用户名: 密码: 验证码:
几种复合纳米材料的合成及其在葡萄糖生物传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖含量的测定在很多领域都有着十分重要的意义。现代的电化学葡萄糖生物传感技术将纳米材料与电化学分析检测技术有机的结合在一起,由此产生了一系列性能优良的电化学葡萄糖生物传感器。本文着重于设计和合成新型的纳米复合材料,并结合电化学或电致化学发光检测技术构建了几种新型的电化学葡萄糖传感器。本论文由六个部分组成。
     第一章绪论在这一章里对生物传感器的基本原理及分类、电化学生物传感器、纳米材料的定义和特性进行了介绍;对几种常见的纳米材料及其在生物传感器中的应用、电化学葡萄糖生物传感器的发展、纳米材料在葡萄糖生物传感器的应用与发展、电致化学发光葡萄糖生物传感器作了简要的概述。
     第二章纳米材料的引入为葡萄糖生物传感器的直接电化学带来了新契机,由各种纳米材料构筑的直接电子转移的葡萄糖生物传感器已经成为如今研究的热点。很多的纳米材料都存在着容易从电极表面渗漏的问题,这使得测定时的电化学信号很不稳定,传感器的性能因此降低。由纳米材料构建的性能优良的葡萄糖生物传感器不仅应该克服纳米材料渗漏的问题,而且该纳米材料还能够在酶的氧化还原活性中心和电极表面之间进行有效的电子传递,使得响应时间缩短、灵敏度提高。因此,在本章中,首先基于电活性物质普鲁士蓝、石墨烯以及生物相容性好的壳聚糖合成了壳聚糖/普鲁士蓝/石墨烯的纳米复合物(CS-PB-GR),将壳聚糖用于共建壳聚糖/普鲁士蓝/石墨烯的纳米复合物不仅增强了该复合材料的生物相容性,而且有效的解决了聚普鲁士蓝纳米粒子的渗漏问题,可以有效的提高该复合纳米材料的性能。将该纳米复合材料结合纳米金和半刀豆球蛋白A(ConA)在玻碳电极上构建了:葡萄糖氧化酶/Con A/葡萄糖氧化酶/纳米金/CS-PB-GR/葡萄糖酶传感器。该传感器还具有如下优势:纳米金和Con A的引入,可以有效的提高葡萄糖氧化酶的固载量;CS-PB-GR纳米复合材料中的PB纳米粒子和电极表面的GOD可以形成一种类双酶的体系,起到信号放大的作用;石墨烯和PB纳米粒子能够的提高电子在酶的活性中心(FAD)和电极表面之间的迁移速率。用该方法制得的葡萄糖传感器具有响应快、灵敏度高、选择性好等优点。
     第三章随着对碳材料性质研究的进一步深入,富勒烯作为一种生物传感材料也开始被应用于葡萄糖生物传感器研究领域。C60分子具有一个大的共轭离域π键,亲电子能力很强,可作为电子受体。这使得它具有了许多特殊的物理和化学性质,并且呈现出令人期待的应用前景。C60易溶于甲苯、苯、烷烃和二硫化碳等非极性有机溶剂,但它不溶于水,而且导电性能不高,因此使得C60在生物传感器中的应用受到了一定的局限。为了改善C60导电性能不高的这一不足,我们设计、合成了铂包裹的C60纳米线。将合成的Pt@C60内米线和葡萄糖氧化酶滴涂在电极表面,用壳聚糖固定成膜,制备了葡萄糖酶传感器。研究表明,由于引入了导电性能好、催化性能高、生物兼容性好的铂纳米材料,使得基于Pt@C60纳米线构建的酶生物传感器对葡萄糖具有很好的催化性能。该传感器也具有制作简单、响应时间短、选择性好、稳定性好等优点。
     第四章表面活性剂作为一种含有极性和非极性官能团的两性分子,它能强烈吸附在固-液界面上,将表面活性剂溶液滴涂到电极表面会形成有序的多重双层生物模拟膜,能加快电子在酶和电极之间的交换速率。为了改进C60的导电性能同时提高基于C60纳米粒子的成膜能力,我们以阳离子表面活性剂四辛基溴化铵(TOAB)作为稳定剂和相迁移试剂,合成了Au@C60纳米粒子,并在玻碳电极上制备了:葡萄糖氧化酶/Au@C60葡萄糖酶生物传感器。纳米金的引入使得C60的亲电子能力得到进一步提高,制得的Au@C60可以在电极表面直接成膜而且还能够有效的固载葡萄糖氧化酶;同时Au@C60表面带正电荷的TOAB,也可以增加酶的固载量;而且合成的Au@C60纳米粒子能够实现电子在葡萄糖氧化酶的活性中心和电极表面之间的直接电子转移。该传感器制作简单、响应时间短、选择性好、稳定性好。
     第五章为了扩大C60纳米粒子在生物传感器中的进一步应用,我们设计合成了水溶性的C60衍生物,利用该衍生物,在水溶液中和四氯钯酸钾合成了一种新型的钯纳米粒子(Pd@Cys-C60)。将该粒子滴涂在玻碳电极表面构建了无酶的葡萄糖生物传感器,无酶的葡萄糖传感器也是当今研究的热点领域。在Pd纳米粒子和C60的协同作用下,Pd@Cys-C60纳米粒子能有效的催化葡萄糖。该无酶的葡萄糖生物传感器构造简单、不需要在特殊条件下保存、不受酶易变性失活的影响、使用寿命长,而且该非酶传感器的稳定性和重现性比普通的酶生物传感器要好。
     第六章电致化学发光是把电化学和化学发光相结合发展起来的一门新的检测技术,它不仅具有电化学分析的一些优点,而且还具有化学发光分析的诸多特点。鲁米诺是电致化学发光中最常用的发光试剂,当溶液中有过氧化氢存在时,产生的发光信号的强度与过氧化氢的浓度成正比。由于葡萄糖氧化酶在氧化葡萄糖时可以产生过氧化氢,因此可以通过间接测定过氧化氢的方法来检测葡萄糖,从而制备高灵敏的电致化学发光葡萄糖生物传感器。研究表明,纳米金可以增强鲁米诺-过氧化氢体系的电致化学发光强度。因此,在本章中用葡萄糖氧化酶交联戊二醛的方法合成了Ausbeii@GOD纳米粒子,并结合电致化学发光检测技术,在玻碳电极上制备了:葡萄糖氧化酶/Aushell@GOD/壳聚糖/酶传感器,并将该传感器应用于葡萄糖的电致化学发光检测。研究表明,合成的Aushell@GOD纳米粒子,可以有效的催化Luminol-H2O2体系的电致化学发光,该电致化学发光葡萄糖酶生物传感器制备简单、响应快速、线性范围宽、灵敏高,选择性好。
The determination of glucose has vital significance in many areas. Modern electrochemical glucose biosensor perfectly combines the nano-materials with electrochemical detection technologies, which produced a series of electrochemical glucose biosensor with excellent performance. This article focuses on the study and synthesis of novel nanocomposite and constructs several distinctive glucose sensors employing electrochemical as well as electro-chemiluminescence detection techniques. This paper consists of six parts.
     Chapter one:In this chapter, the basic principles and classification of biosensors, electrochemical biosensor as well as the definition and characteristics of nanomaterials are introduced. In addition, several aspects are briefly summarized including applications of common nanomaterials in biosensors, development of electro-chemical glucose biosensors, the application of nanomaterials in development of the glucose biosensor and ECL glucose biosensors.
     Chapter two:Introduction of nanomaterials brings new opportunities for the direct electrochemistry of glucose biosensor. Glucose biosensors based on various nanomaterials to realize the direct electron transfer of glucose oxidase have become hot research now. However, most of the nanomaterials are easy to leak from the electrode surface, which makes the measured electrochemical signal unstable, thus reducing the performance of the sensor. Glucose biosensor constructed by nanomaterials with good performance can not only overcome the problem of leakage of nanomaterials, but also achieve direct electron transfer between the redox-active center of the enzyme and the electrode surface, thus improved the response time and the sensitivity. Therefore, in this chapter, firstly, the Chitosan/Prussian blue/graphene nanocomposite (CS-PB-GR) was synthesized based on the electroactive species including Prussian blue, graphene and chitosan. The application of chitosan for building chitosan/Prussian blue/graphene nanocomposites not only enhanced the biocompatibility of the complex but also effectively avoided the leakage of poly Prussian blue nanoparticles, which strongly improved the performance of composite nanomaterials. The CS-PB-GR nanocomposites, nano-Au and half sword bean globulin a (Con A) were applied to construct the GOD/Con A/GOD/nano-Au/CS-PB-GR/glassy carbon electrode. The advantages of this method were summarized as follows: The introduction of nano-Au and Con A effectively improved the amount of glucose oxidation. A pseudobienzymatic system was formed with PB nanoparticles and GOD to enhance the esponse signal. The electron transfer rate between the activity center (FAD) of enzyme and electrode surface was significantly accelerated by the application of grapheme and PB nanoparticles. The biosensor exhibits good electrocatalytic behavior towards detection of glucose with fast response, high sensitivity and selectivity and realized the direct electron transfer.
     Chapter three:With further research on the carbon materials, fullerenes, as a biomaterial, began to be applied in glucose biosensor. C60molecule has a large conjugated delocalizedπbond and behaves strong electron affinity, which can be used as the electron acceptor. The characters mentioned above endow C60special physical and chemical properties, which prompt such material present potential application prospects. C60is soluble in non-polar organic solvent such as toluene, benzene, paraffin, and carbon disulfide. However, C60has poor water soluble and conductivity, which limited its application in biosensor. In order to overcome this shortcoming of C60, we synthesized platinum wrapped C60nanowires. The synthesized Pt@C60nanowires, glucose oxidase and CS were dropped onto the electrode surface to prepare a glucose sensor. Results showed that the enzyme biosensor based on Pt@C60nanowires behaved good catalytic performance towards glucose, due to the introduction of platinum nanomaterials with good electrical conductivity, high catalytic performance and good biocompatibility. Besides, the sensor exhibited short response time, good selectivity and good stability.
     Chapter four:As an amphiphilic molecule, the surface active agent containing polar and non-polar functional groups can strongly adsorb on the solid-liquid interface. The application of surfactant solution could form an orderly double biomimetic membrane, which can speed up the exchange rate of electrons between the enzyme and the electrode. To overcome the water-insoluble and poor conductivity of C60, Au@C60core-shell nanoparticles were synthesized with cationic surfactants tetraoctylammonium bromide (TOAB) as a stabilizing agent and phase transfer reagent. Furthermore, the glucose enzyme biosensor was fabricated based on glucose oxidase/Au@C60. The utility of nano-Au enhanced the electronic affinity of C60, which ensured the effective immobilization of glucose oxydase by Au@C60. Simultaneously, the positive charged TOAB also increased the enzyme loading amount. Moreover, the obtained Au@C60nanoparticles can promote the direct electron transfer between the active center of glucose oxydase and the electrode surface. The fabrication process of the sensor was simple, and the sensor exhibited short response time, good selectivity and excellent stability.
     Chapter five:In order to expand the application of C60nanoparticles in biosensors, a new type of Palladium Nanoparticles (Pd@Cys-C60) were synthesizes employing C60and potassium tetrachloropalladate. The nanoparticles were modified onto the glassy carbon electrode surface to construct non-enzymatic glucose sensor. Pd@Cys-C60nanoparticles behaved excellent catalysis to glucose due to the synergetic effect of Pd nanoparticles and C60. The non-enzymatic glucose sensor can be saved under common conditions and are free of influence by the deactivation of the enzyme variability. Moreover the stability and reproducibility of this non-enzyme sensor are better than the ordinary enzyme biosensor.
     Chapter six:ECL is a new testing technology combining electro-chemistry and chemiluminescence, which not only obtains the advantages of electrochemical analysis, but also exhibits many characteristics of chemiluminescence analysis. Luminol is most commonly used reagent in the luminescent ECL. The ECL intensity of luminol-H2O2is directly proportional to the quantity of H2O2. GOD can produce H2O2during their substrate-specific enzymatic reaction and the intensity of the ECL signal is directly proportional to the concentration of H2O2which was generated by enzymatical catalysis. Therefore, a sensitive ECL glucose biosensor could be designed for measure of glucose by detecting H2O2indirectly. Gold nanoparticles can enhance the ECL intensity of the luminol-H2O2system. Thus, in this chapter, hollow Aushell@GOD nanoparticles were synthesized using glutaraldehyde cross-link with glucose oxidase. Then, the GOD/Aushell@GOD/chitosan/GCE was prepared to detect glucose through ECL technology. Results showed that, the obtained Aushell@GOD nanoparticles exhibited excellent catalytic effect towards the electro-chemiluminescence of luminol-H2O2system. The preparation of this glucose enzyme biosensor is simple, and the electro-chemiluminescence biosensor showed fast response, wide linear range, high sensitivity and good selectivity.
引文
[1]铃术周一,霍纪文,姜远海.生物传感器.北京:科学出版社,1988.
    [2]Higgins B. R., Biosensors:An Introduction. New York:Wiley,1997.
    [3]Phadke R. S., Biosensors and enzyme immobilized electrodes. Biosystems,1992,27:203-206.
    [4]Karyakin A. A., Sensors for Environment, Health and Security. Germany:Springer,2008.
    [5]Gopel W., Jones T. A., Kleitz M., Lundstrom I., Seiyama T., Sensors, Chemical and Biochemical Sensors. Germany:Federal Republic,1991.
    [6]Stetter J. R., Penrose W. R. Yao S., Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. J. Electrochem. Soc.,2003,150:S11-S16.
    [7]Thevenot D. R., Toth K., Durst R. A., Wilson G. S., Electrochemical biosensors:recommended definitions and classification. Biosens. Bioelectron.,2001,16:121-131.
    [8]Prakash S., Chakrabarty T., Singh A. K., Shahi V. K., Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron.,2013,41: 43-53.
    [9]Bleeker E. A. J., Jong W. H. de, Geertsma R. E., Groenewold M., Heugens E. H. W., Koers-Jacquemijns M., Meent D. V. de, Popma J. R., Rietveld A. G., Wijnhoven S. W. P., Cassee F. R., Oomen A. G., Considerations on the EU definition of a nanomaterial:Science to support policy making. Regul. Toxicol. Pharm.,2013,65:119-125.
    [10]Liden G., The European Commission Tries to Define Nanomaterials. Ann. Occup. Hyg.,2011, 55:1-5.
    [11]周瑞发.纳米材料技术.北京:国防工业出版社,2003.
    [12]Sarikaya M., Tamerler C., Jen A. K. Y., Schulten K. Baneyx F., Molecular biomimetics: nanotechnology through biology. Nat. Mater.,2003,2:577-585.
    [13]Pokropivny V. V., Skorokhod V. V., New dimensionality classifications of nanostructures. PhysicaE.,2008,40:2521-2525.
    [14]Pokropivny V. V., Skorokhod V. V, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng., C.,2007,27: 990-993.
    [15]潘劲松,黄学辉,顾少轩.纳米材料的类别划分及其依据.材料导报,2000,14:28-30.
    [16]Penn S. G., He L., Natan M. J., Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol.,2005,5: 8-16.
    [17]Ball P., Li G. Science at atomic scale. Nature,1992,355:761-766.
    [18]孙玉绣,张大伟.金政伟主编,纳米材料的制备方法及其应用.北京中国纺织出版社,2010.
    [19]Igor S., Vladimir P., Synthesis of dispersed metal particles for applications in photovoltaics, catalysis, and electronics Goia Dan. J. Solid State Electrochem.,2013,17:279-297.
    [20]Pan B. F., Cui D. X., Ozkan C., Xu P., Huang T., Li Q., Chen H., Liu F. T., Gao F., He R., DNA-templated ordered array of gold nanorods in one and two dimensions. J Phys Chem C., 2007,111:12572-12576.
    [21]Chen X. J., Wang Y. Y, Zhou J. J., Yan W., Li X. H., Zhu J. J., Electrochemical Impedance Immunosensor based on three-Dimensionally Ordered Macroporous Gold Film. Anal. Chem., 2008,80:2133-2140.
    [22]Zhang M. N., Yamaguchi A., Morita K., Teramae N., Electrochemical Synthesis of Au/Polyaniline-poly(4-Styrenesulfonate) Hybrid Nanoarray for Sensitive Biosensor Design. Electrochem. Commun.,2008,10:1090-1093.
    [23]Gui C., Cui D. X., Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy. CancerBiol. Med,2012,9:221-233.
    [24]Kumar D., Saini N., Jain N., Sareen R., Pandit V, Gold nanoparticles:an era in bionanotechnology. Expert Opin. Drug Del.,2013,10:397-409.
    [25]Hutchings G. J., Brust M., Schmidbaur H., Gold-an introductory perspective. Chem. Soc. Rev., 2008,37:1759-1765.
    [26]Deng Y.H., Cai Y., Sun Z.K., Liu J., Liu C., Wei J., Li W, Liu C., Wang Y, Zhao D.Y., Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:A Highly Integrated Catalyst System. J. Am. Chem. Soc.,2010,132:8466-8473.
    [27]Park T. J., Lee S. Y, Lee S. J., Park J. P., Yang K. S., Lee K. B., Ko S., Park J. B., Kim T., Kim S. K., Shin Y. B., Chung B. H., Ku S. J., Kim D. H., Choi I. S., Protein Nanopatterns and Biosensors Using Gold Binding Polypeptide as a Fusion Partner. Anal. Chem.,2006,78: 7197-7205.
    [28]Brust M., Schiffrin D. J., Bethell D., Kiely C. J., Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater.,1995,7:795-797.
    [29]Guo S. J., Wang E. K. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta,2007,29:181-192.
    [30]Patolsky F., T. Ranjit K., Lichtenstein A., Willner I., Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem. Commun.,2000,0:1025-1026.
    [31]Huang K.J., Li J., Wu Y.Y., Liu Y.M., Amperometric immunobiosensor for a-fetoprotein using Au nanoparticles/chitosan/TiOr-graphene composite based platform. Bioelectrochemistry,2013,90:18-23.
    [32]Xu G. Q., Adelojua S. B., Wu Y. C., Zhang X, Y, Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Anal. Chim.Acta,2012,755:107.
    [33]Yuan L., Yang M. H., Qu F. L., Shen G. L., Yu R. Q., Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochim. Acta,2008,53:3559-3565.
    [34]Bian X. J., Lu X. F., Jin E., Kong L. R., Zhang W. J., Wang C., Fabrication of Pt/polypyrrole hybrid hollow microspheres andtheir application in electrochemical biosensing towards hydrogen peroxide. Talanta,2010,81:813-818.
    [35]Chu X. C., Wu B. H., Xiao C. H., Zhang X. H., Chen J. H., A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites. Electrochim. Acta,2010,55:2848-2852.
    [36]You T. Y., Niwa O., Tomita M., Hirono S., Characterization of Platinum Nanoparticle-Embedded Carbon Film Electrode and Its Detection of Hydrogen Peroxide. Anal. Chem.2003,75:2080-2085.
    [37]Li Y. L., Chang Y. Z., Jin M., Liu Y. Y., Han G. Y, ANonenzymatic Hydrogen Peroxide Sensor Based on Pt/PPy Hollow Hybrid Microspheres. J. Appl. Polym. Sci.,2012,126:1316-1321.
    [38]Chakraborty S., Raj C. R., Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens. Bioelectron.,2009,24:3264-3268.
    [39]Gill R., Polsky R., Willner I, Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small,2006,2: 1037-1041.
    [40]Zhang J., Ting B. P., Khan M., Pearce M. C, Yang Y. Y., Gao Z. Q., Ying J. Y, Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens. Bioelectron.,2010,26:418-423.
    [41]Santhosh P., Manesh K. M., Uthayakumar S., Komathi S., Gopalan A. I., Lee K.-P., Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers. Bioelectrochemistry,2009,75:61-66.
    [42]You J. M., Jeong Y. N., Ahmed M, S., Kim S. Ki., Choi H. C., Jeon S., Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticles on a modified glassy carbon electrode. Biosens. Bioelectron.,2011,26:2287-2291.
    [43]Zhang Y., Zhang M., Cai Z. Q., Chen M. Q., Cheng F. L., A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim. Acta,2012,68:172-177.
    [44]Wu X. Y, Chai Y. Q., Yuan R., Su H. L., Han J., A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst,2013,138:1060-1066.
    [45]Qua F. L., Sun H. Y, Zhang S. F., You J. M., Yang M. H., Electrochemical sensing platform based on palladium modified ceria nanoparticles. Electrochim. Acta,2012,61:173-178.
    [46]Niu H., Yuan R., Chai Y. Q., Mao L., Yuan Y. L, Cao Y. L., Zhuo Y, Highly enhanced electrochemiluminescence based on synergetic catalysis effect of enzyme and Pd nanoparticles for ultrasensitive immunoassay. Chem. Commun.,2011,47:8397-8399.
    [47]Zhou P., Dai Z. H., Fang M., Huang X. H., Bao J. C., Novel dendritic palladium nanostructure and its application in biosensing. J. Phys. Chem. C,2007,111:12609-12616.
    [48]Das J., Kim H., Jo K., Park K. H., Jon S., Lee K., Yang H., Fast catalytic and electrocatalytic oxidation of sodium borohydride on palladium nanoparticles and its application to ultrasensitive DNA detection. Chem. Commun.,2009,0:6394-6396.
    [49]Cui Z. T., Cai Y. Y., Wu D., Yu H. Q., Li Y., Mao K. X., Wang H., Fan H. X., Wei Q., Du B., An ultrasensitive electrochemical immunosensor for the detection of salbutamol based on Pd@SBA-15 and ionic liquid. Electrochim. Acta,2012,69:79-85.
    [50]Sun X., Du S. Y., Wang X. Y., Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film. Eur. Food Res. Technol,2012,235: 469-477.
    [51]Li T., Si Z. Z., Hu L. Q., Qi H. Z., Yang M. H., Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-a. Sensor. Actuat. B-Chem.,2012,171-172:1060-1065.
    [52]Pandey P. C., Pandey A. K., Chauhan D. S., Nanocomposite of Prussian blue based sensor for 1-cysteine:Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochim. Acta,2012,74:23-31.
    [53]Jin E., Bian X. J., Lu X. F., Wang C., Fabrication of multiwalled carbon nanotubes/polypyrrole/Prussian blue ternary composite nanofibers and their application for enzymeless hydrogen peroxide detection.J. Mater. Sci.,2012,47:4326-4331.
    [54]Cui L., Zhu J. Y, Meng X. M., Yin H. S., Pan X. P., Ai S. Y., Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sensor. Actuat. B-Chem.,2012, 161:641-647.
    [55]Jin R. R., Li L. F., Lian Y. H., Xu X. F., Zhao F., Layered double hydroxide supported Prussian blue nanocomposites for electrocatalytic reduction of H2O2. Anal. Methods,2012,4: 2704-2710.
    [56]Karyakin A. A., Blue and Its Analogues:Electrochemistry and Analytical Applications. Electroanalysis,2001,13:813-819.
    [57]Karyakin A. A., Karyakina E. E., Gorton L., Amperometric Biosensor for Glutamate Using Prussian Blue-Based "Artificial Peroxidase" as a Transducer for Hydrogen Peroxide. Anal. Chem.,2000,72:1720-1723.
    [58]Qu F. L., Shi A. W., Yang M. H., Jiang J. H., Shen G. L., Yu R. Q., Preparation and characterization of Prussian blue nanowire array and bioapplication for glucose biosensing. Anal. Chim. Acta,2007,605:28-33.
    [59]Zhang Y. M., Chen H., Gao X., Chen Z. C., Lin X. F., A novel immunosensor based on an alternate strategy of electrodeposition and self-assembly. Biosens. Bioelectron.,2012,35: 277-283.
    [60]沈曾民.新型碳材料.北京:化学工业出版社,2003.
    [61]Hilder T. A., Pace R. J., Chung S. H., Computational Design of a Carbon Nanotube Fluorofullerene Biosensor. Sensors,2012,12:13720-13735.
    [62]Wei Z. L., Sun X. L., Li Z. J., Fang Y. J., Ren G. X., Huang Y. R., Liu J. K., Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite. Microchim Acta,2011,172:365-371.
    [63]Ahmad M., Pan C. F., Gan L., Nawaz Z., Zhu J., Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres. J. Phys. Chem. C.,2010, 114:243-250.
    [64]Shiraishi H., Itoh T., Hayashi H., Takagi K., Sakane M., Mori T., Wang J., Electrochemical detection of E. coli 16S rDNA sequence usingair-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry,2007,70:481-487.
    [65]Carano M., Cosnier S., Kordatos K., Marcaccio M., Margotti M., Paolucci F., Prato M., Roffia S., A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film, J. Mater. Chem.,2002,12:1996-2000.
    [66]Wei Z. L., Li Z. J., Sun X. L., Fang Y. J., Liu J. K., Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. Biosens. Bioelectron.,2010,25:1434-1438.
    [67]Pan N. Y., Shih J. S., Piezoelectric crystal immunosensors based on immobilized fullerene C60-antibodies. Sensor. Actuat. B-Chem.,2004,98:180-187.
    [68]Sun X. L., Li Z. J., Cai Y., Wei Z. L., Fang Y. J., Ren G X., Huang Y. R., Electrochemical impedance spectroscopy for analytical determination of paraquat in meconium samples using an immunosensor modified with fullerene, ferrocene and ionic liquid. Electrochim. Acta, 2011,56:1117-1122.
    [69]Rivas G. A., Rubianes M. D., Rodriguez M. C., Ferreyra N. F., Luque G. L., Pedano M. L. Miscoria S. A., Parrado C., Carbon nanotubes for electrochemical biosensing. Talanta,2007, 74:291-307.
    [70]Zheng B. Z., Xie S. P., Qian L., Yuan H. Y, Xiao D., Choi M. M. F., Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensor. Actuat. B-Chem.,2011,152:49-55.
    [71]Pauliukaite R., Murnaghan K. D., Doherty A. P., Brett C. M. A., A strategy for immobilisation of carbon nanotubes homogenised in room temperature ionic liquids on carbon electrodes. J. Electroanal. Chem.,2009,633:106-112.
    [72]Wang J., Carbon-Nanotube Based Electrochemical Biosensors:A Review. Electroanalysis, 2005,17:7-14.
    [73]Liu X Q., Shi L. H., Niu W. X., Li H. J., Xu G. B., Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens. Bioelectron.,2008,23:1887-1890.
    [74]Tlili C., Cella L. N., Myung N. V., Shetty V., Mulchandani A., Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers. Analyst,2010, 135:2637-2642.
    [75]Cella L. N., Chen W., Myung N. V., Mulchandani A., Single-Walled Carbon Nanotube-Based Chemiresistive Affinity Biosensors for Small Molecules:Ultrasensitive Glucose Detection. J. Am. Chem. Soc.,2010,132:5024-5026.
    [76]Cella L. N,, Sanchez P., Zhong W. W., Myung N. V, Chen W., Mulchandani A., Nano Aptasensor for Protective Antigen Toxin of Anthrax. Anal. Chem.,2010,82:2042-2047.
    [77]Zhou Y. G, Yang S., Qian Q. Y, Xia X. H., Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem. Commun.,2009,11:216-219.
    [78]Gouveia-Caridade C., Pauliukaite R., Brett C. M. A., Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochim, Acta,2008,53:6732-6739.
    [79]Malhotra R., Patel V, VaqueJose P. J., Gutkind S., Rusling J. F., Ultrasensitive Electrochemical Immunosensor for Oral Cancer Biomarker IL-6 Using Carbon Nanotube Forest Electrodes and Multilabel Amplification. Anal. Chem.,2010,82:3118-3123.
    [80]Kochmann S., Hirsch T., Wolfbeis O. S., Graphenes in chemical sensors and biosensors. Trends Anal. Chem.,2012,39:87-113.
    [81]Chen X., Fu C. L., Yang W. S., Graphite nanosheet-based composites for mediator-free H2O2 biosensor. Analyst,2009,134:2135-2140.
    [82]Shan C. S., Yang H. F., Han D. X., Zhang Q. X., Ivaska A., Niu L., Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron.,2010,25:1070-1074.
    [83]Du M., Yang T., Jiao K., Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/grapheme composite film.J. Mater. Chem.,2010,20:9253-9260.
    [84]Zor E., Patir I. H., Bingol H., Ersoz M., An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of D-and L-tryptophan. Biosens. Bioelectron.,2013,42: 321-325.
    [85]Yang H. W., Hua M. Y., Chen S. L., Tsai R. Y., Reusable sensor based on high magnetization carboxyl-modified grapheme oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection. Biosens. Bioelectron.,2013,41:172-179.
    [86]Wei Q., Zhao Y. F., Du B., Wu D., Li H., Yang M. H., Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem.,2012,134: 1601-1606.
    [87]Hu X, W., Mao C. J., Song J. M., Niu H. L., Zhang S. Y., Huang H. P., Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor. Biosens. Bioelectron.,2013,41:372-378.
    [88]Wang L., Xu M., Han L., Zhou M., Zhu C. Z., Dong S. J., Graphene Enhanced Electron Transfer at Aptamer Modified Electrode and Its Application in Biosensing. Anal. Chem.,2012, 84:7301-7307.
    [89]Pei H., Li J., Lv M, Wang J.Y., Gao J. M., Lu J. X., Li Y. P., Huang Q., Hu J., Fan C. H., A Graphene-Based Sensor Array for High-Precision and Adaptive Target Identification with Ensemble Aptamers. J. Am. Chem. Soc,2012,134:13843-13849.
    [90]Sun W., Guo Y. Q., Ju X. M., Zhang Y. Y., Wang X. Z., Sun Z. F., Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis. Biosens. Bioelectron.,2013,42:207-213.
    [91]Liu S., Xing X. R., Yu J. H., Lian W. J., Li J., Cui M., Huang J. D., A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens. Bioelectron.,2012,36:186-191.
    [92]Gao W. H., Chen Y. S., Xi J., Lin S. Y., Chen Y. W., Lin Y. J., Chen Z. G., A novel electrochemiluminescence ethanol biosensor based on tris(2,20-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film. Biosens. Bioelectron.,2013,41:776-782.
    [93]Shchipunov Y, Bionanocomposites:Green sustainable materials for the near future. Pure Appl. Chem.,2012,84:2579-2607.
    [94]Qi X. W., Gao H. W., Zhang Y. Y, Wang X. Z., Chen Y, Sun W., Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry,2012,88:42-47.
    [95]Incani V., Danumah C, Boluk Y., Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose,2013,20:191-200.
    [96]Li S. J, Shi Y. F., Liu L., Song L. X., Pang H., Du J. M., Electrostatic self-assembly for preparation of sulfonated graphene/gold nanoparticle hybrids and their application for hydrogen peroxide sensing. Electrochim. Acta,2012,85:628-635.
    [97]Zhou L. T.,, Li R. Y, Li Z. J., Xia Q. F., Fang Y. J., Liu J. K., An immunosensor for ultrasensitive detection of aflatoxin Bl with an enhancedlectrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensor. Actuat. B-Chem.,2012,174:359-365.
    [98]Tiwaria I., Gupta M., Sinha P., Aggarwal S. K., Electro-oxidation of phenyl hydrazine on a modified electrode constructed using nanocomposite of ruthenium terpyridyl complex, multiwalled carbon nanotubes and nafion. Electrochim. Acta,2012,76:106-111.
    [99]Sun W., Guo Y. Q., Li T. T., Ju X. M., Lou J., Chengxiang Ruan, Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode. Electrochim. Acta,2012,75:381-386.
    [100]Farahani R. D., Dalir H., Borgne V. L., Gautier L. A., Khakani M. A. E., Levesque M., Therriault D., Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin-streptavidin interactions. Compos. Sci. Technol.,2012,72:1387-1395.
    [101]Xu M., Cui L., Han R., Ai S., Amperometric biosensor based on hemoglobin immobilized on Cu2S nanorods/naflon nanocomposite film for the determination of polyphenols. J Solid State Electr.,2012,16:2547-2554.
    [102]Ruana C.X., Li T. T., Niu Q. J., Lu M., Lou J., Gao W. M., Sun W., Electrochemical myoglobin biosensor based on graphene-ionic liquid-chitosan bionanocomposites:Direct electrochemistry and electrocatalysis. Electrochim. Acta,2012,64:183-189.
    [103]Chang J. B., Mao S., Zhang Y., Cui S.m., Steeber D. A., Chen J.h., Single-walled carbon nanotube field-effect transistors with grapheme oxide passivation for fast, sensitive, and selective protein detection. Biosens. Bioelectron.,2013,42:186-192.
    [104]Mao K. X., Wu D., Li Y, Ma H. M., Ni Z. Z., Yu H. Q., Luo C. N., Wei Q., Du B., Label-free electrochemical immunosensor based on graphene/methylene blue Nanocomposite. Anal. Biochem.,2012,422:22-27.
    [105]Kim J. M., Schrnid R. D., Comparaison of penicillium-anagasakiense glucose-oxidase purified as glycol-proteins and aglyco-proteins. FEMS Microbiol. Lett.,1991,78:221-226.
    [106]Wilson R., Glucose oxidase:an ideal enzyme. Biosens. Bioelectron.,1992,7:165-185.
    [107]Saei A. A., Najafi-Marandi P., Abhari A., Guardia M., Dolatabadi J. E. N., Electrochemical biosensors for glucose based on metal nanoparticles. Trends Anal. Chem.,2013,42:16-227.
    [108]Fang Y, Ni Y. L., Zhang G. H., Mao C., Huang X. H., Shen J., Biocompatibility of CS-PPy nanocomposites and their application to glucose biosensor. Bioelectrochemistry,2012,88: 1-7.
    [109]Li H., Huan X. W., Lu J. L., Sun F., Yi F. Y, Wang Y, Tang Y. W., A Novel Glucose Biosensor Fabricated with Electroactive Nb0.95Ti0.95O4 Nano-Composite Film. Int. J. Electrochem. Sci.,2012,7:9354-9365.
    [110]Zhou X. M., Nie H. G., Yao Z., Dong Y. Q., Yang Z., Huang S. M., Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sensor. Actuat. B-Chem.,2012,168:1-7.
    [111]Chen W., Ding Y., Akhigbe J., Bruckner C., Li C. M., Lei Y, Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Biosens. Bioelectron.,2010,26:504-510.
    [112]Ghica M. E., Brett C. M. A., A glucose biosensor using methyl viologen redox mediator on carbon film electrodes. Anal. Chim. Acta,2005,532:145-151.
    [113]Kayakin A. A., Gitelmacher O. V., Kayakina E. E., Prussian Blue-Based First-Generation Biosensor:A Sensitive Amperometric Electrode for Glucose. Anal. Chem.,1995,67: 2419-2423.
    [114]Kotanen C. N., Tlili C, Guiseppi-Elie A., Amperometric glucose biosensor based on electroconductive hydrogels. Talanta,2013,103:228-235.
    [115]Xiao X. L., Zhou B., Zhu L., Xu L. L., Tan L., Tang H., Zhang Y. Y, Xie Q. J., Yao S. Z., An reagentless glucose biosensor based on direct electrochemistry of glucose xidase immobilized on poly(methylene blue) doped silica nanocomposites. Sensor. Actuat. B-Chem., 2012,165:126-132.
    [116]Garjonyte R., Malinauskas A., Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly (o-phenylenediamine) films on a Prussian Blue-modified electrode. Sensor. Actuat. B-Chem.,2000,63:122-128.
    [117]Liang R.P., Chen Y.X., Qiu J.D., A sensitive amperometric immunosensor for hepatitis B surface antigen based on biocompatible redox-active chitosan-toluidine blue/gold nanoparticles composite film. Anal. Methods,2011,3:1338-1343.
    [118]Song Z.J., Yuan R., Chai Y.Q., Wang J.F., Che X., Dual amplification strategy for the fabrication of highly sensitive amperometric immunosensor based on nanocomposite functionalized interface. Sensor. Actuat. B-Chem.,2010,145:817-825.
    [119]Rahman M. A., Kumar P., Park D., Shim Y, Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors,2008,8:118-141.
    [120]Qiu C. C, Wang X., Liu X. Y, Hou S. F., Ma H. Y, Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim. Acta,2012,67:140-146.
    [121]Yehezkeli O., Raichlin S., Tel-Vered R., Kesselman E., Danino, D., Willner I., Biocatalytic Implant of Pt Nanoclusters into Glucose Oxidase:A Method to Electrically Wire the Enzyme and toTransform It from an Oxidase to a Hydrogenase.J. Phys. Chem. Lett.,2010, 1:2816-2819.
    [122]Han M., Liu S. L., Bao J. C., Dai Z. H., Pd nanoparticle assemblies-As the substitute of HRP, in their biosensing applications for H2O2 and glucose." Biosens. Bioelectron.,2012,31: 151-156.
    [123]Zhang J., Ding N.N., Cao J.Y., Wang W.C., Chen Z.D., In situ synthesis of palladium nanoparticle—graphene nanohybrids and their application in nonenzymatic glucose biosensors. Sensor. Actuat. B-Chem.,2013,178:125-131.
    [124]Wang Y. L., Zhu Y. C., Chen J. J., Zeng Y., Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode. Nanoscale,2012,4:6025-6031.
    [125]蔡称心,陈静,陆天虹.碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移.中国科学:B,2003,33:511-518.
    [126]Shan C. S., Yang H. F., Song J. F., Han D. X., Ivaska A., Niu L., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem.,2009,81: 2378-2382
    [127]Liang B., Fang L., Yang G, Hu Y. C., Guo X. S., Ye X. S., Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl grapheme. Biosens. Bioelectron.,2013,43:131-136.
    [128]Wang C. Y., Chen S. H., Xiang Y., Li W. J., Zhong X., Che X., Li J. J., Glucose biosensor based on the highly efficient immobilization of glucose oxidase on Prussian blue-gold nanocomposite films. J. Mol. Catal. B-Enzym.,2011,69:1-7.
    [129]Luo Z. M., Yuwen L. H., Han Y. J., Tian J., Zhu X. R., Weng L. X., Wang L. H., Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosens. Bioelectron.,2012,36: 179-185.
    [130]Yua S. J., Peng X., Cao G. Z., Zhou M., Qiao L., Yao J. Y, He H. C., Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta, 2012,76:512-517.
    [131]Luo J., Zhang H. Y, Jiang S. S., Jiang J. Q., Liu X. Y, Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and grapheme. Microchim Acta,2012,177:485-490.
    [132]Dung N. Q., Patil D., Jung H., Kim D. J., A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites. Biosens. Bioelectron.,2013,42:280-286.
    [133]Xiao F., Li Y. Q., Gao H. C., Ge S. B., Duan H. W., Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens. Bioelectron.,2013,41:417-423.
    [134]Luo L. Q., Li F., Zhua L. M., Ding Y. P., Zhang Z., Deng D. M., Lu B., Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloid. Surface B,2013,102:307-311.
    [135]Wang G. F., He X. P., Wang L. L., Gu A. X., Huang Y., Fang B., Geng B. Y., Zhang X. J., Non-enzymatic electrochemical sensing of glucose. Microchim Acta,2013,180:161-186.
    [136]Bo X. J., Ndamanisha J. C., Bai J., Guo L.P., Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta,2010,82:85-91.
    [137]Lee Y. J., Park J. Y., A coral-like macroporous gold-platinum hybrid 3D electrode for enzyme-free glucose detection. Sensor. Actuat. B-Chem.,2011,155:134-139.
    [138]Knight A. W., A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trends Anal. Chem.,1999,18:47-62.
    [139]Yang H., Li X. C., Yang F., J. Feng, Lin M. Y., Chen Z. G., Electrochemiluminescence detection system for microchip capillary electrophoresis and its application to pharmaceutical analysis. Microchim Acta,2011,175:193-199.
    [140]Qiu B., Xue L. L., Wu Y. P., Lin Z. Y, Guo L. H., Chen G. N., Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)32+electrochemiluminescence and its application for sensitive determination ofsome inorganic oxidants. Talanta,2011,85:339-344.
    [141]Nepomnyashchii A, B., BrOring M., Ahrens J., Bard A. J., Chemical and Electrochemical Dimerization of BODIPY Compounds:Electrogenerated Chemiluminescent Detection of Dimer Formation.J. Am. Chem. Soc.,2011,133:19498-19504.
    [142]Zhang J. R., Chen J. A., Liu Z. M., Progresss of Electrochemiluminescence Immunoassay Technology. Chinese J. Anal. Chem.,2010,38:1219-1226
    [143]Xu K., Huang J. R., Ye Z. Z., Ying Y. B., Li Y. B., Recent Development of Nano-Materials Used in DNA Biosensors. Sensors,2009,9:5534-5557.
    [144]Chen X. M, Su B. Y, Song X. H., Chen Q. A., Chen X., Wang X. R., Recent advances in electrochemiluminescent enzyme biosensors. Trends Anal. Chem.,2011,30:665-676.
    [145]Fahnrich K. A., Pravda M., Guilbault G. G., Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54:531-559.
    [146]Jirka G. P., Martin A. F., Nieman T. A., pH and concentration response surfaces for the luminol-H2O2 electrogenerated chemiluminescence reaction. Anal. Chim. Acta,1993,284: 345-349.
    [147]Li G X., Lian J. L., Zheng X. W., Cao J., Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol-aniline) nanowires composite modified electrode. Biosens. Bioelectron.,2010,26:643-648.
    [148]Qi H. L., Peng Y, Gao Q., Zhang C. X., Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors,2009,9:674-695.
    [149]Deng S. Y., Ju H. X., Electrogenerated chemiluminescence ofnanomaterials for bioanalysis. Analyst,2013,138:43-61.
    [150]Liu X. Q., Niu W. X., Li H. J., Han S., Hu L. Z., Xu G. B., Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network. Electrochem. Commun.,2008,10:1250-1253.
    [151]Haghighi B., Bozorgzadeh S., Gorton L., Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes. Sensor. Actuat. B-Chem.,2011,155:577-583.
    [152]Schultz J.S., Mansouri S., Goldstein I.J., Affinity sensor:a new technique for developing implantable sensors for glucose and other metabolites. Diab. Care,1982,5:245-253.
    [153]Garjonyte R., Malinauskas A., Amperometric glucose biosensors based on Prussian blue and polyaniline glucose oxidase modified electrodes. Biosens. Bioelectron.,2000,15:445-451.
    [154]Zhao W., Xu J.J., Shi C.G., Chen H.Y., Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian Blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir,2005,21:9630-9634.
    [155]Kang X.H., Wang J., Wu H., Aksay I.A., Liu J., Lin Y.H., Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron., 2009,25:901-905.
    [156]Shi W.T.,Ma Zh F., Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens. Bioelectron.,2010,26: 1098-1103.
    [157]Li W.J., Yuan R., Chai Y.Q., Determination of glucose using pseudobienzyme channeling based on sugar-lectinbiospecific interactions in a novel organic-inorganic composite matrix. J. Phys. Chem. C,2010,114:21397-21404.
    [158]Lu L.M., Li H.B., Qu F.L., Zhang X.B., Shen GL., R.Q. Yu, In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens. Bioelectron.,2011,26:3500-3504.
    [159]Novoselov K.S., Jiang Z., Zhang Y, Morozov S.V., Stormer H.L., Zeitler U., Maan J.C., Boebinger GS., Kim P., Geim A.K., Room-temperature quantum hall effect in graphene. Science,2007,315:1379.
    [160]Geng J.X., Jung H.T., Porphyrin functionalized graphene sheets in aqueous suspensions:from the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C, 2010,114:8227-8234.
    [161]Xu C., Wang X., Zhu J.W., Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008, 112:19841-19845.
    [162]Zhao Y.F., Wei Q., Xu C.X., Li H., Wu D., Cai Y.Y., Mao K.X., Cui Zh T., Du B., Label-free electrochemical immunosensor for sensitive detection of kanamycin. Sensor. Actual. B-Chem., 2011,155:618-625.
    [163]Yang S.B., Feng X.L., Wang L., Tang K., Maier J., Miillen K., Graphene-based nanosheets with a sandwich structure. Angew. Chem. Int. Ed.,2010,49:4795-4799.
    [164]Yang H.F., Shan Ch S., Li F.H., Han D.X., Zhang Q.X., Niu L., Covalent functionalization of polydisperse chemically-converted grapheme sheets with amine-terminated ionic liquid. Chem. Commun.,2009,45:880-3882.
    [165]Sun C.L., Lee H.H., Yang J.M., Wu C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron.,2011,26:3450-3455.
    [166]Wang Y., Shao Y.Y., Matson D.W., Li J.H., Lin Y.H., Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano,2010,4:1790-1798.
    [167]Liu S., Wang J.Q., Zeng J., Ou J.F., Li Z.P., Liu X.H., Sh R., Yang, Green electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Power Sources,2010,195:4628-4633.
    [168]Zhou K.F., Zhu Y.H., Yang X.L., Luo J., Li Ch Zh, Luan Sh R., A novel hydrogen peroxide biosensor based on Au-grapheme-HRP-chitosan biocomposites. Electrochim. Acta,2010,55: 3055-3060.
    [169]Feng X.M., Li R.M., Hu Ch H., Hou W.H., Direct electron transfer and electrocatalysis of hemoglobin immobilized on grapheme-Pt nanocomposite. J. Electroanal.Chem.,2011,657: 28-33.
    [170]Subrahmanyam K.S., Manna A.K., Pati S.K., Rao C.N.R., A study of graphene decorated with metal nanoparticles. Chem. Phys. Lett.,2010,497:70-75.
    [171]Wu J.L., Bai S., Shen X.P., Jiang L., Preparation and characterization of graphene/CdS nanocomposites. Appl. Surf. Sci.,2010,257:747-751.
    [172]Yu A.P., Sy A., Davies A., Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor. Synthtic Met.,2011,161:2049-2054.
    [173]Wu J.L., Shen X.P., Jiang L., Wang K., Chen K.M., Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposite. Appl. Surf. Sci.,2010,256: 2826-2830.
    [174]Fan Y, Lu H.T., Liu J.H., Yang Ch P., Jing Q. Sh, Zhang Y.X., Yang X.K., Huang K.J., Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloid. Surface. B,2011,83:78-82.
    [175]Jin E., Lu X.F., Cui L.L., Chao D.M., Wang C., Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim. Acta,2010, 55:7230-7234.
    [176]Du M., Yang T., Ma S.Y., Zhao Ch, Zh, Jiao K., Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement:comparison of different carbon electrodes. Anal. Chim.Acta,2011,690:169-174.
    [177]Cataldo F., Compagnini G., Patanee G, Ursini O., Angelini G, Ribic P.R., Margaritondo G, Cricenti A., Palleschi G, Valentini F., Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon,2010,48:2596-2602.
    [178]Zhou X.S., Wu T.B., Hu BJ., Yang GY., Han B.X., Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun.,2010,46: 3663-3665.
    [179]Karyakin A.A., Karyakina E.E., Prussian Blue-based'artificial peroxidase'as a transducer for hydrogen peroxide detection Application to biosensors. Sens. Actuators B,1999,57:268-273.
    [180]Che X., Yuan R., Chai Y.Q., Li J.J., Song Zh J., Li W.J., Amperometric glucose biosensor based on Prussian blue-multiwall carbon nanotubes composite and hollow PtCo nanochains. Electrochim. Acta,2010,55:5420-5427.
    [181]Chen S.H., R. Yuan, Chai Y.Q., Xu Y., Min L.G., N. Li, A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sensor. Actuat. B-Chem.,2008,135:236-244.
    [182]Wang X.Y., Gu H.F., Yin F., Tu Y.F., A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens. Bioelectron.,2009,24:1527-1530.
    [183]Wen Zh.Zh, Niemeyer B., Evaluation of two different Concanavalin A affinity adsorbents for the adsorption of glucose oxidase.J. Chromatogr. B,2007,857:N149-157.
    [184]Liu S.Q., Wang K.W., Du D., Sun Y.M., He L., Recognition of glycoprotein peroxidase via Con A-carrying self-assembly layer on gold. Biomacromolecules,2007,8:2142-2148.
    [185]Zhang X.Z., Jiao K., Piao G, Liu S.F., Li S.X., Voltammetric study of fullerene C6o and fullerene C60 nanotubes with sandwich method. Synth. Met.,2009,159:419-423.
    [186]Kuciauskas D., Lin S., Seely G R., Moore A.L., Moore T.A., Gust D., Energy and Photoinduced Electron Transfer in Porphyrin-Fullerene Dyads.J. Phys. Chem.,1996,100: 15926-15932.
    [187]Sarkis GY., Radwan T.N., Electron donor-acceptor complexes of some pyridines and quinolines NMR spectroscopy. J. Indian Chem. Soc,1973,50:521-522.
    [188]Li GB., Han Z., Piao GZ., Zhao J., Li S.X., Liu G.Y., To distinguish fullerene C60 nanotubes and C60 nanowhiskers using Raman spectroscopy. Materi. Sci. Engin. B,2009,163:161-164.
    [189]Qu Y.T., Liang S.C., Zou K., Li S.X., Liu L.M., Zhao J., Piao GZ., Effect of solvent type on the formation of tubular fullerene nanofibers. Materi. Lett.,2011,65:562-564.
    [190]Noel J.M., Yu Y, Mirkin M. V., Dissolution of Pt at Moderately Negative Potentials during Oxygen Reduction in Water and Organic Media. Langmuir,2013,29:1346-1350.
    [191]Li J., Xie H.Q., Enhanced electrocatalytic oxidation of hydroxylamine on Pt/polypyrrole composite modified glassy carbon electrode. Ionics,2013,19:105-112.
    [192]Lu H.T., Yu S., Fan Y., Yang C.P., Xu D.L., Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloid. Surface. B,2012, 101:106-110.
    [193]Chen T.Y., Chen I.L., Liu Y.T., Lin T.L., Yang P.W., Wu C.Y., Hu C.C., Luo T. M., Lee C.H., Core-dependent growth of platinum shell nanocrystals and their electrochemical characteristics for fuel cells. Cryst. Eng. Comm.,2013,15:982-994.
    [194]Yu Y.Y, Yang Y, Gu H., Zhou T.S, Shi G.Y, Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens. Bioeleciron.,2013,41:511-518.
    [195]Shi J., Zhang H.Y., Snyder A.., Wang M.X., Xie J., Porterfield D. M., Stanciu L. A., An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide andPt-black. Biosens. Bioelectron.,2012,38:314-320.
    [196]Dong X.Y., Mi X.N., Zhang L., Liang T.M., Xu J.J., Chen H.Y., DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis. Biosens. Bioelectron.,2012,38:337-341.
    [197]Li G.B., Liu P., Han Z., Piao G.Z., Zhao J., Li S.X., Liu GY, A novel approach to fabrication of fullerene C60 nanotubes:Using C6o-pyridine colloid as a precursor. Mater. Lett.,2010,64: 483-485.
    [198]Li C.Z., Yip H.L., Jen A.K.Y., Functional fullerenes for organic photovoltaics. J. Mater. Chem., 2012,22:4161-4177.
    [199]Banerji N., Wang M.F., Fan J., Chesnut E.S., Wudl F. and Moser Jacques-E. Sensitization of fullerenes by covalent attachment of a diketopyrrolopyrrole chromophore. J. Mater. Chem., 2012,22:13286-13294.
    [200]Lopez A.L., Mateo-Alonso A., Prato M., Materials chemistry of fullerene C6o derivatives. J. Mater. Chem.,2011,21:1305-1318.
    [201]Diao H.P., Feng L.H.. Synthesis and photophysical processes of an anthracene derivative containing hole transfer groups. Spectrochimi. Acta A,2011,78:294-297.
    [202]Sharma G.D., Mikroyannidis J.A., Sharma S.S., Thomas K.R.J. Dyes Pigments,2011,94: 320-329.
    [203]Yang L., Zhang L.J., Webster T.J., Nanodiamonds for nanomedicine. Nanomedicine,2011,6: 1231-1244.
    [204]Wei Z.L., Li Z.J., Sun X.L., Fang Y,J., Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. Biosens. Bioelectron.,2010,25:1434-1438.
    [205]Kumar A., Menon S.K., Fullerene-ferrocene dyad linked by rigid bilinkage:synthesis, photophysical properties and application as copper ion sensor. J. Physi. Orga. Chem.,2009,22: 661-669.
    [206]Brust M., Kiely C.J., Bethell D., Schiffrin D J., C60 mediated aggregation of gold nanoparticles. J. Am. Chem. Soc.,1998,120:12367-12368.
    [207]Liu W., Gao X., C60 trianion-mediated electrocatalysis and amperometric sensing of hydrogen peroxide. Electrochem.Commun.,2008,10:1377-1380.
    [208]Szucs A., Loix A., Nagy J.B.,Lamberts L. Fullerene film electrodes in aqueous solutions Part 1. preparation and electrochemical characterization. J. Electroanal. Chem.,1995,397:191-203.
    [209]Szucs A., Loix, A., Nagy J.B., Lamberts L., Fullerene film electrodes in aqueous solutions Part 2. effects of doping cations. J. Electroanal. Chem.,1996,402:137-148.
    [210]Nakanishi T., Ohwaki H., Tanaka H., Hiroto M., Takamasa S., and Naotoshi N., Electrochemical and chemical reduction of fullerenes C60 and C70 embedded in cast films of artificial lipids in aqueous media. J. Phys. Chem. B,2004,108:7754-7762.
    [211]Maria C. Dalfovo, Roberto C. Salvarezza, Francisco J. Ibanez., Improved vapor selectivity and stability of localized surface plasmon resonance with a surfactant-coated Au nanoparticles film. Anal. Chem.,2012,84:4886-4892.
    [212]Newman J.D.S., Blanchard GJ.. Formation of gold nanoparticles using amine reducing agents. Langmuir,2006,22:5882-5887.
    [213]Kanehara M., Sakurai J., Sugimura H., Teranishi T., Room-temperature size evolution of thiol-protected gold nanoparticles assisted by proton acids and halogen anions.J.Am. Chem. Soc,2009,131:1630-1631.
    [214]Fink J., Kiely C. J., Bethell D.and Schiffrin D. J., Self-organization of nanosized gold particles. Chem. Mater.,1998,10:922-926.
    [215]John S. A., Sagara T.. Short-time preparation and electrochemical properties of a single layer of tetraoctylammonium bromide capped Au nanoparticles on dithiol self-assembled monolayer-modifiedAuelectrode.J. Electroanal. Chem.,2009,633:175-181.
    [216]Lin Y., Skaff H., Emrick T. and Russell T. P., Nanoparticle assembly and transport at liquid-liquid interfaces. Science,2003,299:226-229.
    [217]Uthirakumar P., Hong C.H., Suh E.K., LeeY., Yellow light-emitting polymer bearing fluorescein dye units:Photophysical property and application as luminescence converter of a hybrid LED. React. Funct. Polym.,2007,67:341-347.
    [218]Li Y.J., Gan Z.H., Wang N., He X., Li YL., Wang S., Liu H., Araki Y, Ito O., Zhu D., Synthesis and characterization of porphyrin-ferrocene-fullerene triads. Tetrahedron,2006,62: 4285-4293.
    [219]Bai Z.Y., Yang L., Guo Y.M., Zheng Z.,Hu C, Xu P.. High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation. Chem.Commun.,2011,47: 1752-1754.
    [220]Ren Y.P., Paira P., Nayak T.R., Ang W.H., Pastorin G., Synthesis of fullerene@gold core-shell nanostructures. Chem. Commun.,2011,47:7710-7712.
    [221]Konstantinos K., Tatiana D. R., Maurizio P., Bensasson R.V, Leach S., Absorption spectra of the mono-adduct and eight bis-adduct regioisomers of pyrrolidine derivatives of C60.Chem. Physi.,2003,293:263-280.
    [222]Feng M., Zhao J.,and H. Petek., Atomlike hollow-core-bound molecular orbitals of C60-Science,2008,320:359-362.
    [223]Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F. and Smalley R. E., C60: buckminsterfullerene. Nature,1985,318:162-163.
    [224]Tourney C., Elegance and empiricism. Nat. Nanotechnol.,2010,5:693-694.
    [225]Prato M., Fullerene chemistry for materials science applications. J. Mater. Chem.,1997,7: 1097-1109.
    [226]Bonifazi D., Enger O. and Diederich F., Supramolecular [60]fullerene chemistry on surfaces. Chem. Soc. Rev.,2007,36:390-414.
    [227]Zhang Y, Liu W., Gao X., Zhao Y L., Zheng M., Li F. F. and. Ye D. L., The first synthesis of a water-soluble a-cyclodextrin/C60 supramolecular complex using anionic C6o as a building block. Tetrahedron Lett.,2006,47:8571-8574.
    [228]Wakai H., Momoi T., Shinno T., Yamaudhi T. and Tsubokawa N., A novel polymer-grafted C60 fullerene having both hydrophilic and hydrophobic chains. Mater. Chem. Phys.,2009,118: 142-147.
    [229]Xiao S. Q., Li Y. J., Li Y. L., Liu H. B., Li H. M., Zhuang J. P., Liu Y., Lu F. S., Zhang D. Q. and Zhu D. B., Easy access to N-alkylation of N-unsubstituted [60]fulleropyrrolidines: reductive amination using sodium triacetoxyborohydride. Tetrahedron Lett.,2004,45: 3975-3978.
    [230]Krishna V., Noguchi N., Koopman B. and Moudgil B., Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. Colloid. Interface.B,2006,304:166-171.
    [231]Benyamini H., Shulman-Peleg A., Wolfson H. J., Belgorodsky B., Fadeev L. and Gozin M., Interaction of C60-fullerene and carboxyfullerene with proteins:docking and binding site alignment. Bioconjugate Chem.,2006,17:378-386.
    [232]Plonska M., Winkler K., Gadde S., D'Souza F. and Balchc A. L., Redox active two-component films of palladium and covalently linked zinc porphyrin-fullerene dyad. Electroanalysis,2006, 18:841-848.
    [233]Yang S. Y, Zhang G. X., Zhang D. Q., Xiang J. F., Yang G. and Zhu D. B., Self-assembly of a new C60 compound with a L-glutamid-derived lipid unit:formation of organogels and hierarchically structured spherical particles. Soft Matter,2011,7:3592-3598.
    [234]Guldi D. M., Aminur Rahman G M., Sgobba V. and Ehli C., Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem. Soc. Rev.,2006,35:471-487.
    [235]Chang H. W. and Shih J. S., Surface acoustic wave immunosensors based on immobilized C60-proteins. Sensor. Actuat. B-Chem.,2007,121:522-529.
    [236]Lee G H., Shim J. H., Kang H., Nam K. M., Song H. And Park J. T., Monodisperse Pt and PtRu/C60 hybrid nanoparticles for fuel cell anode catalysts. Chem. Commun.,2009: 5036-5038.
    [237]Goyal R. N.,Gupta V. K. and Chatterjee S., Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens. Bioelectron.,2009,24:1649-1654.
    [238]Stoilova O., Je'ro'me C., Detrembleur C., Mouithys-Mickalad A., Manolova N., Rashkov I. and Je'ro'me R., New nanostructured materials based on fullerene and biodegradable polyesters. Chem. Mater.,2006,18:4917-4923.
    [239]E Y. F., Bai L. L., Fan L. Z., Han M., Zhang X. Y. and S. H. Yang, Electrochemically generated fluorescent fullerene[60] nanoparticles as a new and viable bioimaging platform. J. Mater. Chem.,2011,21:819-823.
    [240]Graja A., Olejniczak I., Bogucki A., Bonifazi D. and Diederich F., Chromophoric interactions in [60]fullerene-porphyrin dyads investigated by solid-state UV-Vis and IR spectroscopies. Chem. Phys.,2004,300:227-232.
    [241]Joo S., Park S., Chung T.D. and Kim H.C., Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal. Sci,2007,23: 277-281.
    [242]Chen X., Pan H., Liu H. and Du M., Nonenzymatic glucose sensor based on fiower-shaped Au@Pd core-shell nanoparticles—ionic liquids composite film modified glassy carbon electrodes. Electrochim. Acta,2010,56:636-643.
    [243]Yuan J.H., Wang K. and Xia X.H., Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Fund. Mater.,2005,15:803-809.
    [244]Wang Y.L., Zhang D.D., Zhang W.W., Gao F. and Wang L., A facile strategy for nonenzymatic glucose detection. Anal. Biochem.,2009,385:184-186.
    [245]Bai Y., Sun Y.Y. and Sun C.Q., Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosen. Bioelectron.,2008,24:579-585.
    [246]Zhu H., Lu X.Q., Li M.X., Shao Y. H. and Zhu Z.W., Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta, 2009,79:1446-1453.
    [247]Ndamanisha J. Ch. and Guo L.P., Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry,2009,77:60-63.
    [248]Dai H., Wu X., Xu H.F., Wang Y.M.,Chi Y.W., Chen G.N., A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode. Electrochim. Acta,2009,54:4582-4586.
    [249]Zhao Z., Zhou X.M., Xing D., Highly sensitive protein kinase activity assay based on electrochemiluminescence nanoprobes. Biosens. Bioelectron.,2012,31:299-304.
    [250]Zhang M.H., Yuan R., Chai Y.Q.,Chen S.H., Zhong H.A., Wang C., Cheng Y.F.,A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens. Bioelectron.,2012,32:288-292.
    [251]Dai H., Chi Y.W., Wu X.P., Wang Y.M., Wei M.D., Chen G.N., Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron.,2010,25:1414-1419.
    [252]Albrecht H.O.. Uber die Chemiluminescenz des aminophthalsaurehydrazids. Z. Phys. Chem, 1928,136:321-330.
    [253]Qiu B., Lin Z.Y., Wang J., Chen Z.H., Chen J.H., Chen G.N., An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta,2009,78:76-80.
    [254]Ren T., Xu J.Z., Tu Y.F., Xu S., Zhu J.J., Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem. Commun.,2005,7:5-9.
    [255]Chen X.M., Lin Z.J., Cai Z.M., Chen X., Oyama M., Wang X.R., Electrochemiluminescence of Luminol on a Platinum-Nanoparticle-Modified Indium Tin Oxide Electrode in Neutral Aqueous Solution. J. Nanosci. Nanotechno.,2009,9:2413-2420.
    [256]Haghighi B., Bozorgzadeh S., Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles:A novel route for the fabrication of an oxygen sensor and a glucose biosensor. Anal. Chim. Acta,2011,697:90-97.
    [257]Li Q., Zheng J.Y., Yan Y.L., Zhao Y.S., Yao J.N., Electrogenerated chemiluminescence of metal-organic complex nanowires:reduced graphene oxide enhancement and biosensing application. Adv. Mater.,2012,24:4745-4749.
    [258]Ding S.N., Gao B.H., Shan D., Sun Y.M., Cosnier S., TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. Biosens. Bioelectron.,2013,39:342-345.
    [259]Cui R., Gu Y.P., Bao L., Zhao J.Y., Qi B.P., Zhang Z.L., Xie Z.X., Pang D.W., Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal. Chem.,2012,84:8932-8935.
    [260]Tian D.Y., Duan C.F., Wang W., Cui H., Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosens. Bioelectron.,2010,25:2290-2295.
    [261]Dong Y.P., Cui H., Xu Y., Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes. Langmuir,2007,23:523-529.
    [262]Cao Y.L., Yuan R., Chai Y.Q., Mao L., Niu H., ZhuO Y., Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling. Biosens. Bioelectron.,2012,31:305-309.
    [263]Lei R., Wang X.Y., Zhu S.F., Li N., A novel electrochemiluminescence glucose biosensor based on alcohol-free mesoporous molecular sieve silica modified electrode. Sensor. Actuat. B-Chem.,2011,158:124-129.
    [264]Manna A., Imae T., Yogo T., Aoi K., Okazald M., Synthesis of gold nanoparticles in a winsor II type microemulsion and their characterization. Colloid. Interface. B,2002,256:297-303.
    [265]Kumar R., Maitra A.N., Patanjali P.K., Sharma P.. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials,2005,26:6743-6753.
    [266]Zhou J., Ren F., Wu W., Zhang S.F., Xiao X.H., Xu J.X., Jiang C.Z.. Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites. Colloid. Interface. B,2012,387:47-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700