. Morovvati, B. Mollaei-Dariani, M. H. Asadian-Ardakani. A theoretical, numerical, andexperimental investigation of plastic wrinkling of circular two-layer sheet metal in the deepdrawing [J]. Journal of Materials Processing Technology,2010,210:1738-1747.
    [79] W. Hosford, J. Duncan. Sheet metal forming: A review [J]. JOM Journal of the Minerals, Metalsand Materials Society,1999,51:39-44.
    [80]陈毓勋.板材与型材弯曲回弹控制原理与方法[M].北京:国防工业出版社,1990.
    [81] Y. H. Moon, S. S. Kang, J. R. Cho, T. G. Kim. Effect of tool temperature on the reduction of thespringback of aluminum sheets [J]. Journal of Materials Processing Technology,2003,132:365-368.
    [82] H. S. Kim, M. Ko. Numerical investigations on springback characteristics of aluminum sheetmetal alloys in warm forming conditions [J]. Journal of Materials Processing Technology,2008,204:370-383.
    [83] W. L. Xu, C. H. Ma, C. H. Li, W. J. Feng. Sensitive factors in springback simulation for sheetmetal forming [J]. Journal of Materials Processing Technology,2004,151:217-222.
    [84] S. V. Mohammadi, M. H. Parsa, A. J. Aghchai. Effect of the thickness distribution and settingcondition on springback in multi-layer sheet bending [J]. International Journal of Engineering,Science and Technology,2011,3:225-235.
    [85] L. Q. Zhou, Y. P. Li, Y. C. Zhou. Numerical analysis of electrodeposited nickel coating inmultisting drawinprocesses [J]. Journal of Engineering Materials and Technology,2005,127:233-243.
    [86]梁旭.镀层金属薄板拉深成形的实验与数值模拟[硕士学位论文].湘潭大学,2009.
    [87] M. J. van den Bosch, P. J. G. Schreurs, M. G. D. Geers. On the prediction of delamination duringdeep-drawing of polymer coated metal sheet [J]. Journal of Materials Processing Technology,2009,209:297-302.
    [88]陈明和.应力成形极限在板料成形分析中的应用基础研究[博士学位论文].南京航空航天大学,2008.
    [89] S. P. Keeler. Determination of forming limits in automotive stampings [J]. Sheet Metal Industries,1965,42:683-691.
    [90] G. M. Goodwin. Application of strain analysis to sheet metal forming problems in the press shop[R]. NASATechnical Memorandum,1968.
    [91] H. W. Swift. Plastic instability under plane stress [J]. Journal of the Mechanics and Physics ofSolids,1952,1:1-18.
    [92] R. Hill. On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. Journal of the Mechanics and Physics of Solids,1952,1:19-30.
    [93] Z. Marciniak, K. Kuczynski. Limit strains in the processes of stretch-forming sheet metal [J].International Journal of Mechanical Sciences,1967,9:609-620.
    [94] H. J. Kleemola, M. T. Pelkkikangas. Effect of predeformation and strain path on the forming limitsof steel copper and brass [J]. Sheet Metal Industries,1977,63:591-599.
    [95] T. B. Stoughton. A general forming limit criterion for sheet metal forming [J]. International Journalof Mechanical Sciences,2000,42:1-27.
    [96] T. B. Stoughton, J. W. Yoon. A new approach for failure criterion for sheet metals [J]. InternationalJournal of Plasticity,2011,27:440-459.
    [97] P. D. Wu, M. Jain, J. Savoie, S. R. MacEwen, P. Tu cu, K. W. Neale. Evaluation of anisotropicyield functions for aluminum sheets [J]. International Journal of Plasticity,2003,19:121-138.
    [98] J. W. Signorelli, M. A. Bertinetti, P. A. Turner. Predictions of forming limit diagrams using arate-dependent polycrystal self-consistent plasticity model [J]. International Journal of Plasticity,2009,25:1-25.
    [99] T. J. Wang, D. J. Li, F. S. Ma, Z. B. Kuang. Influence of stress triaxiality on damage and crack tipopening displacement parameters for steels [J]. Theoretical and Applied Fracture Mechanics,1995,22:151-158.
    [100] M. H. Chen, L. Gao, D. W. Zuo, M. Wang. Application of the forming limit stress diagram toforming limit prediction for the multi-step forming of auto panels [J]. Journal of MaterialsProcessing Technology,2007,187–188:173-177.
    [101] X. Hu, Z. Q. Lin, S. H. Li, Y. X. Zhao. Fracture limit prediction for roller hemming of aluminumalloy sheet [J]. Materials&Design,2010,31:1410-1416.
    [102] M. J. Worswick, M. J. Finn. The numerical simulation of stretch flange forming [J]. InternationalJournal of Plasticity,2000,16:701-720.
    [103] T. Naka, G. Torikai, R. Hino, F. Yoshida. The effects of temperature and forming speed on theforming limit diagram for type5083aluminum–magnesium alloy sheet [J]. Journal of MaterialsProcessing Technology,2001,113:648-653.
    [104] T. Kuwabara. Advances in experiments on metal sheets and tubes in support of constitutivemodeling and forming simulations [J]. International Journal of Plasticity,2007,23:385-419.
    [105] X. Q. Zhang, Y. H. Peng, X. Y. Ruan. Simulation and fracture prediction for sintered materials inupsetting by FEM [J]. Journal of Materials Processing Technology,2000,105:253-257.
    [106] G. P. Liu, X. Han, C. Jiang. A novel multi-objective optimization method based on anapproximation model management technique [J]. Computer Methods in Applied Mechanics andEngineering,2008,197:2719-2731.
    [107] P. Hu. Rate-dependent quasi-flow corner theory for elastic/visco-plastic materials [J].International Journal of Solids and Structures,2004,41:1263-1284.
    [108] Y. Q. Liu, J. C. Wang, P. Hu. The numerical analysis of anisotropic sheet metals in deep-drawingprocesses [J]. Journal of Materials Processing Technology,2002,120:45-52.
    [109] P. Hu, Y. Q. Liu, J. C. Wang. Numerical study of the flange earring of deep-drawing sheets withstronger anisotropy [J]. International Journal of Mechanical Sciences,2001,43:279-296.
    [110] M. Havranek. Wrinking limiting of Tapered pressing [J]. Journal of the Australian Institute ofMetals,1975,20:114-119.
    [111] E. Doege, N. Sommer. Optimierung der Nieder-halterkraft beim Tiefziehen rechteckiger Teile [J].Stahl and Eisen,1983,103:139-142.
    [112] S. Yossifon, K. Sweeney, M. Ahmetoglu, T. Altan. On the acceptable blank-holder force range inthe deep-drawing process [J]. Journal of Materials Processing Technology,1992,33:175-194.
    [113] M. Ahmetoglu, T. R. Broek, G. Kinzel, T. Altan. Control of blank holder force to eliminatewrinkling and fracture in deep-drawing rectangular parts [J]. CIRP Annals-ManufacturingTechnology,1995,44:247-250.
    [114] L. Gunnarsson, N. Asnafi, E. Schedin. In-process control of blank holder force in axi-symmetricdeep drawing with degressive gas springs [J]. Journal of Materials Processing Technology,1998,73:89-96.
    [115] H. Gharib, A. S. Wifi, M. Younan, A. Nassef. Optimization of the blank holder force in cupdrawing [J]. Journal of Achievements in Materials and Manufacturing Engineering,2006,18:291-294.
    [116] L. M. Ren, S. H. Zhang, G. Palumbo, D. Sorgente, L. Tricarico. Numerical simulation on warmdeep drawing of magnesium alloy AZ31sheets [J]. Materials Science and Engineering: A,2009,499:40-44.
    [117]林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2004.
    [118]付泽民,莫健华,陈伟,王波,聂东健.基于量纲分析法的金属板材折弯回弹数学模型[J].机械工程学报,2010,46:53-58.
    [119] Y. G. Liao, Y. C. Zhou, Y. L. Huang, L. M. Jiang. Measuring elastic–plastic properties of thinfilms on elastic–plastic substrates by sharp indentation [J]. Mechanics of Materials,2009,41:308-318.
    [120] Z. F. Zhou, Y. C. Zhou, Y. Pan, W. X. Lei, C. F. Xu. Overheating and undercooling of Nipolycrystalline nanowires [J]. Scripta Materialia,2009,60:512-515.
    [121] Z. F. Zhou, Y. C. Zhou, Y. Pan, C. F. Xu. Melting of Ni nanowires with and without oxidecapping [J]. Acta Materialia,2010,58:3059-3067.
    [122] L. Z. Ling, S. G. Long, Z. S. Ma, X. Liang. Numerical study on the effects of equi-biaxialresidual stress on mechanical properties of nickel film by means of nanoindentation [J]. Journal ofMaterials Science&Technology,2010,26:1001-1005.
    [123] Z. S. Ma, S. G. Long, Y. C. Zhou, Y. Pan. Indentation scale dependence of tip-in creep behaviorin Ni thin films [J]. Scripta Materialia,2008,59:195-198.
    [124] Z. S. Ma, Y. C. Zhou, S. G. Long, C. Lu. On the intrinsic hardness of a metallic film/substratesystem: Indentation size and substrate effects [J]. International Journal of Plasticity,2012,34:1-11.
    [125] L. M. Jiang, J. Peng, Y. G. Liao, Y. C. Zhou, J. Liang, H. X. Hao, C. Lu. A modifiedlayer-removal method for residual stress measurement in electrodeposited nickel films [J]. ThinSolid Films,2011,519:3249-3253.
    [126] L. H. Xiao, X. P. Su, J. H. Wang, Y. C. Zhou. A novel blister test to evaluate the interface strengthbetween nickel coating and low carbon steel substrate [J]. Materials Science and Engineering: A,2009,501:235-241.
    [127] L. M. Jiang, Y. C. Zhou, H. X. Hao, Y. G. Liao, C. S. Lu. Characterization of the interfaceadhesion of elastic–plastic thin film/rigid substrate systems using a pressurized blister testnumerical model [J]. Mechanics of Materials,2010,42:908-915.
    [128]张小兵.镀层薄板冲压成形有限元模拟[硕士学位论文].湘潭大学,2008.
    [129]任小雷.镀层金属薄板成形过程的变形与失效研究[硕士学位论文].湘潭大学,2011.
    [130]潘勇.用于高性能电池外壳微/纳米晶覆镍深冲钢带的研制[博士学位论文].湘潭大学,2007.
    [131]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [132] G. I. Barenblatt. Dimensional analysis [M]. London: Routledge,1987.
    [133]徐婕,詹士昌,田晓岑.量纲分析的基本理论及应用[J].大学物理,2004,23.
    [134] J. B. J. Fourier. Analytic theory of heat [M]. New York: Cambridge University Press,1955.
    [135] E. Buckingham. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review,1914,4:345-376.
    [136] P. W. Bridgman. Dimensional analysis [M]. New Haven: Yale University Press,1922.
    [137]周益春.材料固体力学(上、下册)[M].北京:科学出版社,2005.
    [138] J. Dundurs. Discussion of edge-bonded dissimilar orthogonal elastic wedges [J]. Journal ofApplied Mechanics,1969,36:650-652.
    [139] A. S. Korhonen. Drawing force in deep drawing of cylindrical cup with flat-nosed punch [J].Journal of Engineering for Industry-Transactions of the ASME,1982,104:29-35.
    [140] D. K. Leu. Prediction of the limiting drawing ratio and the maximum drawing load incup-drawing [J]. International Journal of Machine Tools and Manufacture,1997,37:201-213.
    [141] S. H. Choi, K. H. Kim, K. H. Oh, D. N. Lee. Tensile deformation behavior of stainless steel cladaluminum bilayer sheet [J]. Materials Science and Engineering: A,1997,222:158-165.
    [142] S. Bagherzadeh, B. Mollaei-Dariani, K. Malekzadeh. Theoretical study on hydro-mechanicaldeep drawing process of bimetallic sheets and experimental observations [J]. Journal of MaterialsProcessing Technology,2012,212:1840-1849.
    [143]赵军,李硕本.金属复合板的拉伸失衡判据[J].机械工程学报,1995,31:103-108.
    [144] W. Zutang. Forming limits for sheet metals under tensile stresses [J]. Journal of MaterialsProcessing Technology,1997,71:418-421.
    [145] M. Wan, Y. Y. Yang, S. B. Li. Determination of fracture criteria during the deep drawing ofconical cups [J]. Journal of Materials Processing Technology,2001,114:109-113.
    [146] W. Johnson, P. B. Mellor. Engineer Plasticity [M]. London: van Nostrand Reinhold,1973.
    [147] L. P. Kollár, G. S. Springer. Mechanics of Composite Structures [M]. London: CambridgeUniversity Press,2003.
    [148] S. P. Timoshenko. Strength of Materials(I,II)[M]. London: van Nostrand Reinhold,1958.
    [149] P. Teixeira, A. D. Santos, F. M. A. Pires, J. M. A. C. Sa. Finite element prediction of ductilefracture in sheet metal forming processes [J]. Journal of Materials Processing Technology,2006,177:278-281.
    [150] ABAQUS. ABAQUS6.6User's manual [M]: ABAQUS Inc.,2006.
    [151] P. I. Kattan, G. Z. Voyiadjis. Damage mechanics with finite elements [M]. Berlin Heidelberg:Springer-Verlag,2001.
    [152] H. Hooputra, H. Gese, H. Dell, H. Werner. A comprehensive failure model for crashworthinesssimulation of aluminium extrusions [J]. International Journal of Crashworthiness,2004,9:449-464.
    [153] G. Chandra Mohan Reddy, P. V. R. Ravindra Reddy, T. A. Janardhan Reddy. Finite elementanalysis of the effect of coefficient of friction on the drawability [J]. Tribology International,2010,43:1132-1137.
    [154] M. Schwarze, I. N. Vladimirov, S. Reese. Sheet metal forming and springback simulation bymeans of a new reduced integration solid-shell finite element technology [J]. Computer Methodsin Applied Mechanics and Engineering,2011,200:454-476.
    [155] S. K. Singh, K. Mahesh, A. Kumar, M. Swathi. Understanding formability of extra-deep drawingsteel at elevated temperature using finite element simulation [J]. Materials&Design,2010,31:4478-4484.
    [156] H. Zhang, X. Dong, Q. Wang, Z. Zeng. An effective semi-implicit integration scheme for ratedependent crystal plasticity using explicit finite element codes [J]. Computational MaterialsScience,2012,54:208-218.
    [157] A. S. Wifi. An incremental complete solution of the stretch-forming and deep-drawing of acircular blank using a hemispherical punch [J]. International Journal of Mechanical Sciences,1976,18:23-31.
    [158] M. Gotoh, F. Ishisé. A finite element analysis of rigid-plastic deformation of the flange in adeep-drawing process based on a fourth-degree yield function [J]. International Journal ofMechanical Sciences,1978,20:423-435.
    [159] J. K. Lee, G. L. Kinzel, R. H. Wagoner. NUMISHEET'96[C].3rdInternational Conference onNumerical Simulation of3-D Sheet Metal Forming Processes, Michigan, U. S. A.,1996,
    [160] J. C. Gelin, P. Picart. NUMISHEET'99[C].4thInternational Conference on NumericalSimulation of3-D Sheet Metal Forming Processes, Besancon, France,1999,
    [161] K. Chung, H. Huh, H. N. Han, Y. H. Moon, F. Barlat. NUMISHEET'2011[C].8thInternationalConference on Numerical Simulation of3-D Sheet Metal Forming Processes, Seoul, Korea,2011,
    [162]万敏,李东升,乔立红,王秀凤,金朝海.板料成形计算机分析技术[M].北京:北京航空航天大学出版社,2008.
    [163]庄拙,由小川,廖剑辉.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [164]赵腾伦. ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [165]陆明万,罗学富.弹性理论基础[M].2ed.北京:清华大学出版社,2009.
    [166]王仁,黄文彬,黄祝平.塑性力学引论[M].北京:北京大学出版社,1992.
    [167]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981.
    [168]周里群.电沉积镍涂层的冲击性能与冲压成形过程分析[博士学位论文].湘潭大学,2004.
    [169]金苗,孟良荣. GB/T8897.2-2008原电池国家标准解析[J].电池工业,2009,14.
    [170]唐甜.脉冲喷射电沉积纳米晶镍镀层耐腐蚀性能研究[硕士学位论文].湘潭大学,2006.
    [171]高灿柱,鹿玉理,刘汝涛.缓冲剂对镀镍过程作用机理的研究[J].电化学,1998,4:223-227.
    [172]付宏生.冷冲压成形工艺与模具设计制造[M].北京:化学工业出版社,2006.
    [173]徐政坤.冲压模具设计与制造[M].北京:化学工业出版社,2009.
    [174]权铁汉,陆宏伟,于起峰.网格法及其在大变形测量中的应用[J].实验力学,2000,15:83-91.
    [175]梁炳文.板金成形性能[M].北京:机械工业出版社,1999.
    [176] C. Arwidson. Numerical simulation of sheet metal forming for high strenght steels [D]. LuleaUniversity of Technology,2005.
    [177] L. Q. Zhou, J. G. Tang, Y. P. Li, Y. C. Zhou. Predicting forming limit of electrodeposited nickelcoating based on practical stress-strain relationship [J]. Journal of Materials ProcessingTechnology,2008,206:431-437.
    [178] H. Badreddine, K. Saanouni, A. Dogui. On non-associative anisotropic finite plasticity fullycoupled with isotropic ductile damage for metal forming [J]. International Journal of Plasticity,2010,26:1541-1575.
    [179] M. Boudifa, K. Saanouni, J. L. Chaboche. A micromechanical model for inelastic ductile damageprediction in polycrystalline metals for metal forming [J]. International Journal of MechanicalSciences,2009,51:453-464.
    [180] F. Yoshida, R. Hino. Forming limit of stainless steel-clad aluminium sheets under plane stresscondition [J]. Journal of Materials Processing Technology,1997,63:66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700