用户名: 密码: 验证码:
汽车覆盖件冲压成形精细化仿真与优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国汽车产业的高速发展,覆盖件冲压成形仿真技术已经普遍应用,以解决产品早期设计缺陷问题,提高模具设计质量。但现有成形仿真技术还存在一定的局限性,不能满足模具优化设计和现场试模的要求,因此研究汽车覆盖件冲压成形精细化仿真和优化技术是具有重要生产意义的课题。
     论文结合国家数控重大专项项目基金(项目名称“高强钢板冷冲压成形技术研究”,项目编号:2010ZX04014-072)支持,在分析影响汽车覆盖件成形仿真精度各种因素、优化技术应用现状的基础上,对汽车覆盖件成形精细化仿真和优化技术进行了研究,研究内容主要包括以下几个方面:
     为研究高强度板流过拉深筋时阻力、举升力变化规律,结合高强度板冲压成形特点,同时考虑对称和非对称形状的拉深筋,设计了试验方案。试验结果表明:在对称的拉深筋中高强度板和普通钢板阻力变化规律基本一致;在非对称的拉深筋中者表现有不一致性;非对称形状拉深筋的相关参数和高强度板成形后卷曲变形量或回弹量变化有关系。在综合分析这种关系基础上,提出了一种通过非对称形状拉深筋控制高强度板成形质量的新方法。采用该方法可以有效减小高强度板成形后的卷曲变形量、回弹量,降低现场调试工作量和缩短调试时间。
     建立了基于知识的增量法优化拉深筋的方法。对汽车覆盖件进行分类,采用提取关键特征技术,制定了拉深筋优化知识库的创建方案。以成形极限图(FLD)为目标函数,综合考虑过度减薄、破裂、起皱、成形不足因素对冲压件可成形性的影响,以分模线以内区域为主要优化对象,有效解决了传统优化方法初始值不合理及优化时间过长的问题。
     采用弹性力学分析的方法研究了覆盖件冲压成形过程中压边圈的变形模式。在此基础上,提出了一种考虑覆盖件模具压边圈管理面的模拟方法,同时结合该模拟方法提出了管理面优化设计方法。通过理论推导与仿真技术相结合,建立了管理面高度差计算模型,以及内、外压边力设定准则。该方法对于指导覆盖件冲压工艺设计,减少后期模具研配工作量具有重要意义。
     论文应用数值模拟技术同时结合试验数据,在对比分析模拟结果的基础上,研究了等效拉深筋和实体拉深筋在各种成形条件下对模拟精度的影响。结果表明,拉深筋的处理方式对压边力、起皱、破裂和厚度减薄率分布的准确性存在很大的影响。论文结论对提高覆盖件成形精细化仿真的精度有指导意义。
With the rapid development of the China automobile industry, the technology of numerical simulation for sheet metal forming of auto panel has been widely used to predict product forming defects in early design stage and improve the quality of the process and structure of die design. The simulation technology is still under development to meet the requirements of the higher simulation accuracy at the design and field test stages. Therefore, it is very important to research the subject about the refinement of simulation and optimization techniques of auto panel.
     The study is supported by the fund of the National numerical control major projects (project name "high-strength steel cool stamping technology research", project No:,2010ZX04014-072). Firstly, both the factors that affect the forming simulation accuracy of auto panel and the optimization technology are analyzed. Then the refinement simulation techniques are studied, which includes the following aspects:
     In order to study the law of the drawbead resistance and lifting force variation with the high-strength steel und the die structures, the test program is developed. In the program, the drawbeads with the symmetrical and asymmetrical shapes are considered. The results show that:The variation laws are same in the symmetrical and asymmetrical shapes drawbead with common steel. But the laws are different with the high strength steel. The geometric parameters with asymmetrical shape drawbead will affect the deformation and springback to some extent.
     Basis on the experiments and simulation analysis, a control method for high-strength steel forming quality with asymmetrical shape drawbead is developed, which can reduce the curl amount of deformation and springback of high-strength steel with less workload and shorten debug time.
     The drawbead optimization method with knowledge using the incremental finite element method is developed. Firstly, the key features of auto cover is classified to build the drawbead optimization knowledge base. Then optimization method is developed using the Forming Limit Diagram (FLD) as the objective function. In the method, the factors for forming formability, such as, severe thinning, rupture, wrinkling, unsufficient forming within the region of open line are considered, with can solve the problem of the initial value and the long time optimization effectively.
     The Influencing factor for forming formability of the blank holder deformation is analyzed with the elasticity finite element method. A process optimization and simulation technology is developed to control the gap (Referred as the management face) between the blank holder and the forming sheet. Both the calculation model of height difference within the management face and the setting rules of inner-outer blank holder force are developed using the theoretical derivation and simulation technology.
     Basis of the simulation results and experimental data, the process parameters for forming formability, such as, the equivalent and real shape drawbead, the blank holder deformation and the gap between blank holder and forming sheet are studied. The conclusions with test and simulation to improve the refine simulation accuracy of auto panel is Significance.
引文
[1]陈勇,王学松.我国汽车产业组织结构调整与规模经济.商业研究,2006,352(20):108-110.
    [2]中国汽车工业协会统计信息网:http://www.auto-stats.org.cn.
    [3]门峰,王今.我国汽车产业合资合作与自主发展策略研究. 汽车工业研究.2013,4(2):19-23.
    [4]王永峰,曹静,刘锐.我国汽车覆盖件模具的发展现状及其思路.现代零部件,2009,10:58-59.
    [5]林文忠.汽车覆盖件模具的特色发展.金属加工,2009,16:51-53.
    [6]周永泰.我国汽车冲压模具的现状及发展.汽车与配件,2007,29:24-27.
    [7]陈军,石晓祥,姚兴等.汽车覆盖件冲压工艺/模具计算机辅助技术的发展现状.锻压技术,2002,6:14-18.
    [8]张正法,祁文军,卢大平.车身覆盖件冲压仿真结果对比及分析.汽车工程,2000,22(3):192-196.
    [9]王建华.CAE技术在汽车模具行业中的应用探讨.汽车模具设计与制造,2005,8:48-51.
    [10]Wang N M. Large plastic deformation of a circular sheet caused by punch stretching. Applied Mechanics, Trans of ASME,1970,37:431-440.
    [11]Woo D M. The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process. Mechanical Sciences,1964,6(4):303-317.
    [12]Mamalis A G, Manolakos D E, Baldoukas A K, Simulation of sheet metal forming using explicit finite-element techniques:effect of material and forming characteristics:Part 1. Deep-drawing of cylindrical cups. Materials Processing Technology,1997,72(1):48-60.
    [13]Wang N M, Tang S C. Analysis of bending effects in sheet forming operation. In: Proceeding of NUMIFORM, Rotterdam, Holland,1986.77-86.
    [14]Lee S W, Yoon J W, Yang D Y. A stress integration algorithm for plane stress elastoplasticity and its applications to explicit finite element analysis of sheet metal forming processes. Computers & Structure,1998,66(2):301-311.
    [15]胡轶敏,林忠钦,徐伟力等.车身覆盖件冲压成形动态仿真的研究进展.力学进展,2000,30(2):252—271.
    [16]Makinouchi A. Sheet metal forming simulation in industry. Materials Processing Technology,1996,60(1):19-26.
    [17]施法中,张苏,刘艳芳,王伟,王昱皓.冲压成形模拟软件SheetForm的实用化开发及体会,第十五届全车汽车车身技术研讨会,成都,中国,2006.
    [18]杜亭,柳玉起,章志兵,李志刚.板料成形坯料形状与应变分布的快速精确预测.中国机械工程,2005,16(20):1867-1870.
    [19]高建峰.面向产品设计全流程的板料成形仿真集成系统的研究与开发:[硕士学位论文].武汉:华中科技大学,2009.
    [20]李光耀.三维板料成形过程的显式有限元分析.计算结构力学及其应用.1996,13(3):226-234.
    [21]柳玉起.板料成形塑性流动规律及起皱回弹的数值模拟.[博士学位论文].长春:吉林工业大学,1996.
    [22]单体坤.TRIP钢板成形性能和回弹特性研究.[博士学位论文].上海:上海交通大学,2008.
    [23]Goel N C, Sangal S, Tangri K. A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite:Part I.derivation of flow curve equations. Metallurgical and Materials Transactions,1985,16A(11):2013-2021
    [24]Sangal S, Goel N C,Tangri K. A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite:Part II. Calculation of flow curves. Metallurgical and Materials Transactions, 1985,16A(11):2023-2029.
    [25]Hill R. The Mathematical Theory of Plasticity. Oxford Press,1950.
    [26]Chu E, Shah K N, et al. The development/application of sheet metal forming technology at AIcoa. SAE Trans of Materials & Manufacturing,1993,No 930523.743-755.
    [27]Hill R. Theoretical plasticity of textured aggregates.In:Mathematical Proceedings of the Cambridge Phlosophcal Society,1979,85:179.
    [28]Hill R. Constitute modeling of orthotropic plasiticity in sheet metal. Mechanics Phsics of Solids,1990,38(3):405-417.
    [29]Hill R. A user friendly theory of orthotropic plasiticity in sheet metal. Mechanical Sciences,1993,35(1):19-25.
    [30]Barlat F, Lian J. Plastic behavior and strctchability of sheet metals PartⅠ:A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity,1989,5:51-66.
    [31]Barlat F, Lege D T, Brem J C. A six-component yield function for anisotropic materials. International Journal of Plasticity,1991,7:547-576.
    [32]胡平,连建设,李运兴.弹塑性有限变形的拟流动理论.力学学报, 1994,26(3):275-2.82
    [33]余海燕.金属薄板应变硬化模型比较分析.锻压技术,2012,37(5):1-6.
    [34]Cao Jian, Lee W,Cheng H S,et al. Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. International Journal of Plasticity,2009,25:942-972.
    [35]肖煜中,陈军.金属板料冲压数值模拟中的宏观硬化模型研究现状.塑性工程学报,2009,16(4):51-59.
    [36]Ohno Nobutada, Wang Jiangding. On modeling of kinematic hardening for ratcheting behavior. Nuclear Engineering and Design,1995,153:205-212.
    [37]Chabocle J L, Jung O. Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation. International Joural of Plasticity,1997,13:785-807.
    [38]Tang S C. Application of an anisotropic hardening rule to springback prediction. In:the Proceedings of ICTP 96,Columb,U.S.A,1996.
    [39]Ziegler H.A modification of prager's hardening rule. Quarterly of Applied Mathematics,1959,17:55-65.
    [40]Mroz Z. An attempt to describe the behavior of metal under cyclic loads using a more general work hardening model.Acta Mechanica,1969,7:199-212.
    [41]Armstrong P J, Frederick C O. A mathematical representation of the multiaxial bauschinger effects[R]. CEGB report, RD/b/N/731, Berkeley unclear laboratories, Berkley UK,1966.
    [42]Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity,2008,24(10):1642-1693.
    [43]Hodge P G. a new method of analyzing stresses and strains in work hardening plastic solids. Applied Mathematics,1957,24:482-483.
    [44]Kumar s, Date P P, Narasimhan K. A new criterion on to predict necking failure under biaxial stretching. Materials Processing Technology,1994.45:583-588.
    [45]王晓林.蒙皮拉成形过程有限元数值模拟技术研究.[博士学位论文].北京,北京航空航天大学,1999.
    [46]陈劫实,周贤宾,刘长丽.数值模拟中应用最小厚度准则预测板料成形极限.中国机械工程,2006,17(2):67-70.
    [47]Assempour, A Safikhani, A R Hashemi, et al. An improved strain gradient approach for determination of deformation localization and forming limit diagrams. Materials Process Technology,2009,209(4):1758-1769.
    [48]Gensamer M. Strength and ductility Campbell lecture. Trans. ASM,1946,361949.
    [49]Keeler S P. Determination of forming limit in automotive stamping. SAE Report,1965,No.650535:1-9.
    [50]Goodwin. G.M. Application of strain analysis on sheet metal forming problems in the press shop. SAE report,1968,No.680093.
    [51]梁炳文,陈孝戴,王志恒.钣金成形性能.机械工业出版社,北京,1999.
    [52]李志刚,肖祥芷,肖景容.对各向异性板料成形极限曲线的研究.锻压技术,1982,8:11-15.
    [53]陈光南,胡世光.成形极限曲线(FLC)的新概念.北京航空航天大学学报,1992,4:48-53.
    [54]陈光南,胡世光.成形极限曲线的新概念.机械工程学报,1994,30(2):82-86.
    [55]金属材料,薄板和薄带,成形极限曲线的测定,中华人民共和国国家标准,GB/T24171.2-2009.
    [56]余海燕,陈关龙,李淑慧.TRIP高强度钢板成形极限的试验研究.中国机械工程,2004,15(23):2158-2161.
    [57]陈劫实,周贤宾.考虑可靠度的成形极限曲线建立方法.中国机械工程,2005,7,16(13),1214-1221.
    [58]杨玉英.大型薄板成形技术.国防工业出版社,北京,1996.
    [59]林大为,屠挺生,戴一一.板料真实成形极限的测定及其应用.锻压技术,2001,3:18-21.
    [60]Yang D Y, Shim H B, et al. Comparative investigation of sheet metal forming processes by the elastic-plastic finite element method with emphasis on the effect of bending. Engineering Compution,1990,7:274-284.
    [61]D Y Yang, D W Jung,I S Song,et al. Comparative investigation into implicit,explicit,and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. Materials Processing Technology,1995,50:39-53.
    [62]Z.H.Zhong, L.Nilsson. A contact searching algorithom for general 3-D contact-impact problems. Computers & Structures,1990,34(2):327-335.
    [63]Chanppuis L B,Chen X M, Tang S C. A numerically stable computer model for sheet metal forming analysis by 2D membrance theory. SAE Trans of Materials & Manufacture,1993,No 930518.703-711.
    [64]Hsu Tze-Chi, Wilson W R D. Hydrodynamic lubrication in axisymmetric stretch forming. Trans of ASME,Tribrology,1994,116:101-109.
    [65]Mustafa A, Ahmetoglu A C, et al. Improving drawability by using variable blank holder force and pressure in deep drawing of round and non-summetric parts. SAE Trans of Materials & Manufacturing,1993,No 930287.428-435.
    [66]Cao Jian,Mary C,Boyce. Draw bead penetration as a control element of material flow during sheet metal forming. In:International Congress and Exposition, Massachusetts Institute of Technology,U.S.A,1993.
    [67]Nine H D. Drawbead force in sheet metal forming. Mechanics of Sheet Metal Forming. New York,Plenum Press,1978.179-211.
    [68]Balun T, Ling P, Tang S C. Detection and elimination of wrinkles on an auto-body panel by the binder set analysis. SAE Trans of Materials & Manufacturing, 1993,No 930515.679-682.
    [69]金淼,郭宝锋,李硕本等.板条通过圆角时的变形机理研究.塑性工程学报,2001,8(1):40-42.
    [70]Wang N M. A mathematical model of drawbead forces in sheet metal forming. Applied Metalworking,1982,2(3):193-199.
    [71]叶又.三维板料成形数值模拟技术及起皱和拉深筋模型的研究.[博士学位论文].上海:上海交通大学,1998.
    [72]Batoz J L,Guo Y Q, Mercier F. The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Engineering Computations,1998,15(7):133-148.
    [73]T Meinders. Equivalent drawbead performance in deep drawing simulation. In:Proceedings of NUMISHEET'99,1999,243-248.
    [74]J.Rojek. Equivalent drawbead:computer modeling and experiments. Proceedings of NUMISHEET'99, Besancon,France,1999.
    [75]T Meinders, B D Carleer,H J K Geijselaers, et al. The implementation of an equivalent drawbead model in a finite element code for sheet metal forming. Materials Processing Technology,1998,83(1-3):234-244.
    [76]李尚健,李赞,唐薇.拉深筋阻力的计算.金属成形工艺,1993,11(6):257-261.
    [77]N Triantafyllidis, B Maker, S. K. Samanta. An analysis of drawbeads in sheet metal forming:Part I:problem formulation. Engineering materials and technology, transactions of the ASME,1986,108(4):321-327.
    [78]B Maker,S K Samanta,G Grab,N triantafyllidis. An analysis of drawbeads in sheet metal forming.PartII:experimental verification.Engineering Materials and Technology, Transactions of the ASME,1987,109(2):164-170.
    [79]B D Carleer, P T Vreede. Modeling drawbeads with elements andverification. Materials Processing Technology,1994,45:63-68.
    [80]朱东坡,孙琨等.板料成形回弹问题研究新进展.塑性工程学报,2000,7:11-15.
    [81]Gau J T, Kinzel G L. An experimental investigations of the influence of the Bauschinger effect on springback predictions.Materials Processing Technology, 2001,108:369-375.
    [82]Thomson P F, Kim J K. Spingback and side-wall curl of gavannized steel sheet. Mechanical Working Technology,1989,19:233-238.
    [83]Livatyali H, Wu H C, Altan T. Prediction and elimination of springback in sstraight flanging using computer-aided design methods:Part 2:FEM predictions and tool design. Materials Processing Technology,2002,120(1-3):348-354.
    [84]Inamdar m v, Date P P, Sabnis S V. On the effect of geometric parameters on springback in sheets of five materials subjected to air vee bending. Materials Processing Technology,2002,123(10):459-463.
    [85]Tan Z, Pesson B, Magnusson.An empiric model for controlling springback in V-die bending of sheet metals. Materials Processing Technology,1992,34:449-455
    [86]刘克进.薄板冲压回弹试验研究及数值模拟对比分析.[硕士学位论文].长沙:湖南大学,2004.
    [87]R Hill. The mathematical theory of plasticity. Oxford,London,1950.
    [88]W Johnson, T X Yu. On the range of applicability of results for the springback of an elastic-perfectly plastic rectangular plate after subjecting it to biaxial pure bending-II. Mechanical Sciences,1981,23:631-637.
    [89]W Johnson, T X Yu. On springback after the pure bending of beams and plates of elastic work-hardening material-II. Mechanical Sciences,1981,23:687-695.
    [90]W Johnson, T.X.Yu. On the range of applicability of results for the springback of an elastic/work-hardening rectangular plate after subjecting it to biaxial pure bending-IV. Mechanical Sciences,1981,23:697-701
    [91]Aly El-Domiaty, A H SHABAIK. Bending of work-hardening metals under the influence of axial load. Mechanical Working Technology,1982,6:5-21.
    [92]A EL-MEGHARBEL,A.El-DOMIATY,M.SHAKER. Springback and residual stresses after stretch bending of work-hardening sheet metal.Materials Proceeding Technology,1990,24:191-200.
    [93]Chuantao Wang,Gary Kinzel,Taylan Altan.Mathematical modeling of plane-strain bending of sheet and plate. Materials Processing Technology,1993,39:279-304.
    [94]Chuantao Wang, Gary Kinzel,Taylan Altan. Processing simulation and springback control in plane strain sheet bending.SAE technical paper.1993, No 930280.
    [95]Thaweepat Buranathiti, Jian Cao. An effective analytical model for spingback prediction in straight flanging processes.Material and Product Technology, 2004,21:137-153.
    [96]Chin Chan Chu.The effect of restraining force on springback.Sloids Structures,1991,27:1035-1046.
    [97]Farhang Pourboghrat, Edmund Chu. Springback in plane strain stretch/draw sheet forming. Mechanical Science,1995,36:327-341.
    [98]Gau Jenn Terng, Kinzel Gary. A new model for springback prediction in which the Bauschinger effect is considered. Mechanical Science,2001,43(8):1813-1832.
    [99]Nader Asnafi. Springback and fracture in V-die air bending of thin stainless steel sheets.Materials and Design,2000,21:217-236.
    [100]Z T Zhang, D Lee. Development of a new model for plane strain bending and springback analysis. Materials Engineering and Performance,1995,4:291-299.
    [101]Z T Zhang,S J Hu. Stress and residual stress distributions in plane strain bending. Mechanical Sciences,1998,40(6):533-543.
    [102]Farhang Pourboghrat, Michael E Karabin, Richard C Echer. A hybrid membrance shell method for calculating springback of anisotropic sheet metals undergoing axisymmetric loading.International Journal of Plasticity,2000,16:677-700.
    [103]Morestin Fabric,Boivin Maurice,Silva C. Elastic plastic formulation using a kinematic hardening model for springback analysis in sheet metal forming. Materials Processing Technology,1996,56(4):619-630.
    [104]Xue P, Yu T X, Chu E. Theoretical prediction of springback of metal sheet after double-curvature forming operation.Materials Processing Technology,1999, 89:65-71.
    [105]Xue P, Yu T X,Chu E. An energy approach for predicting springback of metal sheets after double-curvature forming part I:axisymmetric stamping. Mechanical Sciences,200143(8):1893-1914.
    [106]Xue P,Yu T X,Chu E.An energy approach for prediction springback of metal sheets after double-curvature forming partⅡ:unequal double-curvature forming. Mechanical Sciences,2001,43:1915-1924.
    [107]H sattari,R Sedaghati,R Ganesan. Analysis and design optimization of deep drawing process Part II:optimization. Materials Processing Technology, 2007,184:84-94
    [108]H Naseur,Y Q Guo,J L Batoz,et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. Mechanical Sciences, 2001,43:2407-2434
    [109]易国锋.基于有限元逆算法的板料成形中的拉深筋优化问题研究与应用.[硕士学位论文].武汉:华中科技大学,2006.
    [110]Ohata T,NakamuraY,Katayama T,et al. Development of optimum process design system by numerical simulation.Material Processing Technology,1996,60:543-548
    [111]Baralet O,Batoz J.L,Guo Y.Q,et al. Optimum design of blank contour using the inverse approach and mathematical programming techniques.NUMISHEET'96, Michigan,USA,1996.p 178-185.
    [112]Barlet O,Batoz J L,Guo Y.Q,et al.The invers approach and mathematical programming techniques for optimum design of sheet forming parts.ASME 1996,3:227-232.
    [113]Barlat O,Naceur H,Batoz J L,et al. Shape optimum design of blank contour using a simplified invers approach. Numiform'98, Enschede, the Netherlands,1998.
    [114]Batoz J L,Guo Y Q. Analysis and design of sheet forming parts using a simplified inverse approach. COMLASV,Barcelona, Spain,1997.
    [115]Ghouati O,Joannic D,Gelin J C.Optimization of process parameters for the control of springback in deep drawing.Numiform'98,Enschede,The Netherlands,1998.
    [116]Luet D,Duval J.L,Di-Pasquale E,Regaud V,Le Roch Y. optimum blank design in sheet metal forming by the deformation path iteration method. Mechanical Sciences,1999,41:1217-1232.
    [117]章志兵.面向冲压产品设计的快速仿真与优化技术的研究.[博士学位论文].武汉:华中科技大学,2008.
    [118]李方义,李光耀,李洪周,崔付刚.区间不确定性多目标优化算法在薄板冲压成形中的应用研究.中国机械工程,2010,21(13):1609-1613.
    [119]郑刚.汽车覆盖件冲压成形中拉延筋模型及其参数反演研究.[博士学位论文].,长沙:湖南大学,2008.
    [120]朱铮,汽车用高强度刚版纳的开发应用和发展前景.钢铁,2000,35(1):66-70.
    [121]Nine H D.The applicability of Coulomb's friction law to drawbeads in sheet metal forming. Applied Metal Working,1982,2(3):200-210.
    [122]H D Nine.New drawbead concepts for sheet metal forming.Applied Matalworking,1982,2(3):185-192.
    [123]Weidemann C.The blankholder action of drawbeads.In:Proceedings of 10th Biennial IDDRG Congress,1978,1(1):79-85.
    [124]M Y Demeri. Drawbead in sheet metal forming. Materials Engineering and Performance,1993,2(6):863-866.
    [125]邢忠文,杨玉英,郭刚.薄板冲压成形中的拉深筋阻力及其影响因素研究.模具工业,1994(4):30—33.
    [126]Wagoner R.H..Report:advance high strength workshop.arlington,virginta,2006.
    [127]K P Li, W P Carden,R H Wgoner. Simulation of springback. Mechanical sciences, 2002,44(1):103-122.
    [128]K Mori,K Akita,Y Abe. Springback behavior in bending of ultra-high-strengh steel sheets using CNC servo press. Machine Tools and Manufacture,2007, 47(2):321-325.
    [129]Lee J W, Lee M G, Barlat F. A Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. International Journal of Plasticity,2012,29:13-41.
    [130]汪大年.金属塑性成形原理.北京:机械工业出版社(第二版),1986.
    [131]Fei, D., Hodgson, P. Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels. Nuclear Engineering and Design, 2006,236:1847-1851.
    [132]Feigenbaum,H P, Dafalias. Directional distortional hardening in metal plasticity within thermodynamics.Solids and Structures,2007,44 (22):7526-7542.
    [133]Feigenbaum, H P, Dafalias. Simple model for directional distortional hardening in metal plasticity within thermodynamics.Engineering Mechanics.2008,134 (9):730-738.
    [134]Firat M. U-channel forming analysis with an emphasis on springback deformation. Materials & Design.2007,28 (1):147-154.
    [135]Lee S W. A study on the bi-directional springback of sheet metal stamping. Materials Processing Technology.2005,167(1):33-40.
    [136]Chen P, Ko M. Simulation of springback variation in forming of advanced high strength steels.Materials Processing Technology,2007,190(1-3):189-198.
    [137]易国锋,柳玉起,李明林.基于有限元逆算法的板料成形模拟拉深筋的灵敏度优化.中国机械工程,2007,1:87-90.
    [138]曹春晓,聂绍珉.锻压手册(冲压分卷).北京:机械工业出版社(第三版).1988.
    [139]林忠钦.车身覆盖件冲压成形仿真北京:机械工业出版社(第一版),2005.
    [140]Yossifon.S, Sweeney.K, Ahmetogu.M, et al. On the acceptable blank-holder force range in the range in the deep-drawing process. Materials Processing Technology, 1992,33(1-2):175-194.
    [141]孙成智,陈关龙,李淑慧.薄板成形过程中变压边力的优化技术研究.锻压技术,2003,1:20-24.
    [142]邓陟,陈鹤峥.杯形件压延承载能力和极限压延系数确定.清华大学学报,1989,29(2):87-93.
    [143]K Manabe, M Yang, S Yoshihara. Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process. Materials Processing Technology,1998,80:421-426.
    [144]M A Ahmetoglu, T Altan, G L Kinzel. Improvement of part quality in stamping by controlling BHF and pressure. Materials Processing Technology,1992,33:195-214.
    [145]S.Aita, E.L.Khaldi, L.Fontaine, T.Tamada,et al. Numerical simulation of a stretch drawn autobody:Part I-assessment of simulation methodology and modeling of stamping component.SAE paper No.920639.
    [146]Rojek.J.A. etc. Equivalent drawbeads:Computer modeling and experiment, NUMISHEET'99.1999,13:249-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700