用户名: 密码: 验证码:
防热复合材料烧蚀行为的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防热复合材料具有优良的高温性能,在高温烧蚀环境下可以通过自身发生烧蚀带走大量热量,减小了热量向结构内部的传递,从而有效的保护了内部结构,起到了热防护的作用。因此在工程应用领域对防热复合材料烧蚀行为进行研究具有重要的应用价值。
     防热复合材料在高温、高焓、高压的烧蚀环境中会发生一系列物理化学反应,从而发生质量损失引起材料的烧蚀。可以通过对复合材料热化学烧蚀机理进行分析,耦合能量守恒原理、质量守恒原理和热化学反应平衡原理建立复合材料的热化学烧蚀模型。材料烧蚀过程中存在一个随烧蚀时间移动的边界,需要对烧蚀移动边界条件下防热复合材料的温度场进行求解。
     有限元数值模拟方法是解决复杂工程问题中最常用的方法,且目前针对不同的工程应用问题已经开发出了各类有限元计算软件。另外,有限元数值分析软件在对研究问题进行数值计算分析时,还提供了强大的后处理功能,可以方便的对计算模型进行分析和探讨。本文研究工作中,通过有限元数值计算软件对不同的防热复合材料建立了烧蚀模型,并对结构划分了有限元网格,对有限元数值计算结果进行了研究和分析。
     在高温环境下防热复合材料会发生热化学烧蚀,在热化学烧蚀作用下防热复合材料会发生一系列物理化学变化。运用化学平衡原理对碳基复合材料在高温条件下发生的热化学反应进行了数值计算,对其在不同表面温度下烧蚀产物分布进行了分析。采用有限元数值模拟方法对不同工况下碳/碳复合材料热化学烧蚀作用下的温度场进行了计算和分析。碳基复合材料在高温环境下会与空气组元发生化学反应,主要包括碳的氧化反应、碳的升华反应以及碳氮反应等。对碳/碳复合材料在烧蚀作用下的温度场进行了数值分析。通过热化学烧蚀原理和表面能量平衡计算了烧蚀表面的热流,耦合复合材料内部热传导方程对其温度场进行了计算和分析。对高温环境下烧蚀表面的退缩进行了数值仿真,计算了烧蚀移动边界条件下碳/碳复合材料的温度场分布。
     通过对热化学烧蚀机理的分析,利用有限元方法分析了热化学烧蚀、烧蚀表面退缩及温度场耦合作用下C/C复合材料的烧蚀性能变化规律。采用虚拟失效、重新构建网格部件的方法实现烧蚀表面的退缩,建立了烧蚀表面退缩下瞬态温度场的有限元模型。运用热化学烧蚀理论求解了进入材料内部的净热流和烧蚀率。烧蚀表面退缩后变得不规则,通过编程校正了重新加载热流时不规则表面出现局部热流偏大的现象。研究结果表明,随着烧蚀时间的增加,进入材料内部的热流达到动态的平衡,材料的烧蚀是多种因素综合作用的结果,通过耦合计算可以真实反映材料的烧蚀特性。
     为了揭示在表面烧蚀条件下防热复合材料内部发生碳化时的详细响应,通过有限元数值计算方法对某碳/酚醛复合材料的碳化烧蚀过程进行了数值分析。应用ALE(Arbitrary Lagrange-Euler)动网格方法实现了材料发生表面烧蚀时的边界退缩,并用Arrhenius定律对烧蚀过程中材料内部的热分解进行了建模。耦合计算了材料发生烧蚀时内部热解反应,温度场分布,碳层及物性参数的变化。研究结果表明,烧蚀过程中,材料的热解由烧蚀表面向材料内部渗透,且热解反应程度随着烧蚀时间逐渐减小。材料内部热解的持续渗透,使得材料内部发生质量损失,出现碳化层、热解层和原始材料层的分层现象。在多种因素的耦合作用下,材料的碳化烧蚀有效的起到了热防护作用。
Thermal protective composites have excellent high temperature performance. The material takes away a lot of heat and reduce the heat transfer to the inside structure through ablation, which effectively protect the internal structure and have the effect of the thermal protection. So the research of thermal ablation behavior of composite materials has important application value in the field of engineering.
     Thermal protective composites will occur a series of physical and chemical reaction in high temperature, high enthalpy and high pressure environment, which produce quality loss due to material ablation. The composites were analyzed by thermal chemical ablation mechanism. The principles of conservation of energy, mass conservation principle, the principle of thermal chemical reaction equilibrium are coupled to thermal chemical ablation model. A moving boundary exists in the process of materials ablation time, so, we need to solve the temperature field of composite materials under ablation moving boundary conditions.
     Finite element numerical simulation method is the most commonly used method to solve complex engineering problems. All kinds of finite element calculation software have been developed according to different engineering applications. In addition, the finite element numerical analysis software also provide powerful post-processing function in the numerical analysis of the research question, which can be convenient for analyzing and discussing the calculation model. In research work of this paper, different thermal protective composites ablation model is established through the finite element numerical calculation software, and the finite element grid was divided to the structure, and finally the finite element numerical calculation results are studied and analyzed.
     Thermal protective composites will occur thermo chemical ablation and a series of physical and chemical changes. The thermal chemical reaction of carbon composite material is numerically calculated using the principle of chemical equilibrium under the condition of high temperature, also, the ablation products distribution under different surface temperature was analyzed. Temperature field of carbon/carbon composites under the action of thermal chemical ablation was calculated and analyzed by finite element numerical simulation methods. Carbon composite material will react with air components under high temperature environment, mainly including carbon oxidation reaction, the sublimation of carbon and carbon and nitrogen. Temperature field of carbon/carbon composites was numerically analyzed under the action of the ablation. The ablation surface heat flow was calculated through the principle of thermal chemical ablation and the surface energy balance, and its temperature field is calculated and analyzed coupling the internal heat conduction equations. The receding ablation surface under the environment of high temperature was numerically simulated. Temperature field distribution of carbon/carbon composites was calculated under moving ablation boundary conditions.
     In this paper, according to the analysis of the thermo-chemical mechanism, the change rules of ablation properties of C/C composites in thermo-chemical ablation, ablation surface receding and temperature field coupling was investigated by finite element method. Achieved the receding of the ablation boundary by virtual failure and rebuilding orphan mesh part, and established finite element model of ablation temperature field at receding boundary conditions. The net heat flux flowed into the material and ablation rate was calculated by thermo-chemical ablation theory. The phenomenon of large local heat flux on the irregular surface was corrected by programming after ablation surface receding when the heat flux was reloaded. Research shows that as the ablation time increases, the heat flux flows into composite materials will reach a dynamic balance. The ablation of the material is the results of a variety of factors and coupled calculation can truly reflect the characteristics of the ablation of the material.
     For revealing the detailed response of thermal protective composites in the process of internal carbonization, the carbonized ablation process of carbon/phenolic composite materials is analyzed by the method of finite element numerical simulation. The ablation surface receding is achieved by ALE moving mesh methods. The internal material pyrolysis in process of ablation is established by Arrhenius laws. The internal pyrolytic reactions, temperature distribution, the changes of carburization zone and material properties are coupling calculated when the ablation occurs. Research results show that the pyrolysis of the material is penetrated from ahlation surface to inner materials. The degree of pyrolysis reaction decreased with time. Internal quality loss happens through incessancy penetrating of the internal material pyrolysis, which cause the material been divided into carburization zone, pyrolytic zone and original material zone. Charring ablative material played an effective thermal protection function under coupling of a variety of factors.
引文
[1]L.W. Hunter, L.L.Perini, D.W.Conn, P.T.Brenza. Calculation of carbon ablation on a re-entry body during supersonic/subsonic flight. Journal of Spacecraft and Rockets,1986,23(5):487-491
    [2]Q.Gu, P.Ketunen. Carbon-Carbon Composite.Materials[J]. Science and Enginee-ring,1997, A234-236:223-225
    [3]吴人洁.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报,2000,17(1):1-4
    [4]K.E.Wurster, H.W.Stone. Aerodynamic heating environment definition thermal protection system selection for the HL-20[J]. Jounral of Spacecraft and Rockets,1993,30(5):549-557
    [5]K.J.Weilmuenster, P.A.Gnoffo, F.A.Greene. Hypersonic thermal enviroment of a proposed single-stage-to-orbit vehicle[J]. Journal of Spacecraft and Rockets,1997,34(6):697-704
    [6]苏君明.C/C喉衬材料的研究与发展[J].碳素科技,2001,1(1):6-11
    [7]J.Linke, R.Duwe,A.Gervash, R.H.Qian, M.R.Odig,A. Schuster.Material Damage to Beryllium,Carbon and Tungsten Under Severe Thermal Shocks[J]. Journal of Nuclear Materials,1998,258-263:634-639
    [8]张红波,尹健,熊翔等.C/C复合材料烧蚀性能的研究进展[J].材料导报,2005,19(7):97-103
    [9]王德升.喷管扩张段绝热层的烧蚀计算[J].固体火箭技术.1999,22(3):16-19
    [10]Cho B H, Yoon Y Ⅱ. Microstructural interpretation of the effect of various matrices on the ablation performances of carbon fiber-reinforced composites[J]. Composites Science and Technology, 2001,61(2):271-280
    [11]Leey J, Joo H J. Investigation on ablation behavior of CFRC composites prepared at different pressure[J]. Composites Part A, 2004(35):1285-1290
    [12]K.M.Xu, A.K.Noor.Three-Dimensional Analytical Solutions for Coupled Thermo electroelastic Response of Multilayered Cylindrical Shells[J]. AIAA Journal,1996,34(4):802-812
    [13]Frank S.milos, Galileo. Probe heat shield ablation experiment. Jounral of spacecraft and rockets,1997,34(6):705-713
    [14]于翘,陈万金,罗众.值得重视的复合材料研究新动向[J].宇航材料工艺,1999,(1):7-11
    [15]N eumeister J, Jansson S, L eckie F. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites[J]. Material Acta,1996,44(2):573-585
    [16]Milind Kelkar, Joachim Heberlein.Wire-arc spray modeling[J].Plasma Chemistry and Plasma Processing,2002,22 (1):1-25
    [17]B.F.Blackwell, R.E.Hogan. One-Dimensional Ablation Using Landau Transformation and Finite Control Volume Procedure[J]. Journal of Thermo physics and Heat Transfer,1993,6(2):282-287
    [18]邹林华,黄伯云.C/C复合材料的导热系数[J].中国有色金属学报,1997,7(4):132-135
    [19]韩杰才,赫晓东,杜善义.碳碳复合材料研究现状与进展[J].宇航材料与工艺,1994,23(4):1-11
    [20]刘建军,苏君明,陈长乐.碳/碳复合材料烧蚀性能影响因素分析[J].碳素,2003(2):15-19
    [21]D.L.Schmidt, K.E.Davidson, L.S.Theibert. Unique Applications of Carbon-Carbon Composite Materials[J]. SAMPE Journal,1999, 35(3):27-39
    [22]刘伟强,陈启智.液体火箭发动机碳/碳复合材料喷管烧蚀分析[J].国防科技大学学报,1998,20(4):1-4.
    [23]D.Cho. A Microstructural Study of the Improved Ablation Resistance of Carbon/Phenolic Composites Fabricated Using H3PO4-Coated Carbon Fibers[J]. Journal of Materials Science Leters.1996, 15:1786-1788
    [24]V.A.Pugsley, C.Allen. Microstructure/Property Relationships in the Cavitation Erosion of Tungsten Carbide-Cobalt[J]. Wear,1999, 233-235:93-103
    [25]M.Fujitsuka, I.Mutoh, T.Tanabe, T.Shikama.High Heat Load Test on Tungsten and Tungsten Containing Alloys[J]. Journal of Nuclear Materials,1996,233:638-644
    [26]J.Mistry, A.G.Gibson, Y.S.Wu.Failure of Composite Cylinders Under Combined External Pressure and Axial Loading[J].Composite Structures,1992,22:193-200
    [27]F. S. Milos. Probe Heat Shield Ablation Experiment[J]. Journal of Spacecraft and Rockets,1997,34(6):705-713
    [28]P.Papadopoulos,M.E.Tauber,I.D.Chang.Heatshield Erosion in a Dusty Martian Atmosphere[J].Journal of Spacecraft and Rockets,1993,30(2):140-151
    [29]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003,52-92
    [30]黄唐,毛国良.二维流场、热、结构一体化数值模拟[J].空气动力学学报,2002,3(1):115-119.
    [31]梁军,杜善义.防热复合材料高温力学性能[J].复合材料学报,2004,21(1):73-77
    [32]M.A.Verspui, G.De with, A. Corbijn, P.J.Slikkerveer. Simulation Model for the Erosion of Britle Materials[J].Wear,1999,233-235:436-443
    [33]M.Lemistre, D.Soulevant, F.Micheli, A.A.Deom. New Test Facility for Sand Erosion Studies[J].Wear,1999,233-235:712-716
    [34]吕治国,刘洪山,张雁等.烧蚀端头锥模型激波风洞试验研究[J].流体力学实验与测量,2003,17(1):6-14
    [35]王中原,史金光.超高速飞行弹箭气动烧蚀数值模拟研究.南京理工大学学报(自然科学版),2003,27(5):595-602
    [36]R.L.Potts. Application of Integral Methods to Ablation Charring Erosion[J]. Journal of Space craft and Rocket,1995,32(2):200-209
    [37]Ning Q G Chou TW. A general analytical model for predicting the transverse effective thermal conductivity of woven fabric composites[J]. Composite Part A,1998,29A:315-322
    [38]寇军强.固体火箭推进技术发展趋势及关键技术分析[J].弹箭与制导学报,1999,(1):53-56
    [39]S.A.Leone, R.L.Potts, A.L.Laganelli.Enhancements to Integral Solutions to Ablation and Charring[J]. Journal of Spacecraft and Rockets,1995,32(2):210-216
    [40]宋学智,李长德,魏化震.固体火箭发动机喷管用烧蚀隔热材料研究进展[J].弹箭技术,1998,4:11-21
    [41]方丁酉,夏智勋,张为华.固体火箭发动机性能预示[J].固体火箭技术,2000,23(1):1-5
    [42]陈林泉,李岩芳,侯晓等.喷管收敛段与喉部型面对喷管流量的影响 [J].固体火箭技术,2002,25(1):10-19
    [43]黄坚定,唐菊花.国外大型固体火箭发动机喷管性能分析[J].固体火箭技术,1996,19(2):9-16
    [44]K.Tokunaga, N.Yoshida, N.Noda, T.Sogabe, T.Kato. High Heat Load Properties of Tungsten Coated Carbon Materials[J]. Journal of Nuclear Materials,1998,263:998-1004
    [45]K.Tokunaga, N.Yoshida, N.Noda. Behavior of Plasma-Sprayed Tungsten Coatings on CFC and Graphite Under High Heat Load[J]. Journal of Nuclear Materials,1999,266-269:1224-1229
    [46]K.N.Ninan. Effect of Heating Rate on Thermal Decomposition Kinetics of Fiber glass Phenolic[J]. Journal of Spacecraft and Rockets,1983, 23(3):347-348
    [47]陈林泉,张雁,王书贤等.梯度功能材料的传热与烧蚀计算[J].科学技术与工程[J],2004,4(8):663-677
    [48]V.Heuer, G.Walter, I.M.Hutchings. High Temperature Erosion of Fibrous Ceramic Components by Solid Particle Impact[J]. Wear,1999, 233-235:257-262
    [49]俞继军,马志强,姜贵庆等.C/C复合材料烧蚀形貌测量及烧蚀机理分析[J].宇航材料工艺,2003(1):36-39
    [50]Roth. Chemical Erosion of Carbon Based Materials in Fusion Devices[J]. Journal of Nuclear Materials,1999,266-269:51-57
    [51]Han J C, He X D, Du S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3000℃ [J]. Carbon,1995,33(4):473-478
    [52]梁军,易法军.防热材料高温烧蚀-相变特效的细观研究[J].复合材料学报,2002,2:108-112
    [53]M.Talia, H.Lankarani, J.E.Talia. New Experimental Technique for the Study and Analysis of Solid Particle Erosion Mechanisms[J]. Wear,1999,225-229:1070-1077
    [54]林德春,张德雄,陈继荣.固体火箭发动机材料现状和前景展望[J].宇航材工艺,1999(4):1-5
    [55]M.Balat, P.Peze, M.Lebrun, G.Olalde.Application of Microwave Plasma to the Oxidation of Ceramic Material under Conditions of Atmospheric Re-Entry [J]. Surface and Coating Technology,1993, 60:587-591
    [56]Cho D, Yoon B. Micro structural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites[J]. Composites Science and technology,2001,6(12): 271-280
    [57]N.Mukherjee, P.K.Sinha. Thermo structural Analysis of Rotationally Multi-directional Fibrous[J].Composite Structures,1997,65(6): 809-817
    [58]H.L.N.Mcmanus, G.S.Springer. High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites Results[J]. Journal of Composite Materials,1992,26(2):230-255
    [59]K. E.Wurster, H.W.Stone.Aerodynamic Heating Environment Definition/Thermal Protection System Selection for the HL-20[J].Journal of Spacecraft and Rockets,1993,30(5):549-557
    [60]Y. L, Dimitrienko. A Structural Thermomechanical Model of Textile Composite Materials at High Temperatures[J], Composites Science and Technology,1999,59(7):1041-1053
    [61]Y. L, Dimitrienko. Effect of Finite Deformations on Internal Heat-Mass Transfer in Elastomer Ablating Materials[J]. International Journal of Heat Mass Transfer,1997,40(3):699-709
    [62]K.J.Weilmuenster, P.A.Gnoffo, F.A.Greene. Hypersonic Thermal Enviroment of a Proposed Single-Stage-to-Orbit Vehicle[J]. Journal of Spacecraft and Rockets,1997,34(6):697-704
    [63]H.L.N. Mcmanus, G.S.Springer. High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites Analysis[J], Journal of Composite Materials,1992,26(2):206-229
    [64]Gowayed Y, Hwang JC. Thermal conductivity of composite materials made from plainweaves and 3d weaves. Composites Engineering,1995, 5(9):1177-1186
    [65]J.J.Kim, S.K.Park. Solid Particle Erosion of Sic and Sic-Tib Composite Hot-Pressed withY2O3[J]. Wear,1998,222:114-119
    [66]Paulmier T, Balat-Pichelin M, Queau D L. Structural modification of carbon-carbon composites under high temperature and ion irradiation[J]. Applied Surface Science,2005,243(1-4):376-393
    [67]张明信.飞行加速度条件下绝热层烧蚀实验研究[J].固体火箭技术,1999,22(2):28-32.
    [68]Liu Deying, Wang Yueguang, Zhang Youhua, et al. Experimental Study on Ablative Properties of Carbon/phenolic Composite[J]. Aerospace Materials & Technology,2004,14(1):59-61.
    [69]Sourabh Deshpande, S Pavithran, Venkatesh Iyer. A finite volume model of charring and ablation[J]. Journal of Engineering Research and Studies,2011,2(1):147-153
    [70]Jean Lachaud, Yvan Aspa, Gerard L Vignoles. Analytical modeling of the steady state ablation of a 3D C/C composite[J]. International Journal of Heat and Mass Transfer,2008,51(9-10):2614-2627
    [71]黄海明,杜善义,吴林志等.C/C复合材料烧蚀性能分析[J].复合材料学报,2001,18(3):76-80.
    [72]Gowayed Y, Hwang JC. Thermal conductivity of composite materials made from plainweaves and 3d weaves. Composites Engineering,1995, 5(9):1177-1186
    [73]J.J.Kim, S.K.Park. Solid Particle Erosion of Sic and Sic-Tib Composite Hot-Pressed withY2O3[J]. Wear,1998,222:114-119
    [74]Paulmier T, Balat-Pichelin M, Queau D L. Structural modification of carbon-carbon composites under high temperature and ion irradiation[J]. Applied Surface Science,2005,243(1-4):376-393
    [75]潘育松,徐永东,陈照峰等.2D C/SiC复合材料烧蚀性能分析[J].兵器材料科学与工程,2006,29(1):17-20
    [76]S.J.Park, M.S.Cho, J.R.Lee, P.K.Pak. Influence of Molybdenum Disilicide Filler on Carbon-Carbon Composites[J]. Carbon,1999, 37:1685-1689
    [77]Zhou L H, Huang B Y, Huang Y, et al. An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites[J]. Materials Chemistry and Physics,2003, 82(3):654-662.
    [78]刘志刚,韩杰才,杜善义等.最小能量函数法求解碳基复合材料超高温烧蚀产物[J].复合材料学报,2006,23(4):83-87
    [79]Hu Liangquan, Xiao Yongdong, Xue Zhongmin, et al. Study on properties of the low material incorporated ablation and heat insulation[J]. Journal of Functional Materials,2007,38(AO8): 3159-3161.
    [80]N eumeister J,Jansson S,Leckie F. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites[J]. Material Acta,1996,44(2):573-585
    [81]易法军.防热复合材料的烧蚀机理与模型研究[J].固体火箭术2002,23(4):48-56
    [82]K.E.Wurster, H.W.Stone. Aerodynamic heating environment definition thermal protection system selection for the HL-20[J]. Jounral of Spacecraft and Rockets,1993,30(5):549-557
    [83]K.J.Weilmuenster, P.A.Gnoffo,F.A.Greene. Hypersonic thermal enviroment of a proposed single-stage-to-orbit vehicle[J]. Journal of Spacecraft and Rockets,1997,34(6):697-704
    [84]孙冰,林小树,刘小勇等.硅基材料烧蚀模型研究[J].宇航学报,2003,24(3):282-286
    [85]T.Windhorst, G.Blount. Carbon-Carbon Composites:A Summary of Recent Developments and Applications[J].Materials & Design,1997, 18(1):11-15
    [86]刘伟强,陈启智.液体火箭发动机碳/碳复合材料喷管烧蚀分析[J].国防科技大学学报,1998,20(4):1-4
    [87]黄海明,杜善义,吴林志等.C/C复合材料烧蚀性能分析[J].复合材料学报,2001,18(3):76-80
    [88]韩杰才,赫晓东,杜善义.碳碳复合材料研究现状与进展[J].宇航材料与工艺,1994,23(4):1-11
    [89]易法军.C/C复合材料高温热物理性能实验的研究[J].宇航学报,2002,23(5):85-88
    [90]刘志刚,梁军,张巍.碳基复合材料超高温热化学烧蚀产物的数值模拟[J].航空材料学报,2006,26(5):91-95
    [91]B.F.Blackwell, R.E.Hogan. Numerical Solution of Axisymmetric Heat Conduction Problems Using Finite Control Volume Technique[J]. Journal of Thermo physics and Heat Transfer,1993,7(3):462-471
    [92]Milind Kelkar,Joachim Heberlein. Wire-arc spray modeling[J]. Plasma Chemistry and Plasma Processing,2002,22 (1):1-25
    [93]B.F.Blackwell, R.E.Hogan. One-Dimensional Ablation Using Landau Transformation and Finite Control Volume Procedure[J]. Journal of Thermo physics and Heat Transfer,1993,6(2):282-287
    [94]罗瑞盈.碳/碳复合材料的制备工艺于研究现状[J].兵工材料科学与工程,1998,21(1):64-70
    [95]F.S.Milos, Galileo. Probe heat shield ablation experiment[J]. Journal of spacecraft and Rockets,1997,34 (6):705-713
    [96]聂景江,徐永东,张立同等.化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能[J].硅酸盐学报,2006,34(10):1238-1242
    [97]尹健,张红波,熊翔等.碳纤维增强树脂碳复合材料微观结构与烧蚀性能[J].中南大学学报,自然科学版,2005,36(1):1-5.
    [98]Chen Y K, Milos F S. Two-dimensional implicit thermal response and ablation program for charring materials[J]. Journal of Spacecraft and Rockets,2001,38(4):473-481
    [99]Cao Zhen, Zhao Xiaohua, Xie Huicai. Resistivity-temperature behavior of carbon-fiber cement-matrix composites[J]. Journal of Functional Materials,2003,34(4):464-467
    [100]Wen ShanLin. Quasi-steady solutions for the ablation of charring materials[J]. International Journal of Heat and Mass Transfer,2007, 50(5-6):1196-1201.
    [101]梁军,杜善义.防热复合材料高温力学性能[J].复合材料学报,2004,21(1):73-77
    [102]Yi Fajun, Liu Yongqing, Zhai Pengcheng, et al. Thermal stress analysis of carbon/phenolic composites during ablation process[J]. Journal of Harbin Institute of Technology,2008,40(7):1081-1084
    [103]Zhang Mingxin. Experimental Study of Insulation Erosion under Flight Acceleration[J]. Journal of Solid Rocket Technology,1999, 22(2):28-32
    [104]Liu Deying, Wang Yueguang, Zhang Youhua, et al. Experimental Study on Ablative Properties of Carbon/phenolic Composite[J]. Aerospace Materials & Technology,2004,14(1):59-61
    [105]易法军,刘永清,翟鹏程等.碳/酚醛复合材料烧蚀过程热应力分析[J].哈尔滨工程大学学报,2008,40(7):1081-1084.
    [106]何洪庆,严红.EPDM的烧蚀模型[J].推进技术,1999,20(4):36-39
    [107]陈剑,李江,李强.EPDM绝热材料碳化层结构特征及其对烧蚀的影响[J].固体火箭技术,2011,34(1):122-130
    [108]Amar A J, Blackwell B F, Edwards J R. One-dimensional ablation using a full Newton's method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer,2008,22(1):77-82.
    [109]Liu Deying, Wang Yueguang, Zhang Youhua, et al. Experimental Study on Ablative Properties of Carbon/phenolic Composite[J]. Aerospace Materials & Technology,2004,14(1):59-61.
    [110]Wei Heok Ng, Peretz P Friedmann, Anthony M Waas. Thermomechanical Behavior of a Damaged Thermal Protection System:Finite Element Simulations[J]. Journal of Aerospace Engineering,2012,25(1):90-102.
    [111]Sourabh Deshpande, S Pavithran,Venkatesh Iyer. A finite volume model of charring and ablation[J]. Journal of Engineering Research and Studies,2011,2(1):147-153.
    [112]Jean Lachaud, Yvan Aspa, Gerard L Vignoles. Analytical modeling of the steady state ablation of a 3D C/C composite[J], International Journal of Heat and Mass Transfer,2008,51(9-10):2614-2627
    [113]Amar A J, Blackwell B F, Edwards J R. One-dimensional ablation using a full Newton's method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer,2008,22(1):77-82
    [114]Wei Heok Ng, Peretz P Friedmann, Anthony M Waas. Thermomechanical Behavior of a Damaged Thermal Protection System:Finite Element Simulations[J]. Journal of Aerospace Engineering,2012,25(1):90-102
    [115]S.L.Mitchell, M Vynnycky. An accurate finite-difference method for ablation-type stefan problems[J]. Journal of Computational and Applied Mathematics,2012,236(17):4181-4192
    [116]M.K.Sarwar, P.Majumdar. Thermal conductivity of wet composite porous media [J]. Heat Recovery System & CHP,1995,14(4):369-381
    [117]孙冰,孙菊芳.用有限元法计算边界移动的喷管温度场[J].推进技术,1995,16(5):54-58
    [118]周正瑾,赖培华,高宇欣.烧蚀图象研究概述[J].力学进展,1990,20(4):488-498
    [119]颜庆津.数值分析[M].北京:北京航空航天大学出版社,修订版,1999,25-45
    [120]门相桥,武海鹏.正交各向异性材料三维热传导问题的有限元列式[J].哈尔滨工业大学学报,2003,35(4):405-409
    [121]范绪箕.气动加热与热防护系统[M].北京:国防工业出版社2004.3-22
    [122]王臣,梁军,吴世平等.高温条件C/C材料热力耦合场模拟[J].复合材料报,2006,23(5):143-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700