用户名: 密码: 验证码:
淬火态30CrMnSiA和42CrMo钢等离子体稀土氮碳共渗层组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对淬火态30CrMnSiA和42CrMo钢进行了不同气氛、温度和时间的等离子体渗氮及有无稀土氮碳共渗工艺处理,利用金相组织观察(OM)、X射线衍射(XRD)、扫描电镜观察(SEM)及能谱分析(EDS)、透射电镜观察(TEM)等分析测试方法研究了各工艺参数对改性层的组织结构、力学性能、耐磨性及耐腐蚀性能的影响。
     30CrMnSiA和42CrMo钢淬火后组织为马氏体,等离子渗氮及氮碳共渗层均由化合物层和扩散层组成。在460oC以上进行等离子体氮碳共渗时稀土的添加能够改善渗层组织;560C添加0.5L/min稀土共渗时渗层组织由“三层”结构组成,即表面5μm化合物层、中间40μm耐蚀白层以及传统的扩散层。
     等离子体渗氮及氮碳共渗层主要由ε-Fe_(2-3)N和γ′-Fe4N(ε-Fe_(2-3)(N,C)和γ′-Fe4N)组成,处理温度升高,改性层中ε-Fe_(2-3)N(ε-Fe_(2-3)(N,C))相对含量减少。等离子体渗氮时,400oC和560oC渗氮时渗层中出现含氮马氏体'-FeN相;460oC渗氮时,随着渗氮时间延长渗层中ε-Fe_(2-3)N相含量先增多后减少,长时间(16h)渗氮后γ′-Fe4N-(200)发生择优取向。等离子体氮碳共渗时,γ′-Fe4N相在(200)晶面的择优取向随着温度的升高和时间的延长而减弱。利用稀土添加量可以调控共渗层相组成,适当添加有助于ε-Fe_(2-3)(N,C)相形成,同时使γ′-Fe4N的(200)晶面择优取向现象增强;560oC共渗稀土添加量达到0.5L/min时表面形成Fe3C相。
     渗氮气氛对表面形貌影响不大,表面氮化物颗粒随着渗氮温度的升高聚集长大,表面粗糙度增大。氮碳共渗时,稀土添加提高了表面氮化物颗粒密度,促进氮化物聚集长大;560oC×8h添加0.5L/min稀土共渗时,表面形貌由花瓣片状组织转变为平均尺寸为100nm~300nm的细小短棒状组织(Fe3C+少量氮化物),表面粗糙度显著降低。而EDS结果表明稀土元素可以渗入到材料内部一定深度,且能够促进氮元素向内扩散。
     淬火态30CrMnSiA钢等离子体渗氮及氮碳共渗改性层内主要为纳米尺寸的氮化物以及少量纳米级含氮马氏体α'-FeN组织(50nm~100nm);而稀土的添加有助于形成小尺寸含氮碳的马氏体组织,并在一定范围内随着稀土添加量的增多纳米化程度提高。纳米晶形成机制是高过饱和淬火组织在氮、碳渗入过程中表层析出纳米级氮化物,并在固有合金元素和渗入的氮、碳、稀土等共同作用下引起的渗层内应力增大,在位错密度较高的地方使位错亚结构移动、合并或者重排形成亚晶或纳米晶,实现表面纳米化。
     淬火态30CrMnSiA硬度为HV500,经等离子体渗氮及氮碳共渗后表面硬度显著提高,最高可达HV1122.6,表面和心部硬度随渗氮温度升高而降低。从EDS检测和有效硬化层结果可知,稀土的添加可以促使氮、碳向内扩散,但不同温度共渗时稀土较佳添加量有所不同,500oC稀土添加0.05L/min时有效硬化层最厚,而560oC×8h共渗稀土添加0.3L/min时氮向内扩散最远,且有效硬化层最厚。淬火态30CrMnSiA和42CrMo钢经等离子体渗氮及氮碳共渗处理后,心部硬度同时发生变化,与常规调质后效果相当,实现表面改性与心部组织回火同时进行。
     拉伸试验结果表明,与调质态30CrMnSiA钢经等离子体氮碳共渗后相比,淬火态试样共渗处理后强度升高而韧性有所下降,而稀土共渗后强度不降低但韧性增加,表明30CrMnSiA钢“淬火+稀土共渗”处理可以代替传统的“调质+氮碳共渗”复合工艺,且能够满足性能指标要求。
     等离子体渗氮及氮碳共渗处理降低了材料的摩擦系数,而30CrMnSiA钢渗氮层、氮碳共渗层及稀土共渗层的体积磨损率较淬火态试样分别降低了74%、78%和82%,材料耐磨性显著提高。淬火态试样的磨损机制主要是以粘着磨损为主,局部有塑性变形,伴随着表面疲劳及氧化;试验载荷的大小并不改变磨损机制,只影响磨损程度;渗氮层及氮碳共渗层的主要磨损机制均为程度不一的粘着磨损,没有明显塑性变形;而稀土共渗表层主要为轻微的粘着磨损,稀土的添加进一步提高了材料的耐磨性。
     等离子体渗氮及氮碳共渗工艺提高了材料的耐腐蚀性能,使材料从严重的全面均匀腐蚀转变成点蚀。30CrMnSiA钢460C等离子体渗氮层耐蚀性较好,而42CrMo钢560C等离子体渗氮层耐蚀性较好。氮碳共渗层的耐蚀性较渗氮层进一步提高,42CrMo钢的腐蚀机理从渗氮层的层内严重间隙腐蚀转变为浅表层腐蚀。而稀土的添加可以拓展腐蚀的钝化区,进一步提高耐蚀性。
In this paper, quenched30CrMnSiA and42CrMo steel were plasma nitridedand nitrocarburized in different atmosphere at different temperature for differenttime with and without rare earths (RE) addition. The effects of processingparameters on the microstructure, mechanical properties, wear and corrosionresistances of the surface layers of the treated steels were characterized by opticalmicroscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM)equipped with an energy dispersive X-ray analyzer (EDS) and transmission electronmicroscopy (TEM).
     The microstructure of quenched30CrMnSiA and42CrMo steels issupersaturated carbon-bearing '-Fe. The modified layers of both plasma nitridedand nitrocarburized samples consist of a compound layer and a diffusion layer.When the nitrocarburizing temperature is higher than460oC, the RE addition couldimprove the microstructure of surface layer. The surface layer nitrocarburized at560C with0.5L/min RE can be divided into three sub-layers (i.e. out compoundlayer of5μm, middle “white” layer of40μm, and inner diffusion zone).
     The phase composition of the plasma nitrided or nitrocarburized layer mainlycontains ε-Fe_(2-3)N and γ′-Fe4N (or ε-Fe_(2-3)(N,C) and γ′-Fe4N). The relative content ofε-Fe_(2-3)N (ε-Fe_(2-3)(N,C)) decreases with increasing the treating temperature. Thereexists the diffraction peaks of '-FeNwhen the nitriding is conducted at400oC and560oC. The relative content of ε-Fe_(2-3)N in surface layer nitrided at460oC increasesfirst and then decreases with prolonging the treating time, and the γ′-Fe4N possesses(200) preferred orientation when the treating time is16h. However, the (200)preferred orientation of γ′-Fe4N becomes weaker as the nitrocarburizing temperatureincreases and treating time prolongs. The RE flux could control the relative contentsof the phases produced in surface layer. The proper RE addition favours theformation of ε-Fe_(2-3)(N,C) and the (200) preferred orientation of γ′-Fe4N. Thecarbide Fe3C phase occurs at the surface employing a flux of0.5L/min RE during560oC nitrocarburizing.
     Nitriding atmosphere has little effect on the surface morphologies of nitridedsample. The nitrided granules assemble and grow up at the surface with increasingthe treating temperature, resulting in an increasing of the surface roughness. For thenitrocarburized samples, the incorporation of RE increases the density of surfacenitrides and helps to the assembling and growing of nitrides. The morphology ofFe3C formed at the surface is changed from petal-like type to fine stick-like one with a mean size of100nm~300nm when the sample is nitrocarburized at560oC for8hwith0.5L/min RE flux. EDS results show that the RE elements can diffuse into thesurface layer to a certain depth, which helps a diffusion of nitrogen element.
     TEM results show that the microstructure in the surface layer of nitrided andnitrocarburized30CrMnSiA steel are mainly comprised of nano-sized nitrides and asmall quantity of nano-sized martensite '-FeNwith a scale of50nm~100nm.Significantly, the involvement of RE is beneficial to the formation of nano-sized
     '-FeN, and under this experimental conditions, the more the RE addition intoatmosphere, the more degree of nanocrystallization phenomenon. The localnanocrystallization in surface layer is based on the following fact: firstly, thenano-sized nitrides precipitate in the surface layer of30CrMnSiA steel with highsupersaturated microstructure, and secondly, the internal stress in the modified layerincreases resulting from the synergistic effect of the penetration of nitrogen, carbonand big sized La atom and the solid soluted alloy elements. And the nano-crystallineof '-FeNis formed by the moving, amalgamating and rearranging of the dislocationsubstructures.
     The hardness of the quenched30CrMnSiA steel is HV500, and the surfacehardness can be improved evidently, up to HV1122.6by nitriding with NH3. Bothsurface and core hardness decreases as the nitriding temperature increases. From theresults of EDS and effective hardening layer, the involvement of RE can help thediffusion of carbon and nitrogen in surface layer and there is an optimum amount ofRE addition into the plasma nitrocarburizing atmosphere. The samplenitrocarburized at500oC with0.05L/min RE has the thickest effective hardeninglayer. When the nitrocarburizing is carried out at560oC for8h, the thickest effectivehardening layer can be obtained with the optimum RE flux of0.3L/min. The corehardness value changed apparently when the quenched30CrMnSiA and42CrMosteels were plasma nitrided and nitrocarburized, and the value is almost equivalentto that of quenched and tempered steels. That is to say, the composite processes ofquenching+high temperature tempering and surface modification can be substitutedsuccessfully by quenching and plasma nitriding/nitrocarburizing for this type ofsteel.
     The tensile test results show that the strength of the nitrocarburized sample forthe quenched30CrMnSiA is higher than that of the nitrocarburized sample for thequenched and tempered one, but the toughness is lower. However, the quenched30CrMnSiA nitrocarburized with RE has the similar strength and higher toughnesscompared with the quenched and tempered one. It indicates that the quenching andnitrocarburizing treatment with RE could replace the conventional quenching+ tempering and nitrocarburizing one for the nitriding steels.
     Wear test results show that the wear resistance of the experimental steels can beincreased evidently by plasma nitriding and nitrocarburizing. The frictioncoefficients can be decreased markedly and the volume wear rates of the nitrided-,nitrocarburized-and RE nitrocarburized-layer of30CrMnSiA steel have beenreduced74%,78%and82%, respectively. The wear mechanism of the untreatedsample is mainly adhesive wear with local plastic deformation, as well as fatigueand oxidation on the worn surface. The changes of the load in wear test do notchange the wear mechanism of the samples, but change the wear degree. The mainwear mechanism of nitrided and nitrocarburized layers is adhesive wear withoutplastic deformation. The RE addition further improves the wear resistance of thesurface layer, with only a mild adhesive wear.
     The corrosion resistance of surface layer can be increased evidently by plasmanitriding and nitrocarburizing, by changing the corrosion mechanism from severelygeneral and uniform corrosion to pitting corrosion. The corrosion resistance is bestfor the surface layer of30CrMnSiA steel nitrided at460C and42CrMo steel treatedat560C, respectively. However, the nitrocarburized layer has higher corrosionresistance than the nitrided layer. The corrosion mechanism of the surface layer for42CrMo steel changes from severely crevice corrosion along the grains in thenitrided layer by nitriding to shallow surface corrosion in nitrocarburizing layer.Moreover, the involvement of RE could further improve the corrosion resistance byextending the passive regions and promoting the pitting corrosion potentials.
引文
[1]陈仁悟.化学热处理原理[M].机械工业出版社,1988:1-3.
    [2]曾耀新.离子化学热处理及其发展[J].中国表面工程,2000,(1):15-18.
    [3]张红霞,赵玉梅,师侦峰.稀土元素在金属表面改性中的应用[J].金属热处理,2011,36(3):91-94.
    [4] Bell T, Sun Y, Lui Z, et al. Rare-earth surface engineering [J]. Heat Treatmentof Metals(UK),2000,27(1):1-8.
    [5]韦永德,刘志如,王春义等.用化学法对20钢_纯Fe表面扩渗稀土元素的研究[J].金属学报,1983,19(5): B197-B200.
    [6]丁定远,程先华.稀土元素对38CrMoAl和40Cr钢软氮化的影响[J].机械工程材料,1991,(6):10-12.
    [7]闫牧夫.稀土对表面改性层显微组织和性能的影响; proceedings of the2002年黑龙江省机械工程学会年会论文集, F,2002[C].
    [8] Gr fen W, Edenhofer B. New developments in thermo-chemical diffusionprocesses [J]. Surface and Coatings Technology,2005,200(5-6):1830-1836.
    [9] Rie K T. Recent advances in plasma diffusion processes [J]. Surface&Coatings Technology,1999,112(1-3):56-62.
    [10] Fry A. Nitrogen in steel, iron and alloy ed steel—a new surface peeningmethod [J]. Stahl und Eisen,1923,43(40):1271-1279.
    [11]梁军,卢艳君.离子渗氮技术的研究和工艺[J].机械设计与制造,2001,2(1):73-74.
    [12]黄守伦.实用化学热处理与表面强化新技术[M].北京:机械工业出版社.2002:236-257.
    [13]姚寿山,李戈扬,胡文彬.表面科学与技术[M].机械工业出版社:机械工业出版社,2005:210-283.
    [14]高仰之,刘英棋.离子渗氮技术的进展[J].机械工人,2003,(7):9-11.
    [15] Meletis E I, Erdemir A, Fenske G R. Tribological characteristics of DLCfilms and plasma nitriding/DLC coating treatments [J]. Surface and CoatingsTechnology,1995,73(1-2):39-45.
    [16] Lee S C, Ho W Y, Pao W L. Process and properties of CrN coating depositionon plasma nitrided high-speed steel [J]. Surface and Coatings Technology,1995,73(1-2):34-38.
    [17] Spies H J, Larisch B, Hock K, et al. Adhension and wear resistance ofnitrided and TiN coated low alloy steel [J]. Surface and Coatings Technology,1995,74-75:178-182.
    [18] Sun Y, Bell T. Plasma surface engineering of low alloy steel [J]. MaterialsScience and Engineering: A,1991,140:419-434.
    [19]机械工业部机电研究所.钢铁材料氮碳共渗层金相组织图谱[M].机械工业出版社.1986:4.
    [20]山中久彦.离子渗氮[M].北京:机械工业出版社.1985:16-24.
    [21] Edenhofer B. Physical and Metallurgical Aspects of Ion Nitriding [J]. HeatTreatment of Metals,1974,1:23-28.
    [22] Edenhofer B. Physical and Metallurgical Aspects of Ion Nitriding [J]. HeatTreatment of Metals,1974,2:59-67.
    [23] Keller K. Layer Structure of Ion-Nitrided Iron alloys [J]. H rterei TechnischeMitteilungen,1971,26(2):120-128.
    [24] Hudis M. Study of Ion-nitriding [J]. Journal of Applied Physics,1973,44(4):1489-1496.
    [25] Tibbetts G G. Role of nitrogen atoms in "ion‐nitriding"[J]. Journal ofApplied Physics,1974,45(11):5072-5073.
    [26]徐冰仲,张颖智.离子氮化氮的渗入机理[J].金属热处理,1983,(10):29-41.
    [27]刘明成,陈维英.离子渗氮新技术的发展[J].金属热处理,1992,(5):11-13.
    [28] Rahman M, Hashmi M S J. Saddle Field Fast Atom Beam Source: A NewLow Pressure Plasma Nitriding Method for a Alloy Ti-6Al-4V [J]. Thin SolidFilms,2006,515(1):129-134.
    [29]钟厉.纯氮离子渗氮新工艺及离子渗氮机理研究[D];重庆大学,2004.
    [30]周孝重,陈大凯.等离子体热处理技术[M].北京:机械工业出版社.1990.
    [31]胡海天,乌钦崇.微波等离子体源在钢表面氮化中的应用[J].材料保护,1996,29(2):28-30.
    [32]张元昌,徐在峰.离子氮化技术的历史、发展及展望[J].山西机械,1994,(2):7-9.
    [33] Podgornik B, Vizintin J, Leskovsek V. Wear properties of induction hardened,conventional plasma nitrided and pulse plasma nitrided AISI4140steel indry sliding conditions [J]. Wear,1999,232(2):231-242.
    [34]周上棋,胡振纪,任勤.快速深层离子渗氮工艺的应用[J].金属热处理,1993,(3):40-42.
    [35]邓光华,王慧霞,陈永毅.热循环离子渗氮的快渗机制[J].福州大学学报(自然科学版),1999,27(2):67-71.
    [36]钟厉,陈君才,周上棋等.25Cr2MoV钢变温快速深层离子氮化工艺的研究[J].昆明理工大学学报,1997,22(1):94-97.
    [37]陈方生,王成国,亓永新等.稀土在离子渗氮中的氧化对催渗效果的影响[J].热加工工艺,2000,(3):17-19.
    [38]张津.用辉光放电光谱技术分析稀土离子氮化层中的元素[J].理化检验一物理分册,1999,35(11):499-500.
    [39]刘占虹,闫牧夫.等离子体稀土渗氮化合物层中ε相电子结构计算[J].材料热处理学报,2007,28(2):94-97.
    [40]王佰昕,唐宏伟,王鸿春.用稀土渗氮缩短合金结构钢渗氮时间的研究[J].热处理技术与装备,2009,30(6):35-38.
    [41] Ratajski J. Relation between Phase Composition of Compound Zone andGrowth Kinetics of Diffusion Zone during Nitriding of Steel [J]. Surface andCoatings Technology,2009,203(16):2300-2306.
    [42] Lee S Y, Chung J W, W K C, et al. Effects of Relative Thickness of theDuplex-Treated Layer on Surface Properties of AlSl H13Steel [J]. Surfaceand Coatings Technology,1997,94-95:272-278.
    [43] Pellizzari M, Molinari A, Straffelini G. Thermal Fatigue Resistance of PlasmaDuplex-Treated Tool Steel [J]. Surface and Coatings Technology,2001,142-144:1109-1115.
    [44] Tsotsos C, Yerokhin A L, Wilson A D, et al. Tribological Evaluation of AISI304Stainless Ssteel Duplex Treated by Plasma Electrolytic Nitrocarburisingand Diamond-like Carbon Coating [J]. Wear,2002,253(9-10):986-993.
    [45] Mouria L, Mabille I, Fiaud C, et al. Study of Corrosion Resistance andSurface Properties of Carbon Steel after a Duplex Plasma Treatment [J]. ThinSolid Films,2001,389(1-2):153-160.
    [46] Wilson A, Matthews A. Comparison of the Wear and Fatigue Properties ofPlasma-Assisted Physical Vapour Deposition TiN, CrN and Duplex Coatingson Ti-6Al-4V [J]. Surface and Coatings Technology,1993,62(1-3):600-607.
    [47] H ck K, Leonhardt G, Bücken B, et al. Process Technological Aspects of theProduction and Properties of in Situ Combined Plasma-Nitrided and PVDHard-Coated High Alloy Tool Steels [J]. Surface and Coatings Technology,1995,74-75:339-344.
    [48]李伟. Ti6Al4V合金表面微弧氧化及脉冲等离子体渗氮复合改性研究[D];哈尔滨工业大学,2009.
    [49]章凡勇.2024铝合金表面钛氮掺杂改性研究[D];哈尔滨工业大学,2010.
    [50]胡社军.钼合金表面渗硅-离子渗氮复合处理层性能的研究[J].金属热处理,1994,(10):10-13.
    [51] Rocha A, Strohaecker T, Hirsch T. Effect of Different Surface States beforePlasma Nitriding on Properties and Machining Behavior of M2High-SpeedSteel [J]. Surface and Coatings Technology,2003,165(2):176-185.
    [52]赵丽艳,闫牧夫,吕景艳等.稀土对42CrMo钢等离子体氮碳共渗表层组织的影响[J].理化检验-物理分册,2009,45(2):77-82.
    [53]张翔.高速钢离子硫氮碳共渗复合氩轰击工艺研究[J].热加工工艺,2005,(5):27-28.
    [54]周上祺,龙发进,任勤等.黑色金属的空气离子氧氮共渗工艺:中国.2004.
    [55] Figueroa C A, Alvarez F. New Pathways in Plasma Nitriding of Metal alloys[J]. Surface and Coatings Technology,2005,200(1-4):498-501.
    [56] Priest J M, Baldwin M J, Fewell M P. The Action of Hydrogen inLow-Pressure r.f.-Plasma Nitriding [J]. Surface and Coatings Technology,2001,145(1-3):152-163.
    [57] Leyland A, Fancey K S, James A S, et al. Enhanced Plasma Nitrding at LowPressures: a Comparative Study of d.c. and r.f. Techniques [J]. Surface andCoatings Technology,1990,41(3):295-304.
    [58] Xu Z, Liu X, Zhang P. Double Glow Plasma Surface alloy ing and PlasmaNitriding [J]. Surface and Coatings Technology,2007,201(9-11):4822-4825.
    [59] Jauberteau I, Jauberteau J L, Goudeau P, et al. Investigations on a NitridingProcess of Molybdenum Thin Films Exposed to (Ar-N2-H2) ExpandingMicrowave Plasma [J]. Surface and Coatings Technology,2009,203(9):1127-1132.
    [60] Yu H J, Sun F J, Zhang J. Laser and Plasma Nitriding of Titanium UsingCW-CO2Laser in the Atmosphere [J]. Current Applied Physics,2009,9(1):227-233.
    [61] Larisch B, Brusky U, Spies H J. Plasma Nitriding of Stainless Steels at LowTemperatures [J]. Surface and Coatings Technology,1999,116-119:205-211.
    [62] Li C X, Georges J, Li X Y. Active Screen Plasma Nitriding of AusteniticStainless Steel [J]. Surface Engneering,2002,18(6):453-457.
    [63] Alves J C, Araujo D F O, Ribeiro K J B, et al. Use of Cathodic Cage inPlasma Nitriding [J]. Surface and Coatings Technology,2006,201(6):2450-2454.
    [64] Ahangrani S, Sabour A R, Mahboubi F. Surface Modification of30CrNiMo8Low-Alloy Steel by Active Screen Setup and Conventional Plasma NitridingMethods [J]. Applied Surface Science,2007,254(5):1427-1435.
    [65] Li C X, Bell T. Sliding Wear Properties of Active Screen Plasma Nitrided316Austenitic Stainless Steel [J]. Wear,2004,256(11-12):1144-1152.
    [66] Nagatsuka K, Nishimoto A, Akamatsu K. Surface Hardening of DuplexStainless Steel by Low Temperature Active Screen Plasma Nitriding [J].Surface and Coatings Technology,2010,205(1): S295-S299.
    [67] Li C X. Active Screen Plasma Nitriding-an Overview [J]. Surfaceengineering,2010,26(1-2):135-141.
    [68] Baranowska J, Arnold B. Corrosion Resistance of Nitrided Layers onAustenitic Steel [J]. Surface and Coatings Technology,2006,200(22-23):6623-6628.
    [69] Baranowska J. Characteristic of the Nitride Layers on the Stainless Steel atLow Temperature [J]. Surface and Coatings Technology,2004,180-181:145-149.
    [70] Fewell M P, Priest J M, Baldwin M J, et al. Nitriding at Low Temperature [J].Surface and Coatings Technology,2000,131(1-3):284-290.
    [71] Xi Y T, Liu D X, Han D. Improvement of Corrosion and Wear Resistances ofAISI420Martensitic Stainless Steel Using Plasma Nitriding at LowTemperature [J]. Surface and Coatings Technology,2008,202(12):2577-2583.
    [72] Mittemeijer E J, Slycke J T. Thermodynamic Activities of Nitrogen andCarbon Imposed by Gaseous Nitriding and Carburizing Atmosphere [J]. HeatTreatment of Metals,1996,3:67-76.
    [73] Bell T, Sun Y, Suhadi A. Environmental and Technical Aspects of PlasmaNitrocarburizing [J]. Vacuum,2000,59(1):14-23.
    [74] Mirjania M, Shafyei A, Ashrafizadeh F. Plasma and GaseousNitrocarburizing of C60W Steel for Tribological Applications [J]. Vacuum,2009,83(7):1043-1048.
    [75] Karakan M, Alsaran A, elik A. Effect of process time on structural andtribological properties of ferritic plasma nitrocarburized AISI4140steel [J].Materials&Design,2004,25(4):349-353.
    [76] Chen F S, Chang C N. Effect of CH4Addition on Plasma Nitrocarburizing ofAustenitic Stainless Steel [J]. Surface and Coatings Technology,2003,173(1):9-18.
    [77] Wen D C. Effect of Nitrocarburizing Time on the Microstructures andErosion Behavior of Cold-work Tool Steel [J]. Isij International,2009,49(11):1762-1768.
    [78] Wu Y Q, Yan M F. Plasticity characterization of the modified layer producedby plasma nitrocarburizing of nanocrystallized18Ni maraging steel [J].Vacuum,2011,86(2):119-123.
    [79] Du H, Agren J. Theoretical treatment of nitriding and nitrocarburizing of iron[J]. Metallurgical and Materials Transactions a-Physical Metallurgy andMaterials Science,1996,27(4):1073-1080.
    [80] Jaoul C, Belmonte T, Czerwiec T, et al. Nitrocarburizing Ttreatments UsingFlowing after Glow Processes [J]. Applied Surface Science,2006,252(23):8360-8366.
    [81] Oliveira S D, Tschiptschin A P, Pinedo C E. Simultaneous plasma nitridingand ageing treatments of precipitation hardenable plastic mould steel [J].Materials&Design,2007,28(5):1714-1718.
    [82] Fattah M, Mahboubi F. Comparison of ferritic and austenitic plasma nitridingand nitrocarburizing behavior of AISI4140low alloy steel [J]. Materials&Design,2010,31(8):3915-3921.
    [83] Lee I. Post-Oxidizing Treatments of the Compound Layer on the AISI4135Steel Produced by Plasma Nitrocarburizing [J]. Surface and CoatingsTechnology,2004,188-189:669-674.
    [84] Malinova T S, Pantev N. Simulation of Microhardness Pprofiles forNitrocarburized Surface Layers by Artificial Neural Network [J]. Surface andCoatings Technology,2001,135(2-3):258-267.
    [85] Alves Jr C, Silva E F D, Martinelli A E. Effect of Workpiece Geometry on theUniformity of Nitrided Layers [J]. Surface and Coatings Technology,2001,139(1):1-5.
    [86] Alsaran A, Karakan M, Celik A, et al. Study on compound layer formedduring plasma nitrocarburizing of AISI5140steel [J]. Journal of MaterialsScience Letters,2003,22(24):1759-1761.
    [87] Heydarzadeh Sohi M, Ebrahimi M, Honarbakhsh Raouf A, et al. ComparativeStudy of the Corrosion Behaviour of Plasma Nitrocarburised AISI4140steelbefore and after Post-oxidation [J]. Materials and Design,2010,31(9):4432-4437.
    [88] Basso R L O, Candal R J, Figueroa C A, et al. Influence of microstructure onthe corrosion behavior of nitrocarburized AISI H13tool steel obtained bypulsed DC plasma [J]. Surface and Coatings Technology,2009,203(10-11):1293-1297.
    [89] Basso R L O, Figueroa C A, Zagonel L F, et al. Effect of Carbon on theCompound Layer Properties of AISI H13Tool Steel in Pulsed PlasmaNitrocarburizing [J]. Plasma Processes and Polymers,2007,4(S1):S728-S731.
    [90] Abd El-Rahman A M, Mohamed S H, Ahmed M R, et al. Nitrocarburizing ofAISI-304Stainless Steel Using High-Voltage Plasma Immersion IonImplantation [J]. Nuclear Instruments and Methods in Physics Research B,2009,267(10):1792-1796.
    [91] Hoppe S. Fundamentals and Applications of the Combination of PlasmaNitrocarburizing and Oxidizing [J]. Surface and Coatings Technology,1998,98(1-3):1199-1204.
    [92] Yan M F, Wu Y Q, Wang Y, et al. Nanocrystallization of alloy3J33by acomplex thermomechanical treatment process [J]. Materials Science andEngineering: A,2009,509(1-2):41-45.
    [93] Zhao C, Sun D G, Hou J Y. Duplex Treatments of Plasma Nitrocarburizingand Post-Oxidation in an Adiabatic Plasma Furnace [J]. Surface and CoatingsTechnology,2007,201(9-11):4984-4986.
    [94] Dong S J, Zhou Y, Shi W Y, et al. A New Hybrid Process for SurfaceModification by Combining Brush Plating with Nitrocarburizing [J].Metallurgical and Materials Transactions A,2002,33(7):2240-2244.
    [95]李春鸿.稀土元素及其应用[J].材料科学与工程,1987,4):34-41.
    [96]金心.稀土金属在钢铁中的应用译文集[M].中国工业出版社,1965.
    [97] Evseev P P, Zhirkin Y N. Inference of rare-earth modification on theproperties of18KHN2MFL steel for drill bitroller cutters [J]. Metal Scienceand Heat Treatment,1985,27(9):671-674.
    [98]韦永德,刘志如,王春义等.用化学法对20钢、纯Fe表面扩渗稀土元素的研究[J].金属学报,1983,19(5): B197-B200.
    [99]韦永德,刘志如,王春义等.稀土对碳氮共渗过程的活化催渗及微合金化研究[J].中国稀土学报,1986,4(1):47-52.
    [100]邵光杰,徐忠辉,刘建华等.稀土在20CrMnMo钢渗碳过程中作用的研究[J].物理测试,1995,(2):16-19.
    [101]闫牧夫,刘志儒,朱法义.稀土化学热处理进展[J].金属热处理,2003,28(3):1-6.
    [102]袁泽喜,余宗森.钢中稀土对表面渗碳的促进作用[J].中国稀土学报,1999,17(1):42-45.
    [103]赵丽艳,吕景艳,闫牧夫等.稀土对42CrMo钢等离子体氮碳共渗组织及性能的影响[J].金属热处理,2009,(11):69-73.
    [104]杨勇,王铀,闫牧夫.提高材料摩擦学性能之稀土表面工程[J].热处理技术与装备,2006,27(6):1-4.
    [105]杜红兵,孙少权,闫牧夫.20-22CrMoH钢稀土渗碳组织和性能[J].机械工人,2005,(2):14-16.
    [106]吉泽升,夏立芳,徐柏林.稀土硼铝共渗在轧辊上的应用[J].机械工程师,2000,(7):54-55.
    [107] Wang Y, Jiang S, Wang D M, et al. A brasive Wear Characteristics of PlasmaSprayed Nanostructured Alumina/Titania Coatings [J]. Wear,2000,237(2):176-185.
    [108] Wang Y, Su M, Liu W, et al. Microstructure, wear and corrosion resistance oflaser-alloyed M80S20alloy layers with or without CeO2[J]. Surface andCoatings Technology,1996,78(1-3):274-279.
    [109]李彬.稀土催渗剂的配制及其催渗机理的探讨[J].热处理,2001,(4):16-19.
    [110] Liu R L, Yan M F, Wu D L. Microstructure and mechanical properties of17-4PH steel plasma nitrocarburized with and without rare earths addition [J].Journal of Materials Processing Technology,2010,210(5):784-790.
    [111]曹建华,傅在再.经真空热处理和盐浴热处理的30CrMnSiA钢力学性能的研究[J].热处理,2004,19(1):45-48.
    [112]梁益龙.高温淬火和回火对30CrMnSiA钢组织和性能的影响[J].贵州工学院学报,1989,18(1):48-57.
    [113]马涛,李正林.30CrMnSiA钢氮化后的力学性能[J].机械工程材料,1992,16(6):32-35.
    [114]王庆祝,栾琦,张翔.稀土对30CrMnSiA钢离子S-N-C共渗组织和耐磨性能的影响[J].西安公路学院学报,1993,13(4):122-125.
    [115]王传雅,徐维,王莎莎等.30CrMnSiA钢渗扩氮高温淬火及渗扩氮亚温淬火研究[J].热加工工艺,1994,(2):5-10.
    [116] Genel K, Demirkol M, Capa M. Effect of ion nitriding on fatigue behaviourof AISI4140steel [J]. Materials Science and Engineering A,2000,279(1-2):207-216.
    [117] Li Y, Wang L, Zhang D, et al. The effect of surface nanocrystallization onplasma nitriding behaviour of AISI4140steel [J]. Applied Surface Science,2010,257(3):979-984.
    [118] Sohi M H, Ebrahimi M, Raouf A H, et al. Effect of plasma nitrocarburizingtemperature on the wear behavior of AISI4140steel [J]. Surface andCoatings Technology,2010,205: S84-S89.
    [119] Fattah M, Mahboubi F. Microstructure Characterization and CorrosionProperties of Nitrocarburized AISI4140Low Alloy Steel [J]. Journal ofMaterials Engineering and Performance,2011,21(4):548-552.
    [120] Tjong S C, Chen H. Nanocrystalline Materials and Coatings [J]. MaterialsScience and Engineering R,2004,45(1-2):1-88.
    [121] Birringer P, Gleiter H, Klein H P, et al. Nanocrystalline Materials anApproach to a Novel Solid Structure with Gas-like Disorder [J]. PhysicalLetters A,1984,102(8):365-369.
    [122] Gleiter H. Nanocrystalline Materials [J]. Progress in Materials Science,1989,33(4):213-315.
    [123] Mishra R S, Valiev R Z, Mukherjee A K. The observation of tensilesuperplasticity in nanocrystalline materials [J]. Nanostructured Materials,1997,9(1-8):473-476.
    [124] Meyers M A, Mishra A, Benson D J. Mechanical Properties ofNanocrystalline Materials [J]. Progress in Materials Science,2006,51(4):427-556.
    [125] Fougere G E, Weertman J R, Siegel R W. Processing and MechanicalBehavior of Nanocrystalline Fe [J]. Nanostructed Materials,1995,5(2):127-134.
    [126] Sanders P G, Eastman J A, Weertman J R. Elastic and Tensile Behavior ofNanocrystalline Copper and Palladium [J]. Acta Materialia,1997,45(10):4019-4025.
    [127] Erb U, Elsherik A M, Palumbo G, et al. Synthesis, Structure and Properties ofElectroplated Nanocrystalline Materials [J]. Nanostructed Materials,1993,2(4):383-390.
    [128] Lu L, Sui M L, Lu K. Superplastic Extensibility of Nanocrystalline Copper atRoom Temperature [J]. Science,2000,287(5457):1463-1466
    [129] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper atroom temperature [J]. Science,2000,287(5457):1463-1466.
    [130] Lu K. Nanocrystalline Metals Crystallized from Amorphous SolidsNanocrystallization, Structure, and Properties [J]. Materials Science andEngineering R,1996,16(4):161-221.
    [131] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk Nanostructured Materialsfrom Severe Plastic Deformation [J]. Progress in Materials Science,2000,45:103-189.
    [132] Koch C C. Synthesis of Nanostructured Materials by Mechanical MillingProblems and Opportunities [J]. Nanostructed Materials,1997,9(1-8):13-22.
    [133] Fecht H J, Hellstern E, Fu Z, et al. Nanocrystalline Metals Prepared byHigh-Energy Ball Milling [J]. Metallurgical and Materials Transactions A,1990,21(9):2333-2337.
    [134] Zhu Y T, Jiang H G, Huang J Y, et al. A New Route to Bulk NanostructuredMetals [J]. Metallurgical and Materials Transactions A,2001,32(6):1559-1562
    [135] Shivaee H A, Hosseini H R M, Lotfabad E M, et al. Study ofnanocrystallization in FINEMET alloy by active screen plasma nitriding [J].Journal of Alloys and Compounds,2010,491(1-2):487-494.
    [136] Grognet S, Le Breton J M, Atmani H, et al. Microstructural study ofnanocrystalline Fe–(Cu–Nb)–Si–B ribbons obtained by a nitridingthermochemical treatment [J]. Journal of Magnetism and Magnetic Materials,2000,210(1-3):167-180.
    [137] Atmani H, Grognet S, Teillet J. Crystallization-nitriding process of FeSiBand FeSiBCuNb ribbons: influence of additive (Cu,Nb) pair and nitrogen onstructure, magnetic and magnetostrictive parameters [J]. Journal ofNon-Crystalline Solids,2001,290(2-3):194-207.
    [138]殷匠.钢铁材料的纳米技术(一)[J].热处理,2004,19(1):11.
    [139] Tian W, Wang Y, Zhang T, et al. Sliding Wear and Electrochemical CorrosionBehavior of Plasma Sprayed Nanocomposite Al2O3-13%TiO2Coatings [J].Materials Chemistry and Physics,2009,118(1):37-45.
    [140] Pei Y T, Chen C Q, Shaha K P, et al. Microstructural Control of TiC/a-CNanocomposite Coatings with Pulsed Magnetron Sputtering [J]. ActaMaterialia,2008,56(4):696-709.
    [141] Lin J, Moore J J, Mishra B, et al. CrN/AlN superlattice coatings synthesizedby pulsed closed field unbalanced magnetron sputtering with different CrNlayer thicknesses [J]. Surface and Coatings Technology,2009,204(607):936-940.
    [142] Huang J H, Tsai Z E, Yu G P. Mechanical Properties and CorrosionResistance of Nanocrystalline ZrNxOy Coatings on AISI304Stainless Steelby Ion Plating [J]. Surface and Coatings Technology,2008,202(20):4992-5000.
    [143] Lu K, Lu J. Surface Nanocrystallization (SNC) of MetallicMaterials-Presentation of the Concept behind a New Approach [J]. Journal ofMaterials Science and Technology,1999,15(3):193-197.
    [144]殷匠.钢铁材料的纳米技术(三)--碳钢的表面纳米化[J].热处理,2004,19(3):46.
    [145] Liu G, Lu J, Lu K. Surface Nanocrystallization of316L Stainless SteelInduced by Ultrasonic Shot Peening [J]. Materials Science and Engineering:A,2000,286(1):91-95.
    [146] Tao N R, Sui M L, Lu J, et al. Surface nanocrystallization of iron induced byultrasonic shot peening [J]. Nanostructured Materials,1999,11(4):433-440.
    [147] Liu G, Wang S C, Lou X F, et al. Low Carbon Steel with NanostructuredSurface Layer Induced by High-energy Shot Peening [J]. Scripta Materialia,2001,44(8-9):1791-1795.
    [148]熊天英,刘志文,李智超等.超音速微粒轰击金属表面纳米化新技术[J].材料导报,2003,17(3):69-71.
    [149] Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layeron AISI304stainless steel by means of surface mechanical attritiontreatment [J]. Acta Materialia,2003,51(7):1871-1881.
    [150] Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism ofα-titanium using SMAT [J]. Acta Materialia,2004,52(14):4101-4110.
    [151] Wu X, Tao N, Hong Y, et al. Microstructure and Evolution of MechanicallyInduced Ultrafine Grain in Surface Layer of Al-Alloy Subjected to USSP [J].Acta Materialia,2002,50(8):2075-2084.
    [152] Tao N R, Wu X L, Sui M L, et al. Grain Refinement at the Nanoscale viaMechanical Twinning and Dislocation Interaction in a Nickel-Based Alloy [J].Journal of Materials Research,2004,19(6):1623-1629.
    [153] Tao N R, Wang Z B, Tong W P, et al. An investigation of surfacenanocrystallization mechanism in Fe induced by surface mechanical attritiontreatment [J]. Acta Materialia,2002,50(18):4603-4616.
    [154] Liu G, Lu J, Lu K. Surface Nanocrystallization of316L Stainless SteelInduced by Ultrasonic Shot Peening [J]. Materials Science and Engineering A,2000,286(1):91-95.
    [155]巴德玛,马世宁,李长青等.超音速微粒轰击45钢表面纳米化的研究[J].材料科学与工艺,2007,15(3):342-346.
    [156] Wu X L, Zhong W, Tang N J, et al. Magnetic Properties and ThermalStability of Nanocrystalline ε-Fe3N Prepared by Gas Reduction-NitridingMethod [J]. Journal of Alloys and Compounds,2004,385(1-2):294-297.
    [157] Wua X L, Zhong W, Jiang H Y, et al. Magnetic Properties and ThermalStability of γ'-Fe4N Nanoparticles Prepared by a Combined Method ofReduction and Nitriding [J]. Journal of Magnetism and Magnetic Materials,2004,281(1):77-81.
    [158]刘瑞良.17-4PH不锈钢等离子体稀土氮碳共渗层组织结构与性能表征
    [D];哈尔滨工业大学,2010.
    [159]刘志儒,刘成友,张国良等.有机稀土化学热处理催渗剂及其应用.中国.2005.
    [160] Zagonel L F, Figueroa C A, Droppa R, et al. Influence of the processtemperature on the steel microstructure and hardening in pulsed plasmanitriding [J]. Surface and Coatings Technology,2006,201(1-2):452-457.
    [161] Yan M, Bell T. Effect of proportion of γ′-Fe4N in compound layer producedduring plasma nitriding on diffusion coefficient of lanthanum [J]. Journal ofMaterials Science Letters,2001,20:1507-1508.
    [162] Li Y, Wang L, Zhang D, et al. Influence of bias voltage on the formation andproperties of iron-based nitrides produced by plasma nitriding [J]. Journal ofAlloys and Compounds,2010,497(1-2):285-289.
    [163]吴业琼.纳米晶化18Ni合金稀土共渗层晶粒组织特征和生成相性质[D];哈尔滨工业大学,2011.
    [164]王学前,曹惠荣.化合物(ε、γ')层在渗氮及氮碳共渗中的作用[J].四川工业学院学报,2001,20(3):48-51.
    [165] Ahangarani S, Sabour A R, Mahboubi F. Surface modification of30CrNiMo8low-alloy steel by active screen setup and conventional plasma nitridingmethods [J]. Applied Surface Science,2007,254(5):1427-1435.
    [166] Zhao C, Li C X, Dong H, et al. Study on the Active Screen Plasma Nitridingand Its Nitriding Mechanism [J]. Surface and Coatings Technology,2006,201(6):2320-2325.
    [167] Williamson D L, Singer I L, Wei R, et al. Amorphous Fe-Ti-C PhaseProduced by Ion Implantation of Iron and Its Role in Tribological Behavior[J]. Nuclear Instruments and Methods in Physics Research Section B,1993,76(1-4):210-212.
    [168] Baba K, Hatada R. Formation of Amorphous Carbon Thin Films by PlasmaSource Ion Implantation [J]. Surface and Coatings Technology,1998,103-104:235-239.
    [169] Li X, Samandi M, Dunne D, et al. Cross-sectional Transmission ElectronMicroscopy Characterisation of Plasma Immersion Ion Implanted AusteniticStainless Steel [J]. Surface and Coatings Technology,1996,85(1-2):28-36.
    [170] Baranowska J, Franklin S E. Characterization of Gas-nitrided AusteniticSteel with an Amorphous/Nanocrystalline Top Layer [J]. Wear,2008,264(9-10):899-903.
    [171] Jin Z Q, Tang W, Zhang J R, et al. Nitriding Behavior of NanocrystallineNdFe10.5VTi0.5Compounds [J]. Journal of Magnetism and MagneticMaterials,1998,185(1):71-76.
    [172] Atmani H, Grognet S, Teillet J. Nitriding Thermochemical Treatment andNiobium Dual Effect on Nanocrystallization of FeSiBCu Ribbons [J]. ScriptaMaterialia,1999,42(2):117-122.
    [173] Baranowska J, Franklin S E, Pelletier C G N. Tribological Behaviour andMechanical Properties of Low Temperature Gas Nitrided Austenitic Steel inRelation to Layer Morphology [J]. Wear,2005,259(1-6):432-438.
    [174] Dahmen U, Fergusont P, Wkstmacott K H. A TEM study of α''-Fe16N2andγ'-Fe4N precipitation in iron-nitrogen [J]. Acta Materialia,1987,35(5):1037-1046.
    [175]刘志权.纯铁表面离子渗氮层显微组织及氮化物的高分辨电子显微镜研究[D];大连海事大学,2000.
    [176]刘玉先,陈方生,徐军.离子渗氮层γ'-Fe4N相内位错环和层错类型的鉴别[J].金属热处理学报,1998,12(4):60-64.
    [177]陈方生,刘玉先,徐军等.稀土催渗离子渗氮机理的研究[J].金属热处理,1999,(2):7-9.
    [178] Rocha A D S, Strohaecker T, Tomala V, et al. Microstructure and residualstresses of a plasma-nitrided M2tool steel [J]. Surface&CoatingsTechnology,1999,115(1):24-31.
    [179] Vives Díaz N E, Schacherl R E, Zagonel L F, et al. Influence of themicrostructure on the residual stresses of nitrided iron–chromium alloys [J].Acta Materialia,2008,56(6):1196-1208.
    [180]杨剑群.2Cr13钢渗氮层在真空干滑动与脂润滑条件下摩擦学行为[D];哈尔滨工业大学,2010.
    [181]边锋.热处理工艺参数对30CrMnSiA调质钢力学性能和组织的影响[J].特钢技术,2008,14(55):23-25.
    [182]李壮,王洪顺,石继红.30CrMnSiA钢的真空热处理[J].沈阳航空工业学院学报,2001,18(1):22-24.
    [183]黄志涛,田文怀,苏永安.普通碳素钢渗氮后的氢脆敏感性[J].理化检验(物理分册),2010,46(7):423-426.
    [184] Jisheng, Gawne D T. Wear characteristics of plasma-nitrided CrMo steelunder mixed and boundary lubricated conditions [J]. Journal of MaterialsScience,1997,32(4):913-920.
    [185] Grimanelis D, Eyre T S. Sliding wear mapping of an ion nitrocarburized lowalloy sintered steel [J]. Surface and Coatings Technology,2006,201(6):3260-3268.
    [186] Basu A, Majumdar J D, Alphonsa J, et al. Corrosion resistance improvementof high carbon low alloy steel by plasma nitriding [J]. Materials Letters,2008,62(17-18):3117-3120.
    [187] Ahangarani S, Sabour A R, Mahboubi F, et al. The influence of active screenplasma nitriding parameters on corrosion behavior of a low-alloy steel [J].Journal of Alloys and Compounds,2009,484(1-2):222-229.
    [188] Kong H, Yoon E S, Kwon O K. Self-formation of Protective Oxide Films atDry Sliding Mild Steel Surface under a Medium Vacuum [J]. Wear,1995,181:325-333.
    [189] Wen D-C. Influence of layer microstructure on the corrosion behavior ofplasma nitrided cold work tool steel [J]. Journal of Materials Science,2009,45(6):1540-1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700