用户名: 密码: 验证码:
二维碳修饰复合催化剂的制备及其可见光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光光催化技术因具有反应条件温和、能耗低、操作简便以及可利用太阳光作为反应光源等特点,在环境污染治理和能源开发方面发挥着越来越重要的作用。可见光催化技术的关键在于新型可见光催化剂的制备及其改性,传统的可见光催化剂存在效率低且回收利用相对较难等缺点,如何提高可见光催化剂的效率,实现其可持续循环利用成为国内外光催化领域的研究热点。
     本论文采用石墨烯(graphene)、类石墨相氮化碳(graphite-like carbon nitride,等二维碳材料对铁酸铋和硫化镉进行修饰,制备了铁酸铋-石墨烯(Bi25Fe04o-graphene)、铁酸铋-类石墨相氮化碳(Bi25FeO40-g-C3N4)、类石墨相氮化碳-硫化镉(g-C3N4-CdS)三种新型复合光催化剂,通过不同分析手段对这些光催化剂的物理化学特性进行表征,并系统地研究了这三种催化剂的可见光催化性能。
     利用一步水热法制备了磁性铁酸铋-石墨烯(Bi25FeO40-graphene)可见光催化剂,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、BET比表面积分析、X射线光电子能谱(XPS)和磁滞回线测量等手段进行表征。在相同的水热条件下,加入氧化石墨制备得到的复合材料中的铁酸铋为软铋矿相的Bi25Fe040,同时,氧化石墨在水热过程中被还原为石墨烯,而不加氧化石墨得到的铁酸铋为钙钛矿相的BiFeO3。铁酸铋的晶型变化与碱浓度有一定的关系,当碱浓度降低时,得到的铁酸铋为Bi25FeO40。此外,Bi25FeO40-graphene复合材料的磁性明显优于BiFeO3,可通过外加磁场进行固液分离。氧化石墨的加入不仅影响了铁酸铋材料的晶型结构,还影响其颗粒大小。Bi25FeO4o-graphene复合光催化剂对亚甲基蓝(Methylene Blue, MB)的可见光催化降解效率优于Bi25FeO40和Bi25FeO40-graphene复合光催化剂中的o与石墨烯发挥了较好的协同效应,石墨烯可以有效地转移电子,抑制Bi25FeO4o中光生电子和空穴的复合,利于光催化活性的提高。Bi25FeO40-graphene可见光催化降解MB的过程符合Langmuir-Hinshewood模型,表明光催化反应速率与吸附在催化剂表面的MB浓度成正比。
     利用类石墨相氮化碳和铁酸铋复合制备得到磁性Bi25FeO40-g-C3N4复合光催化剂,采用XRD、SEM、BET比表面积分析、紫外漫反射和磁滞回线测量等进行表征。在Bi25Fe04o-g-C3N4复合光催化剂中,g-C3N4的加入使得Bi25FeO40-g-C3N4复合材料的带隙能减小。Bi25FeO40-g-C3N4复合光催化剂中g-C3Na的含量对其可见光催化降解MB的效率有较大影响,随着g-C3N4含量的增加,光催化降解效率呈现先升后降的趋势。将g-C3N4含量为50%的Bi25FeO40-g-C3N4复合材料用于MB的可见光催化降解,不仅取得了较好的去除效果,而且该催化剂具有良好的磁性特征,可通过外加磁场进行固液分离。
     利用类石墨相氮化碳和硫化镉复合制备得到g-C3N4-CdS复合光催化剂,采用XRD、透射电子显微镜(TEM)、BET比表面积分析、红外光谱(FT-IR)和紫外漫反射等手段进行表征。将g-C3N4-CdS复合催化剂用于MB的可见光催化降解,其降解效率明显优于g-C3N4和CdS。这主要是由于在复合催化剂中,g-C3N4表面的电子易迁移至CdS表面,有利于电子和空穴的分离;电子在CdS表面的富集使得CdS表面的空穴减少,降低了CdS光腐蚀氧化的机率;g-C3N4-CdS复合催化剂的比表面积和孔容的增大有利于MB在催化剂表面的吸附和光催化反应活性中心的增加,进而促进光催化反应的进行。对g-C3N4-CdS复合催化剂进行多次回用后发现,该复合光催化剂在回用五次后仍保持较高的催化活性,说明g-C3N4-CdS催化剂具有较高的稳定性。
The visible-light-driven photocatalysis plays an important role in the field of environmental remediation and energy development due to its mild reaction conditions, low energy consumption, easy operation and utilizing visible-light. The photocatalyst is the key point of visible-light photocatalysis in the present research. However, traditional photocatalysts exhibit low photocatalytic activity under visible-light irradiation and the recycling of catalyst is relatively difficult. Therefore, it is highly desirable to develop reusable visible-light photocatalysts with high photocatalytic activity.
     In the present work, the2-D carbon materials, graphene and graphite-like carbon nitride (g-C3N4), were used to modify the bismuth ferrite and CdS photocatalyst. The Bi25FeO40-graphene, Bi25FeO40-g-C3N4and g-C3N4-CdS composite photocatalysts were synthesized and characterized. The photocatalytic behaviors of these composite photocatalysts were also investigated.
     A magnetic Bi25FeO40-graphene visible-light photocatalyst was prepared by a one-step hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, Raman spectroscopy, X-ray photoelectron spectra (XPS) and magnetic hysteresis loop measurements. Under identical hydrothermal conditions, perovskite type bismuth ferrite (BiFeO3) was obtained without graphene addition, while the presence of graphene led to the formation of sillenite type bismuth ferrite (Bi25FeO40), and graphene oxide (GO) was reduced to graphene during the hydrothermal process. The crystalline of bismuth ferrite has a certain relationship with the alkali concentration. The phase of Bi2.5FeO40was formed when the alkali concentration was low. In comparison with pure BiFeO3catalyst, the Bi2.5FeO40-graphene composite showed better magnetism property. Moreover, the addition of graphene had an effect on the particle size of photocatalyst. The photocatalytic degradation of Methylene Blue (MB) demonstrated that Bi25Fe04o-graphene photocatalyst exhibited higher catalytic activity under visible-light irradiation than BiFeO3and Bi25FeO40, due to enhanced MB adsorption and synergistic effect between Bi25Fe04o and graphene. Additionally, the photocatalytic MB degradation over Bi25FeO40-graphene followed the Langmuir-Hinshelwood model, indicating an adsorption controlled reaction mechanism.
     Magnetic Bi25FeO40-g-C3N4visible-light photocatalysts were prepared and characterized by XRD, SEM, BET surface area analysis, UV-vis spectra and magnetic hysteresis loop measurements. The addition of g-C3N4made the band gap of Bi25Fe04o-g-C3N4composite photocatalyst decrease. Furthermore, the g-C3N4content of Bi25FeO40-g-C3N4had an impact on the photocatalytic MB degradation. The photocatalytic efficiency increased with the increase of the g-C3N4content and then decreased with the further increase of the g-C3N4content. Bi25FeO40-(50)g-C3N4showed prominently enhanced photocatalytic activity for the degradation of MB under visible-light irradiation than that of Bi25FeO40. Additionally, the Bi25FeO40-(50)g-C3N4composite was superparamagnetic, and could be readily recovered in an external magnetic field.
     The g-C3N4-CdS visible-light photocatalysts were prepared and characterized by XRD, TEM, BET surface area analysis, FT-IR and UV-vis spectra measurements. The CdS-g-C3N4composite photocatalyst showed prominently enhanced photocatalytic activity for the degradation of MB under visible-light irradiation than that of CdS and g-C3N4. Such enhanced photocatalytic activity could be attributed to the high adsorption capacity of MB on CdS-g-C3N4composite photocatalyst and the synergistic effect between CdS and g-C3N4. The photogenerated electrons may transfer from g-C3N4to CdS, inhibiting the combination of photogenerated electrons and holes. Meanwhile, the gathering of photogenerated electrons in the surface of CdS suppressed the photo-oxidation corrosion of CdS. Additionally, the g-C3N4-CdS catalyst had larger surface area which provided more active adsorption sites and photocatalytic reaction centers, giving rise to enhanced photocatalytic activity. Moveover, the CdS-g-C3N4composite catalyst still maintained a high photocatalytic activity after recycle for five times, which further demonstrated that the g-C3N4-CdS is a high stability catalyst.
引文
[1]Fox M A, Dulay M T. Heterogeneous photocatalysis. Chemical Review,1993,93:341-357
    [2]韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望.化学物理学报.2003,5:339~349
    [3]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chemical Review,1995,95:735-758
    [4]Fujishina A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(53-58):37-38
    [5]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology,1976,16:697-701
    [6]Ingram D B, Christopher P, Bauer J L, Linic S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catalysis,2011, l(10):1441-1447
    [7]Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B:Environmental,1999,23:89-114
    [8]Prieto-Rodrigueza L, Miralles-Cuevasa S, Ollera I, Aguerab A, Li Pumad G, Malato S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012,211:131-137
    [9]Gupta V K, Ali I, Saleh T A, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling:an overview. RSC Advances,2012,2:6380-6388
    [10]Hoffmann M R, Martin S T, Choi W, Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chemical Review,1995,95:69-96
    [11]Colbeau-Justin C, Kunst M, Huguenin D. Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. Journal of Materials Science,2003, 38:2429-2437
    [12]Chen L J, Chen F, Shi Y F, Zhang J L. Preparation and visible light photocatalytic activity of a graphite-like carbonaceous surface modified TiO2 photocatalyst. The Journal of Physical Chemisry C,2012,116 (15):8579-8586
    [13]Jean-Marie H. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today,1999,53:115-129
    [14]Kato H, Kudo A. Photocatalytic reduction of nitrate ions over tantalate photocatalysts. Physical Chemistry Chemical Physics,2002,4:2833-2838
    [15]Ranjit K T, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts. Journal of Photochemistry and Photobiology A:Chemistry,1997, 107:215-220
    [16]王侃,陈英旭,叶芬霞.SiO2负载的TiO2光催化剂可见光催化降解染料污染物.催化学报,2004,12:931~936
    [17]Kim C S, Shin J W, An S H, Jang H D, Kim T O. Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts. Chemical Engineering Journal,2012,204-206:40-47
    [18]Dong F, Liu H T, Ho W K, Fu M, Wu Z B. (NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning. Chemical Engineering Journal,2013, 214:198-207
    [19]井立强,张新,屈宣春.掺杂镧的TiO2纳米粒子的光致发光及其光催化性能.中国稀土学报,2004,22(6):747~750
    [20]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001,1022-1029
    [21]Wang G N, Wang X F, Liu J F, Sun X M. Mesoporous Au/TiO2 Nanocomposite Microspheres for Visible-Light Photocatalysis. Chemistry-A European Journal,2012, 18(17):5361-5366
    [22]Wang W, Lu C H, Ni Y R, Su M X, Xu Z Z. A new sight on hydrogenation of F and N-F doped{001} facets dominated anatase TiO2 for efficient visible light photocatalyst. Applied Catalysis B:Environmental,2012,127:28-35
    [23]吴树新,马智,秦永宁,齐晓周,梁珍成.掺杂纳米TiO2光催化性能的研究.物理化学学报,2004,20(2):138-143
    [24]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,244~258
    [25]Li G H, Gray K A. The solid-solid interface:Explaining the high and unique photocatalytic reactivity of TiO2-Vbased nanocomposite materials. Chemical Physics, 2007,339:173-187
    [26]Kamat P V. Photoinduced transformations in semiconductor-metal nanocomposite assemblies. Pure and Applied Chemistry,2002,74:1693-1706
    [27]Bahruji H, Michael B, Davies P R, Al-Mazroai L S, Dickinson A, Greaves J, James D, Millard L, Pedrono F. Sustainable H2 gas production by photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry.2010,216:115-118
    [28]冯春波,杜志平,赵永红.Au改性纳米TiO2材料对NPE-10光催化降解的活性.物理化学学报,2006,22(8):953~957
    [29]张峰,李庆霖,杨建军.TiO2光催化剂的可见光敏化研究.催化学报,1999,20(3):329~332
    [30]李庆锋,梁启耀,章福祥.钨掺杂二氧化钛可见光催化剂低温合成及性能研究.石油学报,2006,10:324-326
    [31]Wu T S, Wang K X, Li G D. Montmorillonite-supported Ag/TiO2 nanoparticles:an efficient visible-light bacteria photodegradation material. ACS Applied Materials & Interfaces,2010,2(2):544-550
    [32]Sakata Y, Yamamoto T, Okazaki T, Imamura H. Generation of visible light response on the photocatalyst of a copper ion containing TiO2. Chemistry Letters,1998, 27:1253-1254
    [33]Sun X J, Jing L Q, Cai W M, Zhou D R. Preparation and characterization of TiO2 nanopartictes and their photoeatalytic performance. Journal of the Chinese Ceramic Society,2002,30:26-30
    [34]Xu W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis,2002, 207:151-157
    [35]Sidheswaran M, Tavlarides L L. Characterization and visible light photocatalytic activity of cerium-and iron-doped titanium dioxide Sol-Gel materials. Industrial & Engineering Chemistry Research,2009,48 (23):10292-10306
    [36]Zhao W, Chen C C, Li X Z. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst. Journal of Physicl Chemistry B,2002,106:5022-5028
    [37]任凌,杨发达,张渊明.氮掺杂TiO2光催化剂的制备及可见光催化性能研究.无机化学学报,2008,24(4):541~546
    [38]王宜超,刘中清,燕青芝.可见光响应氮掺杂TiO2光催化剂的水热法制备与性能.北京科技大学学报,2008,30(5):540~543
    [39]Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528):269-271
    [40]Fang J, Wang F, Qian K. Bifunctional N-doped mesoporous TiO2 photocatalysts. The Journal of Physical Chemistry C,2008,112:18150-18156
    [41]Xu C, Wang X. Fabrication of flexible metal-nanoparticte film using graphene oxide sheets as substrates. Small,2009,5(19):2212-2217
    [42]Shahed U, Mofareh A, William B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297:2243-2245
    [43]Jiang Z Y, Lu C Q, Wu H. Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research,2005,44:4165-4170
    [44]Sakthivel S, Kisch H. Daylight photocatalysis by carbonmodified titanium Dioxide. Angewandte Chemie International Edition,2003,42(40):4908-4911
    [45]李川,李兆华,柳松硫.掺杂纳米氧化钛的制备及日光敏催化活性研究.科技信息.2009,12:15~17
    [46]Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping. Appllied Physical Letters,2002,81:454-456
    [47]Yu J C, Ho W, Yu J G, Yi H Y, Wong P K, Zhao J C. Efficient visible-light-induced photoeatalytic disinfection on sulfur-doped nanoerystalline titania. Environmental Science & Technology,2005,39:1175-1179
    [48]陈恒,龙明策,徐俊.可见光响应的氯掺杂TiO2的制备、表征及其光催化活性.催 化学报,2006,10:890~894
    [49]Hong X T, Wang Z P, Cai W M. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chemistry of Materials,2005,17(6):1548-1552
    [50]Lin L, Lin W, Zhu Y. X. Phosphor-doped titania-a novel photocatalyst Active in visible light. Chemistry Letters,2005,34(3):284-285
    [51]Dambar B H, Kenneth J K. Synthesis characterization and visible light activity of new nanoparticle photocatalysts based on silver carbon and sulfur-doped TiO2. Journal of Colloid and Interface Science,2007,311:514-522
    [52]Liu H Y, Gao L. Synthesis and properties of CdSe-sensitized rutile TiO2 nanocrystals as a visible light-responsive photocatalysts. Journal of the American Ceramic Society,2004, 87(8):1582-1584
    [53]Rengifo-Herrera J A, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Moser J E, Pulgarin C. Synthesis, characterization, and photocatalytic Activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. The Journal of Physical Chemistry C,2010,114:2717-2723
    [54]闫俊萍,唐子龙,张中太.TiO2双掺Cr,Sb的光催化性能研究稀有金属.材料与工程,2005,34(3):429-432
    [55]李世彤,周国伟,张成峰.Ni2+/Co2+共掺杂TiO2光催化降解制浆黑液的研究.中华纸业,2005,26(12):64~66
    [56]龚倩,胡芸,韦朝海,张霞.不同焙烧温度制备的Mn、N掺杂TiO2光催化性能研究.环境科学学报,2012,32:802~807
    [57]费霞,卞都成,武其亮,罗祝义,陆飞鹏,田万芳,刘雪霆,崔鹏.共沉淀法制备Mo/N共掺杂TiO2可见光光催化剂.应用化工,2011,40:935~939
    [58]Liu H Y, Gao L. Codoper rutile TiO2 as a new photocatalyst for visible light irradiation. Chemistry Letters,2004,33:730-731
    [59]Wang P F, Ao Y H, Wang C, Hou J, Qian J. A one-pot method for the preparation of graphene-Bi2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants. Carbon,2012, 50(14):5256-5264
    [60]Liu H Y, Guo Y P, Guo B, Dong W, Zhang D. BiFe03-(Nao.5Bio.5)Ti03 butterfly wing scales:Synthesis, visible-light photocatalytic and magnetic properties. Journal of the European Ceramic Society,2012,32(16):4335-4340
    [61]龙明策,蔡俊,蔡伟民.设计新型可见光响应的半导体光催化剂.化学进展,2006,18:1065~1073
    [62]张琼,贺蕴秋.氧化钛/氧化石墨烯复合结构及其光催化性能.中国科学,2010,55:620~628
    [63]崔玉民.亚硝酸盐的光催化氧化.感光科学与光化学,2002,20(4):253~261
    [64]Zhou T F, Hu J C. Mass production and photocatalytic activity of highly crystalline metastable single-phase Bi2oTi032 nanosheets. Environmental Science & Technology, 2010,44:8698-8703
    [65]Xie L J, Ma J F, Zhao Z Q. A novel method for the preparation of Bi4Ti3O12 nanoparticles in W/O microemulsion. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,280:232-236
    [66]Zhou J K, Zou Z G, Ray A K. Preparation and characterization of poly crystalline bismuth titanate Bi12TiO20 and its photocatalytic properties under visible light irradiation. Industrial & Engineering Chemistry Research,2007,46:745-749
    [67]Yao W F, Wang H, Xu X H. Photocatalytic property of bismuth titanate Bi12TiO20 crystals. Appllied Catalysis A,2003,1243:185-190
    [68]Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photoeatalysts consisting of Bi3+with 6s(2) configuration and d(0) transition metal ions. Chemistry Letters,1999,28(10):1103-1104
    [69]Fu H B, Pan C S, Yao W Q, Zhu Y F. Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005,109:22432-22439
    [70]Shang M, Wang W Z, Sun S M. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. The Journal of Physical Chemistry C,2008,112:10407-10411
    [71]Zhang L S, Wong K H, Chen Z G, Yu J C, Zhao J C, Hu C, ChangC Y, Wong P K. AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components. Appllied Catalysis A,2009,363(1):221-229
    [72]Liu H, Yuan J, Shangguan W F, Teraoka Y, Visible-Light-Responding BiYWO6 Solid Solution for Stoichiometric Photocatalytic Water Splitting Joural of Physical Chemistry C,2008,112:8521-8523
    [73]陈庆云,周苗,王云海.BiVO4光催化剂的合成及其可见光下还原二氧化碳.化工进展,2010,29:443~445
    [74]Zhang X, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Selective synthesis and visible-light photecatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics,2007,103:162-167
    [75]戈磊,张宪华.微乳液法合成新型可见光催化剂BiVO4及光催化性能研究.无机材料学报,2009,3(24):453~456
    [76]Liu H M, Nakamura R, Nakato Y. Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem,2005, 6:2499-2502
    [77]尹盛,曹娟,许晖.可见光响应型CuO/BiVO4的光催化活性研究.环境污染与防治,2010,4(32):20~24
    [78]Liu Z K, Qi Y, Lu C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. Journal of Materials Science:Materials in Electronics,2010,21:380-384
    [79]Lu X M, Xie J M, Song Y Z. Surfactant-assisted hydrothermal preparation of submicrometer-sized two-dimensional BiFeO3 plates and their photocatalytic activity. Journal of Materials Science,2007,42:6824-6827
    [80]曹枫,唐培松,陈海锋.溶胶-凝胶法制备铁酸铋及其可见光催化性能.稀有金属材料与工程,2010,2(39):422-425
    [81]钟起权,庞靖云,王金颖.BiFeO3磁性光催化剂的制备及性能研究.功能材料,2009,1(40):33~36
    [82]Guo R Q, Fang L, Dong W. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. The Journal of Physical Chemistry C,2010, 114:21390-21396
    [83]王岩玲,王俊恩.铁酸铋的水热合成及其光催化性能.合成化学,2009,6 (17):741~743
    [84]Sun S M, Wang W Z, Zhang L, Shang M. Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions. The Journal of Physical Chemistry C,2009,113:12826-12831
    [85]Ruan Q J, Zhang W D. Tunable morphology of Bi2Fe409 crystals for photocatalytic oxidation. The Journal of Physical Chemistry C,2009,113:4168-4173
    [86]Luan J F, Cai H L, Hao X P. Structural characterization and photocatalytic properties of novel Bi2FeVO7. Research on Chemical Interfaces,2007,33(6):487-500
    [87]王其召,刘恢,袁坚.可见光完全分解水光催化剂Bio.5Lao.5VO4的制备和表征.催化学报,2009,30(6):565~569
    [88]Tian Q F, Zhuang J D, Wang J X, Xie L Y, Liu P. Novel photocatalyst, Bi2Sn207, for photooxidation of As(Ⅲ) under visible-light irradiation. Applied Catalysis A:General, 2012,28(425-426):74-78
    [89]Yu K, Yang S G, He H, Sun C, Gu C G, Ju Y M. Visible light-driven photocatalytic degradation of Rhodamine B over NaBiO3:pathways and mechanism. The Journal of Physical Chemistry A,2009,113:10024-10032
    [90]Kako T, Zou Z G, Katagiri M. Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chemistry of Materials,2007,19:198-202
    [91]Chang X F, Huang J, Tan Q Y, Wang M, Ji G B, Deng S B, Gang Y. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catalysis Communications,2009,10(15):1957-1961
    [92]Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression. The Journal of Physical Chemistry C,2010,114:6472-6477
    [93]Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. Journal Physical & Chemistry,1994,98(12):3183-3188
    [94]Chen J Y, Li G Y, Huang Y, Zhang H, Zhao H J, An T C. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental,2012,123-124:69-77
    [95]Gu Q, Long J L, Zhou Y G, Yuan R S, Lin H X, Wang X X. Single-site tin-grafted anatase TiO2 for photocatalytic hydrogen production:Toward understanding the nature of interfacial molecular junctions formed in semiconducting composite photocatalysts. Journal of Catalysis,2012,289:88-99
    [96]Ge L, Han C C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental,2012,117-118:268-274
    [97]Peng L L, Xie T F, Lu Y C, Fan H M, Wang D J, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Physical Chemistry Chemical Physics,2010,12:8033-8041
    [98]Kang M G, Hen H E, Kim K J. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A,1999,125(1/2/3):119-125
    [99]Ang T P, Toh C S, Han Y F. Synthesis, characterization and activity of Vvisible-light-driven nitrogen-doped TiO2-SiO2 mixed oxide photocatalysts. The Journal of Physical Chemistry C,2009,113:10560-10567
    [100]Bian Z F, Zhu J, Wang S H. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. The Journal of Physical Chemistry C,2008,112:6258-6262
    [101]嵇天浩,杨芳,周娇艳.可见光响应的BiVO4/TiO2纳米复合光催化剂.光谱学与光谱分析,2010,30(7):1944-1947
    [102]Zong X, Wu G P, Yan H J. Photocatalytic H2 Evolution on MoS2/CdS catalysts under visible light irradiation. The Journal of Physical Chemistry C,2010,114:1963-1968
    [103]Wang J, Chen F, Zhou X P. Photocatalytic degradation of acetone over a V2O5/LaF3 catalyst under visible light. The Journal of Physical Chemistry C,2008,112:9723-9729
    [104]Arora M K, Sinha A S K, Upadhyay S N. Effect of dispersion and distribution on activity of alumina-supported cadmium sulfide photocatalysts for hydrogen production from water. Industrial & Engineering Chemistry Research,1998,37:1310-1316
    [105]Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-graphene composite as a high performance photocatalyst. ACS NANO,2010,4:380-386
    [106]王昭,毛峰,黄祥平,黄应平,冯笙琴,易佳,张昌远,刘栓.TiO2/石墨烯复合材料的制备及其光催化性能.材料科学与工程学报,2011,29:267-232
    [107]耿静漪,朱新生,杜玉扣.TiO2-石墨烯光催化剂:制备及引入石墨烯的方法对光催化性能的影响.无机化学学报,2012,28:357-361
    [108]Xu T G, Zhang L W, Chen H Y, Zhu Y F. Significantly enhanced photocatalytic performance of ZnO via grapheme hybridization and the mechanism study. Applied Catalysis B:Environmental,2011,101:382-387
    [109]Fu Y S, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Industrial & Engineering Chemistry Research,2011,50:7210-7218
    [110]Li Q, Guo B D, Yu J Q Ran J R, Zhang B H, Yan H J, Gong J R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society,2011, 133:10878-10884
    [111]Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. Journal of the American Chemical Society,2011, 115:11466-11473
    [112]应红,王志永,郭政铎,施祖进,杨上峰.还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能.物理化学学报,2011,27:1482-1486
    [113]Fu Y S, Sun X Q, Wang X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Materials Chemistry and Physics,2011, 131:325-330
    [114]Teter D M, Hemley R J. Low-compressibility carbon nitride. Science,1996,271:53-55
    [115]郑华荣,张金水,王心晨,付贤智.二氨基马来腈共聚合改性氮化碳光催化剂.物理化学学报,2012,28(10):2336-2342
    [116]Wang X C, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalyst,2012,2:1596-1606
    [117]Zhang Y J, Mori T, Ye J H. Phosphorus-doped carbon nitride solid:Enhanced electrical conductivity and photocurrent generation. Journal of the American Chemical Society, 2010,132:6294-6295
    [118]Meng Y L, Shen J, Chen D. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Metals,2011,30:276-279
    [119]Yan S C, Li Z S, Zou Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir,2010,26(6):3894-3901
    [120]Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental,2011,108-109:100-107
    [121]Lu X F, Wang Q L, Cui D L. Preparationand photocatalytic properties of g-C3N4/TiO2 hybrid composite, Journal of Materials Science,2010,2610:925-930
    [122]Sun J H, Qiao L P, Sun S P. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 2008,155:312-319
    [123]黄婉霞,孙作风,吴建春.纳米二氧化钛光催化作用降解甲醛的研究.稀有金属,2005,29(1):34~38
    [124]Bahnemann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Materials.1991,24:564-583
    [125]王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学,1998,19(1):1-4
    [126]崔玉民.亚硝酸盐的光催化氧化.感光科学与光化学,2002,20(4):253-261
    [127]Pelaez M, Armah A. Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Research,2011,45:3787-3796
    [128]Raji J R, Palanivelu K. Sunlight-Induced photocatalytic degradation of organic pollutants by carbon-modified nanotitania with vegetable oil as precursor. Industrial and Engineering Chemistry Research,2011,50:3130-3138
    [129]Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 2007,141:581-590
    [130]Daneshvar N, Salari D, Khataee A R. Photocatalytic degradation of azo dye acid red 14 in water:investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A:Chemistry,2003,157:111-116
    [131]吉芳英,徐璇,范子红.疏水性可见光响应型纳米CuO/TiO2催化降解高浓度硝基苯.化工学报,2009,60(7):680~1685
    [132]崔玉民,范少华Cd/CdS光催化降解甲基橙的研究.功能材料,2005,36(6):859~868
    [133]Peterson M W, Turner J A, Nozik A J. Mechanistic studies of the photocatalytic behavior of titaniarparticles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions. The Journal of Physical Chemistry,1991,95:221-225
    [134]漆新华,王中,庄源益.二氧化钛对活性艳红X-3B的光催化降解研究.化工环保,2004,24(1):1-4
    [1]Vijayan B K, Dimitrijevic N M, Wu J S, Gray K A. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. The Journal of Physical Chemistry C,2010,114:21262-21269
    [2]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271
    [3]Shu X, He J, Chen D. Visible-light-induced photocatalyst based on nickel titanate nanoparticles. Industrial & Engineering Chemistry Research,2008,47:4750-4753
    [4]Xu J H, Wang W Z, Sun S M, Wang L. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor:A case study on Bi2WO6/TiO2. Applied Catalysis B:Environmental,2012,111-112:126-132
    [5]Li Q, Guo B D, Yu J G, Ran J G, Zhang B H, Yan H J, Gong J R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society,2011, 133:10878-10884
    [6]Zhang Z J, Wang W Z, Tin W Z, Shang M, Wang L, Sun S M. Inducing photocatalysis by visible light beyond the absorption edge:Effect of up conversion agent on the photocatalytic activity of Bi2WO6. Applied Catalysis B:Environmental,2010, 101:68-73
    [7]Tian Q F, Zhuang J D, Wang J X, Xie L Y, Liu P. Novel photocatalyst, Bi2Sn207, for photooxidation of As (Ⅲ) under visible-light irradiation. Applied Catalysis A:General, 2012,425-426:74-78
    [8]Wang X, Lin Y, Ding X F, Jiang J G. Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. Journal of Alloys and Compounds,2011, 509:6585-6588
    [9]Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G, Liu J M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Advanced Materials, 2007,19:2889-2892
    [10]Xu Q Y, Zheng X H, Wen Z, Yang Y, Wu D, Xu M X. Enhanced room temperature ferromagnetism in porous BiFeO3 prepared using cotton templates. Solid State Communications,2011,151.624-627
    [11]Guo R Q, Fang L, Dong W, Zheng F G, Shen M R. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. The Journal of Physical of Chemistry C,2010,114:21390-21396
    [12]Maurya D, Thota H, Nalwa K S, Garg A. BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process:A comparative study. Journal of Alloys and Compounds,2009,477:780-784
    [13]Han S H, Kim K S, Kim H G, Lee H G, Kang H W, Kim J S, Cheon C. Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method. Journal of the American Ceramic Society,2010,36:1365-1372
    [14]Tan G Q, Zheng Y Q, Miao H Y, Xia A, Ren H J. Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. Journal of the American Ceramic Society,2012,95:280-289
    [15]Li J M, Song J Y, Chen J G, Yu S W, Jin D R, Cheng J R. PVA (Polyvincyl Acohol)-assisted hydrothermal preparation of Bi25FeO40 and its photocatalytic activity. Materials Research Society,2010,1217,1217-Y03-22
    [16]Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-graphene composite as a high performance photocatalyst. ACS Nano,2010,4:380-386
    [17]Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2:1487-1491.
    [18]Fu X Q, Bei F L, Wang X, Brien S O, Lombardi J R. Excitation profile of surface-enhanced raman scattering in graphene-metal nanoparticle dased derivatives. Nanoscale,2010,2:1461-1466
    [19]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Letters,2010,10:577-583
    [20]Liang Y Y, Wang H L, Casalongue H S, Chen Z, Dai H J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research,2010,3:701-705
    [21]Fu Y S, Sun X Q, Wang X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Materials Chemistry and Physics,2011, 131:325-330
    [22]Fu Y S, Chen Q H, Sun X Q, Wang X. Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. Applied Catalysis B: Environmental,2012,111-112:280-287
    [23]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80:1339-1339
    [24]Chen C, Cheng J R, Yu S W, Che L J, Meng Z Y. Hydrothermal synthesis of perovskite bismuth ferrite crystallites. Journal of Crystal Growth,2006,291:135-139
    [25]Hardy A, Gielis S, VandenRul H, D'Haen J, VanBael M K, Mullens J. Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. Journal of the European Ceramic Society,2009, 29:3007-3013
    [26]Borowiec M T, Majchrowski A, Zmija J, Szymczak H, Zayarniuk T, Michalski E, Baranski M. Crystal growth and optical properties of iron sillenite Bi25FeO40, Proceedings of SPIE-The International Society for Optical Engineering.2003, 5136:26-30
    [27]Chen Y J, Wu Q S, Zhao J. Selective synthesis on structures and morphologies of BixFeyOz nanomaterials with disparate magnetism through time control. Journal of Alloys and Compounds,2009,487:599-604
    [28]Zhang H B, Kajiyoshi K. Hydrothermal synthesis and size-dependent properties of multiferroic bismuth ferrite crystallites. Journal of the American Ceramic Society,2010, 93:3842-3849
    [29]Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. Synthesis and characterization of titania-graphene nanocomposites. The Journal of Physical Chemistry C,2009, 113:19812-19823
    [30]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565
    [31]He H Y, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chemical Physics Letters,1998,287:53-56
    [32]Hang Q M, Zhu X H, Zhu J M, Liu Z G Sillenite-type bismuth ferric nanocrystals: microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic properties. Procedia Engineering,2012,27:614-624
    [33]Burkov V I, Gorelik V S, Egorysheva A V, Kargin Y F. Laser raman spectroscopy of crystals with the structure of sillenite. Journal of Russian Laser Research,2001, 22:243-267
    [34]Fukumura H, Harima H, Kisoda K, Tamada M, Noguchi Y, Miyayama M. Raman scattering study of multiferroic BiFeO3 single crystal. Journal of Magnetism and Magnetic Materials,2007,310(2):e367-e369
    [35]Fu Y S, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Industrial & Engineering Chemistry Research,2011,50:7210-7218
    [36]Farhadi S, Rashidi N. Preparation and characterization of pure single-phase BiFeO3 nanoparticles through thermal decomposition of the heteronuclear Bi[Fe(CN)6]5H2O complex. Polyhedron,2010,29:2959-2965
    [37]Chen J, Xing X R, Watson A, Wang W, Yu R B, Deng J X, Yan L, Sun C, Chen X B. Rapid Synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Chemistry of Materials,2007,19:3598-3600
    [38]Jiang L C, Zhang W D, Yu Y X, Wang J. Preparation and charge transfer properties of carbon nanotubes supported CdS/ZnO-NWs shell/core heterojunction. Electrochemistry Communications,2011,13:627-630
    [39]Yan Y, Sun H P, Yao P P, Kang S Z, Mu J. Effect of multi-walled carbon nanotubes loaded with Ag nanoparticles on the photocatalytic degradation of rhodamine B under visible light irradiation. Applied Surface Science,2011,257:3620-3626
    [40]Chen H, Xu Z Y, Wan H Q. Aqueous bromated reduction by catalytic hydrogenation over Pd/Al2O3 cataltsts. Applied Catalysis B:Environmental,2010,96:307-313
    [1]Song L M, Zhang S J, Wu X Q, Tian H F, Wei Q W. Graphitic C3N4 photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation. Industrial & Engineering Chemistry Research,2012,51:9510-9514
    [2]Wang X C, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalyst,2012,2:1596-1606
    [3]Yan S C, Lv S B, Li Z S, Zou Z G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Transactions,2010, 39:1488-1491
    [4]Sun J X, Yuan Y P, Qiu L G, Jiang X, Xie A J, Shen Y H, Zhu J F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Transactions,2012,41:6756-6763
    [5]Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental,2011,108-109:100-107
    [6]Chen C, Cheng J R, Yu S W, Che L J, Meng Z Y. Hydrothermal synthesis of perovskite bismuth ferrite crystallites. Journal of Crystal Growth,2006,291:135-139
    [7]Wang X C, Maed K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light, Journal of the American Ceramic Society,2009,131:1680-1681
    [8]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002
    [9]Tan G Q, Zheng Y Q, Miao H Y, Xia A, Ren H J. Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. Journal of the European Ceramic Society,2012,95:280-289
    [10]Li J M, Song J Y, Chen J G, Yu S W, Jin D R, Cheng J R. PVA (Polyvincyl Acohol)-assisted hydrothermal preparation of Bi25Fe040 and its photocatalytic activity. Materials Research Society,2010,1217,1217-Y03-22
    [1]Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society,2011, 133:10878-10884
    [2]Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. Journal of the American Chemical Society,2008,130:7176-7177
    [3]周强,苑宝玲,许东兴,付明来.CdS/TiO2纳米管可见光催化剂的制备、表征及光催化活性.催化学报,2012,33:850~856
    [4]Bao N Z, Shen L M, Takata T, Domen K. Self-Templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials,2008,201:110-117
    [5]Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society,2008,130(23):7176-7177
    [6]Srinivasan S S, Jeremy W, Elias K. Visible Light Photocatalysis via CdS/TiO2 Nanocomposite. Materials Journal of Nanomaterials,2006,10:1-7
    [7]Dimitrijevic N M, Li S, Gratzel M. Visible light-induced oxygen evolution in aqueous cadmium sulfide suspensions. Journal of the American Chemical Society,1984, 106:6565-6569
    [8]Jang J S, Kim H G, Joshi U A. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. International Journal of Hydrogen Energy,2008,33:5975-5980
    [9]Tian Y L, Fu J, Chang B B. Synthesis of mesoporous CdS/titania composites with visible light photocatalytic activities. Materials Letters,2012,81:95-98
    [10]Zhu J H, Yang D, Geng J Q. Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research,2008,10:729-736
    [11]Liu H P, Zhang K, Jing D W, Liu G J, Guo L J. SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation International. Journal of Hydrogen Energy,2010,35:7080-7086
    [12]Shen S H, Guo L J. Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst. Materials Research Bulletin,2008,43:437-446
    [13]Guan G Q, Kida T, Kusakabe K. Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chemical Physics Letters,2004,385:319-322
    [14]Jiang R, hu Z H Y, Li X D. Visible light photocatalytic decolourization of C I Acid Red 66 by chitosan capped CdS composite nanoparticles. Chemical Engineering Journal, 2009,152:537-542
    [15]Jia L, Wang D H, Huang Y X. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. The Journal of Chemical Physics,2011,115C:11466-11473
    [16]Lu X F, Wang Q L, Cui D L. Preparationand photocatalytic properties of g-C3N4/TiO2 hybrid composite, Journal Of Materials Science,2010,26:925-930
    [17]Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental,2011,108-109:100-107
    [18]Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society,2009,131:1680-1681
    [19]Jang J S, Ji S M, Bae S W, Son H C, Lee J S. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm). Journal of Photochemistry and Photobiology B:Biology,2007,188:112-119
    [20]Guo Q X, Xie Y, Wang X J, Zhang S Y, Hou T, Lv S C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chemical Communications,2004:26-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700