用户名: 密码: 验证码:
采空区顶板垮落空气冲击灾害的理论及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,煤炭在中国的能源构成中占有十分重要的比例。煤炭工业在我国国民经济中处于基础地位,是不可替代的。煤炭工业的安全高效开发对我国国民经济的快速、平稳和可持续发展具有十分重要的战略意义。顶板事故是煤矿的五大主要灾害之一,而煤矿顶板大面积垮落又是顶板事故中最危险的一种表现形式。采空区顶板在短时间内大面积垮落,不仅因自身重力产生严重的冲击破坏,而且更加严重的是把已采空间的空气在瞬间高速压出,形成空气冲击灾害,造成严重的人员伤害和设备损坏等后果。纵观中国煤矿历次顶板大面积垮落引起的空气冲击灾害事故,其致灾的根本原因都是因对煤矿顶板大面积垮落引起的动力冲击现象研究不够,对其灾害发生的机理和规律没有形成系统的科学预测理论和判据,难以提出实用有效的预警措施和防灾工程设计依据,以便在实践中科学地指导矿井的顶板大面积垮落空气冲击灾害防治工作。因此,非常有必要对采场顶板大面积垮落引起的空气冲击灾害进行更加深入的理论基础与现场防治实践研究,以实现我国煤炭工业的健康顺利发展。
     本文采用数学物理模型、实验室模拟和现场实践研究的方法,对采空区顶板垮落空气冲击灾害理论及控制技术进行研究。构建了采空区顶板整体切落力学模型、O-X断裂垮落力学模型以及房柱式开采顶板整体切落力学模型;研究了顶板垮落过程中采空区、巷道风速和风压的发生机理及演变规律;开展了实验室模拟,验证了顶板垮落-空气耦合冲击规律的一致性;建立了不同顶板垮落形式下空气冲击灾害对巷道人员及设备的损伤和损坏模型,给出了巷道内人员损伤及设备损坏的判则;依据具体的现场工程背景,提出了采场顶板大面积垮落所导致的空气冲击灾害的防灾工程设计方法与减灾控制技术措施。
     主要结论如下:
     (1)构建了顶板全部切落-整体运动型、顶板O-X破断回转下沉运动型的空气冲击理论预测模型,分析了顶板整体切落时,采空区空气压强的变化规律,推导了采空区、巷道口及巷道内空气的冲击速度随顶板垮落高度变化的计算公式,并依据开采实际与边界条件,采用有限差分方法预测出了具体算例条件下空气冲击灾害的相关临界指标。
     (2)设计研制出了顶板垮落-空气冲击耦合模拟实验台,通过模拟顶板不同垮落高度时采空区不同位置的空气流速,并利用MATLAB软件,采用二次插值法绘制了不同垮落高度时采空区的速度分布场,揭示了采空区风速呈以模型实验台中部为对称面的对称分布规律。试验结果表明,靠近巷道口位置风速最大,工作面煤壁侧风速次之,采空区侧风速最低。在巷道Ocm、10cm、30cm、50cm、80cm、100cm六个位置安设风速传感器,测得各自风速值,得出了随顶板垮落高度的不同,巷道某一位置风速的变化规律;顶板垮落-空气冲击时,沿巷道方向风速呈现随距离增加的衰减规律;空气自采空区流向巷道,受采空区面积与巷道断面积之比的影响规律。
     (3)根据井下人员受冲击空气超压伤害的评价原则,建立了人员受空气冲击超压伤害的评判模型(Ⅰ),确定人员受伤等级;并依人员受空气冲击时被推倒或卷入风中两种模式,构建出了空气冲击力的人员伤害模型(Ⅱ),提出了人员受超压伤害及冲击力伤害的计算公式。总结出了受空气冲击时巷道内设备损伤的三种模式,建立了巷道设备损伤评价的数-力模型,推导出了设备损伤的临界风速,并依据巷道内任意位置空气冲击速度的数值,判断设备是否受到损伤以及损坏程度。
     (4)提出了采空区密闭墙受空气冲击时的最大载荷设计计算公式和采空区空气冲击灾害的防冲密闭墙设计和校核方法,并在大柳塔矿活鸡兔井(长壁开采)与霍洛湾矿(房柱开采)进行了现场控制实践,验证了实际的防灾减灾效果。
For a long time, coal has been occupying a very large proportion of energy constitution in China. The basic position of coal industry in our national economy is irreplaceable. Safe and efficient mining of coal is of great strategic significance to the quick, smooth, and sustainable development of China's national economy. Roof accidents are one of the five major disasters in coal mines, and roof falling in large areas is one of the most dangerous forms of roof accidents. Goaf roof falling in large areas within a short time is not only caused by impact damage of its own gravity; what is more serious, air in the goaf is discharged instantly at a high speed, resulting in air impact disasters and serious personal injuries and equipment damages. The fundamental reason for all previous air impact disasters and accidents in Chinese coal mines caused by roof falling in large areas, is insufficient study on dynamic impact phenomenon caused by roof falling in large areas, and failure in the formation of a systematic scientific prediction theory and criterion, thus making it difficult to put forward foundations for practical and effective early warning measures and disaster prevention engineering designs, which could give scientific guidance to air impact disaster prevention and control work caused by roof falling in large areas. Therefore, it is very necessary to make further research into theory and on-site control practice of air impact disasters caused by roof falling in large areas, so as to promote healthy and smooth development of coal industry in China.
     This paper studies and explores theory and control technology of air impact disasters caused by goaf roof falling through mathematical and physical models, laboratory simulation and on-site practice. Whole-cut mechanical models, O-X breaking and falling mechanical models, and whole-cut mechanical models of roof in room and pillar mining are established; occurrence mechanisms and development laws of goafs, roadway air speed and pressure are explored; laboratory simulation is made to verify the consistency of roof falling-air coupling impact laws; models are established of personnel injuries and equipment damages caused by roof falling in different forms, and judgment standards are given for personnel injuries and equipment damages. Air impact disaster prevention engineering designing methods and mitigation control techniques and measures are put forward based on specific on-site engineering background.
     The main conclusions are as follows:
     Ⅰ. Predicted modals of air impact theory are established of roof whole-cut and overall moving types, and roof O-X breaking, down-turning and sinking type. Changing laws of goaf air pressure in the whole-cutting processes of goals are analyzed. Formulas are deduced for air impact speed variation with roof falling height in goafs, roadway ports and roadways. Relevant critical indicators of air impact disasters under specific conditions are predicted by using finite difference methods, on the basis of mining and boundary conditions.
     Ⅱ. Roof falling-air impact coupling simulation test benches are designed and made. Through simulating air flow velocities at different goaf locations when roof falls in different height, and by using quadratic interpolation methods of MATLAB software, different velocity distributions in goaf are drawn, and symmetrical distributions rules are disclosed that air speed in goafs is a symmetrical distribution with the test bench centre as the symmetrical plane. Test results show that the largest air speed is near the roadway port, followed by coal walls of working face, with the lowest speed at goaf side. Six air speed sensors are installed at Ocm,10cm,30cm,50cm,80cm and100cm of the roadways to measure different air speeds at different roadway points where roof fall, and get variation laws, get the law that in air impact caused by goaf falling, air speed reduces with distance in the direction of roadways, and get the law for the influence by the ratio between goaf area and breaking area of roadways when air flows from goafs to roadways.
     Ⅲ. Judgment models(Ⅰ) are established for air overpressure impact damages based on according to the evaluation principles of personnel injuries by air overpressure impact, which is for determination of personnel injury degrees. Evaluation models(Ⅱ) of personnel injuries of air impact are established based on the two models of personnel being pulled down or getting sucked in the air, and calculation formulas of air overpressure injuries and air impact damages are put forward. Three models of equipment damages within roadways caused by air impact are summed up, and the mathematical and mechanical models(Ⅲ) for evaluation of equipment damages in roadways are established to deduce critical air speeds for equipment damages, and to judge whether the equipment is damaged and damaging degrees in accordance to air impact velocity at any position in the roadway.
     Ⅳ.The maximum loading design calculation formulas caused by air impact to goaf seal walls, and design and check methods for impact-preventative seal walls are put forward. On-site control practices are arranged in Huojitu Shaft of Daliuta Coal Mine(longwall mining) and Huoluowan Coal Mine(room and pillar mining), which has proofed the practical disaster prevention and mitigation effects.
引文
[1]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学,2003.
    [2]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1992.
    [3]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [4]王岐成.矿山压力与岩层控制技术[M].北京:煤炭工业出版社,2003.
    [5]岑传鸿.顶板灾害防治[M].徐州:中国矿业大学出版社,1989.
    [6]李彦强.顶板事故预防与处理[M].徐州:中国矿业大学出版社,2009.
    [7]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994.
    [8]赵宏珠.印度浅埋深难垮顶板煤层地面爆破综采研究[J].矿山压力与顶板管理,1999(4):57-61.
    [9]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.
    [10]黄庆享.浅埋煤层长壁开采顶板控制研究[D].徐州:中国矿业大学,1999.
    [11]黄庆享,高召.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2011,26(2):156-160.
    [12]张当俊,靳钟铭,康天合.不同采煤方法对冲击地压影响的研究[J].太原理工大学学报,2006,37(6):676-670.
    [13]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,2004.
    [14]曹允伟,王春城,陈雄等.煤矿开采方法[M].北京:煤炭工业出版社,2005.
    [15]侯志鹰,于斌,周建峰.大同矿区坚硬顶板大面积整体切冒分析[J].煤矿开采,2008,13(1):61-63.
    [16]侯波,宋建成,郑丽君.矿井顶板状态监测系统[J].电气时代,2008(2):90-91.
    [17]侯波,宋建成,郑丽君.矿井顶板状态监测系统的研究[J].仪表技术与传感器,2009(1):53-55.
    [18]靳钟铭,张惠轩,康天合顶板大面积来压机理研究[J],山西煤炭,1995,14-18.
    [19]靳钟铭.坚硬顶板长壁采场的悬梁结构及其控制[J].煤炭学报,1986,(2):71-78.
    [20]靳钟铭.圈定采区内冲击地压危险带研究[J].山西矿业学院学报,1990(8):156-163.
    [21]窦林名,何学秋.冲击矿压治理与技术[M].徐州:中国矿业大学出版社,2001.
    [22]岑传鸿,窦林名.采场顶板控制及监测技术[M].中国矿业大学出版社,2005.
    [23]牟宗龙,窦林名,张广文等.坚硬顶板型冲击矿压灾害防治研究[J].煤炭学报,2006(6):737-741.
    [24]王金安,尚新春,刘红等.采空区坚硬顶板破断机制与灾变塌陷研究[J].煤炭学报,2008,33(8):850-855.
    [25]方新秋,窦林名,柳俊仓等.大采深条带开采坚硬顶板工作面冲击矿压治理研究[J].中国矿业大学学报,2006,35(5):39-43.
    [26]牟宗龙,窦林名.坚硬顶板突然断裂过程中的突变模型[J].矿山压力与顶板管理,2004,(4):164-168.
    [27]钱鸣高,缪协兴.采场矿山压力理论研究的新进展[J].矿山压力与顶板管理,1996,2:17-20.
    [28]Qian Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control[M].Strata Mechanics, Elsevier Scientific Publishing Company,1982:13-17.
    [29]Qian M G, He F L. The behaviour of the main roof in longwall minging:Weighting Span,fracture and disturbance [J].J of Mine, Metals&Fuels,1989:240-246.
    [30]许家林,朱卫兵,王晓振等.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,34(7):865-870.
    [31]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467
    [32]杨治林,余学义,郭何明等.浅埋煤层长壁开采顶板岩层灾害机理研究[J].岩土工程学报,2007,29(12):1763-1766
    [33]浦海,黄耀光,陈荣华.采场顶板X-O型断裂形态力学分析[J].中国矿业大学学报,2011,40(6):835-840.
    [34]朱德仁,钱鸣高,徐林生,坚硬顶板来压控制的探讨[J].煤炭学报,1991,16(2):11-20.
    [35]杨治林.浅埋煤层长壁开采顶板结构稳定性分析[J].矿山压力与顶板管里,2005,(2):7-10.
    [36]杨治林.浅埋煤层长壁开采顶板顶板岩层灾害控制研究[J].岩土力学,2011,32(增1):459-463.
    [37]宋选民,顾铁凤.顶板受冲击垮落的理论分析及工程应用[J].太原理工大学学报,2008,39(6):609-612.
    [38]宋选民,连清旺,邢平伟等.采空区顶板大面积垮落的空气冲击灾害研究[J].煤炭科学技术,2009,37(4):.1-4.
    [39]宋选民.综放采场顶煤冒放性控制理论及其应用[M].北京:煤炭工业出版社,2002.
    [40]熊仁钦.采场顶板大面积冒落的破坏性与防治机理[J].矿山压力与顶板管理,1995,6(3):35-38.
    [41]熊仁钦.顶板大面积来压破坏机理的研究[J].煤炭学报,1995,20(增6):38-41.
    [42]连清旺.矿井顶板(围岩)状态监测及灾害预警系统研究及应用[D].太原:太原理工大学,2012.
    [43]朱星辉.平邑石膏矿房柱式开采大面积采空区处理方法研究[D].青岛:山东科技大学,2004.
    [44]宋选民.活井旺采采空区飓风灾害的理论预测与防灾工程设计[J].太原理工大学学报,2006,37(1):35-37.
    [45]曹培荣,闫志海,宋选民,煤矿井下密闭墙的实用效果分析[J].山西煤炭,2007,27(3):53-55.
    [46]太原理工大学.神华集团神东煤炭公司活井21 上303旺采空区条件下21下303综采面厚层砂岩顶板的矿压实测与控制技术研究[课题研究报告].2006.
    [47]顾铁凤.采场飓风冲击灾害分析[J].辽宁工程技术大学学报,2007,26(1):11-14.
    [48]顾铁凤,宋选民.封闭采空区顶板垮落-空气冲击耦合模型与差分解法[J].煤炭学报,2008,33(11):1211-1215.
    [49]邢平伟,宋选民,付玉平等.神东大采高超长工作面矿压显现强度预测研究[J].中国煤炭,2009,35(8):43-47.
    [50]邢平伟,付玉平,宋选民.采场顶板飓风耦合模型及采高对飓风灾害的影响[J]中北大学学报(自然科学版),2010,31(3):227-231.
    [51]Pingwei Xing, Xuanmin Song, Yuping Fu. A Study on the roof fracture mechanism of large cutting height workface in shallow thick coal seam[J]. Advanced Materials Research, v347-353, p183-188,2012, Renewable and Sustainable Energy.
    [52]Pingwei Xing, Xuanmin Song, Yuping Fu. Study on similar simulation of the roof strata movement laws of the large mining height workface in shallow coal seam[J]. Advanced Materials Research, v450-451, p1318-1322,2012, Trends in Building Materials Research.
    [53]息金波.采场顶板大面积垮落的飓风灾害的理论研究[D].太原:太原理工大学,2006.
    [54]李志军.大采高超长工作面顶板灾害预警研究[D].太原:太原理工大学,2010.
    [55]马砺,王振平,许义等.大面积采空区有害气体密闭控制技术研究[J].煤矿现代化,2010(6):74-76.
    [56]王飞,王伟策,王耀华等.挡波墙对空气冲击波的削波作用研究[J].爆破器材,2004,33(1):1-5.
    [57]Lunderman C, Ohrt A P. Smal-1 scale experiment of in-tunnel airblast from external and internal detonations [A]. Pro-ceedings of the 8th International Symposium on Interaction of the Effects of Munnitions with Structures[C]. McLean Virginia,1997:209-221.
    [58]Welch C R. In-tunnel airblast engineering model for internal and external detonations[A]. Proceedings of the 8th Inter-national Symposium on Interaction of the Effects of Munnitions with Structures[C]. McLean Virginia,1997:195-208.
    [59]赵涛,李雨成,王带.矿用新型密闭材料的优选反其在寺河矿密闭墙中的应用[J].金属矿山,2009,(11):368-370.
    [60]罗振敏,葛岭梅,邓军.矿井密闭填充材料力学性能分析与稳定性预测[J].金属矿山,2008,28(2):305-309.
    [61]郑学敏.大型采空区井下密闭墙设计[J].金属矿山,2002,(12):56-59.
    [62]王来,李廷春.直角拐弯通道中空气冲击波的传播及数值模拟[J].自然灾害学报,2004,13(4):140-150.
    [63]吴爱祥,王贻明,胡国斌.采空区顶板大面积冒落的空气冲击波[J].中国矿业大学学报,2007,36(4):473-477.
    [64]张修玉,张义平,池恩安等.采空区坚硬顶板大面积冒落时巷道空气冲击波的计算 [J].矿业研究与开发,2010,30(5):68-69.
    [65]翟德元,刘学增.房柱式开采覆岩移动机理研究[J].非金属矿,1999,22(2):36-38.
    [66]赵文.地下巨型采空区顶板岩石的破坏与冒落[J].辽宁工程技术大学学报(自然科学版),2001,20(4):507-509.
    [67]王金安,李大钟,马海涛.采空区矿柱-顶板体系流变力学模型研究[J].岩石力学与工程学报,2010,29(3):577-582.
    [68]庞伟宾,何翔,李茂生等.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击,2003,23(6):573-576.
    [69]S. K. Das. Observations and classification of roof strata behaviorover long-wall coalmining panels in India[J]. International Journal of Rock Mechanics and Mining Sciences,2000, (37):585-597.
    [70]欧阳良彪.变截面激波管中激波运动规律的初步数值研究[J].中国科学技术大学学报,1992,22(1):83-89.
    [71]尹协振,杨慧菁.静止介质中激波动力学的差分方法[J].中国科学技术大学学报,1993,23(3):318-324.
    [72]Keun-shik chang, Jong-kwankim. Numerical investigation of inviscid shockwave dynamics in an expansion tube[J]. Shock Waves,1995,5(1):33-45.
    [73]程磊,景国勋,杨书召.煤尘爆炸冲击波传播规律及造成的伤害分区研究[J].河南理工大学学报(自然科学版),2011,30(3):257-261.
    [74]曲志明,周心权,和瑞生等.掘进巷道瓦斯爆炸衰减规律及特征参数分析[J].煤炭学报,2006,31(3):325-328.
    [75]王海燕,曹涛,周心权等.煤矿瓦斯爆炸冲击波衰减规律研究与应用[J].煤炭学报,2009:34(6):771-782.
    [76]曲志明.瓦斯爆炸衰减规律和破坏效应[J].煤矿安全,2006(2):3-5.
    [77]朱建华.爆炸波破坏/伤害效应评价[J].劳动保护科学技术,1999,19(3):38-41
    [78]杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003,23(1):37-40.
    [79]李铮.空气冲击波作用下人的安全距离[J].爆炸与冲击,1990,10(2):135-144
    [80]段绪华,凌标灿,金智新.煤矿顶板事故防治新技术[M].徐州:中国矿业大学,2008.
    [81]程五一.煤与瓦斯突出冲击波阵面传播规律的研究[J].煤炭学报,2004,29(1):57-60.
    [82]程五一.煤与瓦斯突出冲击波的形成及模型建立[J].煤矿安全,2000(9):23-25.
    [83]张强,孙玉荣,王晓勇等.煤与瓦斯突出冲击波传播规律的研究[J].矿业安全与环保,2007,34(5):21-23.
    [84]傅培舫.井巷中的冲击波热力参数变化规律的探讨[J].矿业安全与环保,2002,29(2):28-29.
    [85]季惠龙,侯克鹏,张成良等.大型采空区顶板冒落危害预测[J].采矿技术,2010,10(2):50-52.
    [86]郑怀昌,宋存义,胡龙等.采空区顶板大面积冒落诱发冲击气浪模拟[J].北京科技大学学报,2010,32(3):277-281.
    [87]郑志辉,查支祥.地下空间顶部塌落产生高压气浪的理论分析[J].隧道建设,2004,24(1),15-16.
    [88]赵文,任凤玉.哑铃状两大型联通采空区岩石冒落与冲击气浪的预防[J].中国矿业,2000,9(3),76-79.
    [89]阚兴.大安山矿房山采区顶板活动规律及冲击地压研究[D].沈阳:辽宁工程技术大学,2002.
    [90]OlimM,Dewey JM. Arevised three-shock solution for theMach reflection ofweak shocks (1.1    [91]Reichenbach H. In the footsteps of EmstMach-A historical review of shock wave research at the Erns-t Mach-Institute[J]. Shock Waves,1992,2(2):65-79.
    [92]马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J].中国安全生产科学技术,2007,3(6):68-72.
    [93]张晓君.采空区顶板大面积冒落规律性研究[J].矿山压力与顶板管理,2005,(2):35-38.
    [94]周光炯,严宗毅;徐世雄等.流体力学(上下册)[M].北京:高等教育出版社,2006.
    [95]马宏福,郑小欢.矿井通风[M].徐州:中国矿业大学出版社,2008.
    [96]李复.可压缩流体的伯努利方程[J].大学物理,2008,27(8):15-18.
    [97]周亨达.工程流体力学[M].北京:冶金工业出版社,1991.
    [98]萨文科CK,古林AA.井下空气冲击波[M].北京:冶金工业出版社,1979.
    [99]潘文全.流体力学基础[M].北京:机械工业出版社,1980.
    [100]Welch C R. In-tunnel airblast engineering model for internal and external detonations [A]. Proceedings of the 8th Inter-national Symposium on Interaction of the Effects of Munnitions with Structures[C]. McLean Virginia,1997:195-208.
    [101]Lunderman C, Ohrt A P. Smal-1 scale experiment of in-tunnel airblast from external and internal detonations [A]. Pro-ceedings of the 8th International Symposium on Interaction of the Effects of Munnitions with Structures[C].McLean Virginia, 1997:209-221.
    [102]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [103]张连玉,汪令羽,苗瑞生.爆炸气体动力学基础[M].北京:北京工业学院出版社,1987.
    [104]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004
    [105]孙钧.岩石流变力学及工程应用的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [106]杨小龙,孙石.工程流体力学[M].北京:中国水利水电出版社,2010.
    [107]郑永令.流体流动状态与伯努利方程[J].大学物理,1994,13(8):1-4.
    [108]樊丽俭.关于粘流伯努利方程的存疑与新证[J].长安大学学报(自然科学版),2004,24(3):70-74.
    [109]CASTELLANZA R,GEROLYMATOU E,NOVA R,et al. An attempt to predict the failure time of abandoned mine pillar[J]. Rock Mechanics and Rock Engineering,2008,41 (3):377-401.
    [110]KOUSICK B. A unique approach to determine the time-dependent in-situ strength of coal pillars[C]. Proceedings of Second International Workshop on Coal Pillar Mechanics and Design. Colombia:DHHS(NIOSH) Publication,1999:5-8.
    [111]WANG J A,SHANG X C,MA H T. Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
    [112]NIELEN J,VAN DER N. The role of overburden integrity in pillar failure[C]. Proceedings of Second International Workshop on Coal Pillar Mechanics and Design. Colombia:DHHS(NIOSH) Publication,1999:173-174.
    [113]GALVIN J M. Coal pillar strength determinations for Australian and South African mining condition[C]. Proceedings of Second International Workshop on Coal Pillar Mechanics and Design. Colombia:DHHS(NIOSH) Publication,1999:63-70.
    [114]Lin Baiquan, Zhou Shining, Zhang Rengui. The in fluence of barriers on flame and explosion wave in gas explosion [J]. Journal of Coal Science and Engineering,1998, 4(2):53-57.
    [115]王开,康天合,李海涛等.坚硬顶板控制放顶方式及合理悬顶长度的研究[J].岩石力学与工程学报,2009,28(11):737-741.
    [116]黄醒春.长壁工作面老顶初次来压的弯曲失稳解析[J].煤炭学报,1998,23(1):27-31.
    [117]付玉平.浅埋煤层大采高超长工作面上覆岩层移动规律及围岩控制研究[D].太原:太原理工大学,2011.
    [118]翟德元译.美国房柱式开采技术[M].北京:煤炭工业出版社,1996.
    [119]孟达,王家臣,王进学.房柱式开采上覆岩层破坏与垮落机理[J].煤炭学报,2007,32(6):577-580
    [120]黄英华,徐必根,唐绍辉.房柱法开采矿山采空区失稳模式及机理[J].矿业研究与开发,2009,29(4):24-26.
    [121]李海清,向龙,陈寿根.房柱式采空区受力分析及稳定性评价体系的建立[J].煤矿安全,2010,42(3):138-141.
    [122]曲华,李安民.房柱式开采合理采留比数值模拟[J].煤矿安全,2013,44(1):51-54
    [123]刘卫国.MATLAB程序设计教程(第二版)[M].北京:中国水利水电出版社,2010.
    [124]郝文化.MATLAB图形图像处理应用教程[M].北京:中国水利水电出版社,2004.
    [125]哈尔滨工业大学理论力学教研室编.理论力学(下册)[M].北京人民教育出版社,1982.
    [126]王永岩.理论力学[M].北京:煤炭工业出版社,1997.
    [127]谭云亮,何孔翔,马植胜等.坚硬顶板冒落的离层遥测预报系统研究[J].岩石力学与工程学报,2006(8):1705-1708.
    [128]A.巴内吉A.K,雷G辛格.高压注水控制坚硬顶板[J].中国煤炭,2004,30(12):73-77.
    [129]牛锡俘,李兴云.对老顶高压注水是防治冲击地压的新途径[J].岩石力学与工程学报,1992,(1):88-95.
    [130]滕博,姜福兴,莫自宁.煤矿防爆密闭墙技术标准探讨[J].煤炭科学技术,2007,35(2):97-100.
    [131]DAVID R,HANSON,THOMAS L, et al. Advanced techniques in site characterization and mining hazard detection for the underground coal industry[J], In ternational Journal of Coal Geology,2002,50(14):275-301.
    [132]FENNER T. Ground penetrating radar for identification of mine tunnels and abandoned mine stopes[J].Mining Engineering,1995,47(3):280-284.
    [133]LIA X, WANG S J, LIU T Y, et al. Engineering geology ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine[J]. Engineering Geology,2004(76):93-107.
    [134]DIEDERICHS M S, KAISER P K. Tensile strength and abutment relaxation as failure control mechanisms in underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(1):69-96.
    [135]GE Mao-chen. Efficient mine microseismic monitoring[J]. International Journal of Coal Geology,2005,64:44-56.
    [136]罗振敏,邓军,文虎等.一种煤矿用新型快速胶体防爆密闭墙[J].煤矿安全,2007,(9):34-38.
    [137]牟琦.综采工作面顶板监测信息管理系统的设计与实现[J].煤炭科学技术,2006,34(4):23-25.
    [138]郭周克.综放工作面开切眼深孔预爆防坚硬顶板冲击[J].煤矿安全,2009,(6):93-95.
    [139]娄金福,齐庆新,蓝航等.焦坪矿区坚硬顶板冲击矿压发生机理与防治对策[J].煤矿开采,2010,15(2):78-81.
    [140]吴兴荣,郭海泉,黄修典等.坚硬顶板冲击矿压的预测与防治[J].矿山压力与顶板管理,1999,3(4):211-215.
    [141]吕祥锋,工振伟,潘一山.煤岩巷道冲击破坏过程相似模拟试验研究[J].实验力 学,2012,27(3):311-317.
    [142]宋永津.控制煤层坚硬难冒顶板技术[M].北京:煤炭工业出版社,2002.
    [143]宋振骐,蒋宇静,杨增夫等.煤矿重大事故预测和控制的动力信息基础的研究[M].北京:煤炭工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700