用户名: 密码: 验证码:
用于弹药的聚合物合成、改性与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来高分子聚合物愈来愈广泛地应用于弹药中,如硝化棉类含能粘结剂和塑料弹带均是典型的高分子聚合物。粘结剂作为发射药的重要组成部分,很大程度上影响着体系的能量性能和力学性能。硝化棉作为含能粘结剂,广泛应用于单基、双基和三基发射药中,但由于NC较高的玻璃化转变温度,低温力学性能较差,限制了发射药的发展和应用。聚叠氮缩水甘油醚(GAP)作为一种新型含能的叠氮类粘结剂,具有氮含量高、机械感度低、热稳定好、玻璃化转变温度低等优点,然而GAP分子链中较大的-CH2N3侧链的存在,使其主链承载原子数少,分子间作用力很小,导致其抗拉强度较低。本文利用聚合物增强原理,在硝化棉和GAP两类含能粘结剂间进行复合改性,以期获得性能互补的含能粘结剂,为发展强而韧的复合含能粘结剂提供基础,满足不同发射药及推进剂的需求。近年来塑料弹带尤其是尼龙66和聚甲醛在各种新式炮弹上得到了广泛应用。钛酸钾晶须的拉伸强度达7000MPa,并具有良好的耐磨性和耐热性,且生产成本低,因此尝试采用钛酸钾晶须改性尼龙66和聚甲醛的力学性能和耐热性能等,以期更好的满足弹带用塑料对强度和尺寸稳定性的需求。针对硝化棉类粘结剂和塑料弹带的改性需求,本课题主要开展以下几方面工作:
     以4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段,聚叠氮缩水甘油醚(GAP)为软段,合成不同硬段质量分数的聚叠氮缩水甘油醚聚氨酯弹性体(GAPE)。DMA分析表明硬段质量分数为33%的GAPE-2的刚性和柔顺性均较佳,低温时自由体积膨胀系数(af)较大,而其低温脆化参数(m)值较小(m=55.6),链段运动活化能为271.0kJ/mol,表明GAPE-2具有较好的低温塑性和韧性且其脆性较小。真密度测试表明随着硬段质量分数由30%增加到36%,GAPE的真密度由1.35g·cm-3增加至1.52g·cm-3、对不同硬段质量分数的GAPE进行力学性能测试,结果显示当硬段质量分数为33%时,GAPE的力学性能较佳,断裂伸长率为360%,特别是抗拉强度为13.3MPa,约比硬段质量分数为30%的GAPE-1的抗拉强度高209%,比硬段质量分数为36%的GAPE-3的抗拉强度高87.3%。
     通过溶液共混法制得两组不同质量比的GAPE/硝化棉(氮含量=13.5%)、GAPE/硝化棉(氮含量=12.0%)共混试样。采用DMA、力学性能测试、FTIR、真密度等分析手段对共混试样进行表征。GAPE/硝化棉(氮含量=13.5%)共混体系的低温玻璃化转变温度均低于-3℃, GAPE/硝化棉(氮含量=12.0%)共混体系的低温玻璃化转变温度均低于-10℃,硝化棉的低温力学性能得到改善。共混体系均出现2个Tg,GAPE/硝化棉(氮含量=13.5%)共混体系中当GAPE含量为40%时,两相的疋较为靠近;GEPE/硝化棉(氮含量=12.0%)共混体系中当GAPE的含量为30%时,两相的Tg较为靠近,说明此配比下的两相相容性较好。由低温粘弹系数的计算知,这两个配比下材料的低温脆性和柔顺性均较好。当GAPE质量分数为30%时,GAPE/硝化棉(氮含量=12.0%)共混体系的抗拉强度为43.3MPa;而此配比下GAPE/硝化棉(氮含量=12.0%)的断裂伸长率达到33.5%,比硝化棉(氮含量=12.0%)的断裂伸长率7.7%提高了近5倍。同时,当GAPE的质量分数为30%时,GAPE/硝化棉(氮含量=13.5%)的抗拉强度为63.5MPa,断裂伸长率为30.5%。
     在研究了GAPE对硝化棉的力学性能改性获得一种选用GAPE.硝化棉作为高能高强度复合粘结剂的体系的基础上,选用不同硬段质量分数的GAPE,合成两组不同质量分数的GAPE/硝化棉/硝化三乙二醇的共混体系。采用动态热机械分析仪、力学性能测试仪及TG等技术手段对两组共混体系进行表征。随着两种不同硬段质量分数的GAPE含量增加,试样的抗拉强度和断裂伸长率均出现先增大后减小的趋势,当GAPE-3(硬段质量分数为36%)的含量为5%时,体系的抗拉强度和断裂伸长率均较好,使抗拉强度从24.7MPa提高到32.1MPa,断裂伸长率从37.0%提高到54.4%。同样当GAPE-2(硬段质量分数为33%)含量为5%时,体系的抗拉强度从24.7MPa提高到32.4MPa,断裂伸长率从37.0%提高到58.5%。热失重分析表明:硝化棉/硝化三乙二醇体系的分解温度为127℃,加入GAPE后,热分解温度提前到105℃左右,说明GAPE能够促进硝化棉/硝化三乙二醇体系的热分解过程,降低热分解温度。动态力学性能测试表明:硝化棉/硝化三乙二醇体系中两相玻璃化温度之差为97.7℃,引入GAPE后,两相的玻璃化温度之差缩小,体系的相容性较好。
     利用NC的葡萄糖的分子链上残余的-OH与含自由-NCO的GAP-MDI预聚物发生化学反应制得GAP/NC依次为30/70、35/65、40/60、50/50的GAP-MDI/NC试样。当GAP的含量为50%时,产物的断裂伸长率为61.7%,高于NC的断裂伸长率7.7%,此时产物的抗拉强度为33.4MPa,低于NC的抗拉强度75.2MPa;动态力学性能测试表明引入GAP-MDI预聚物后,试样高温α峰向低温方向移动,α转变的峰值增大,说明NC的链段柔顺性变好,试样均出现一个低于-9.5℃的低温玻璃化转变温度,表明改性后的NC低温力学性能改善。
     针对塑料弹带对材料的机械强度、化学稳定性及耐高温性的需求,选用钛酸钾晶须对PA66和POM进行改性。当钛酸钾晶须的含量为20%时,POM的拉伸强度由55.9MPa提高至86.0MPa,提高了53.8%;当钛酸钾晶须的含量为30%时,PA66的拉伸强度由68.2MPa提高至127.6MPa,提高了87.1%。进一步探讨了试样的最佳注射工艺条件,得出当注射温度为210℃、模具温度为90℃、注射压力为55MPa时,钛酸钾改性POM-ZA343的拉伸强度最大为89.1MPa,相比最小值提高了12.9%;当注射温度为315℃、模具温度为60℃、注射压力为60MPa时,钛酸钾改性PA66-ZN262B的拉伸强度最大为127.6MPa,相比最小值提高了35.2%。
Polymers have been applied more and more extensively in ammunition in recent years. Nitrocellulose (NC) binder and plastic belt just are the typical polymers. Binder is a key part in gun propellant, to a great extent, whcih affects the energy performance and mechanical properties of gun propellant. Nitrocellulose (NC) binder has been widely used in single-base, double-base and tri-base gun propellants, while the cryogenic mechanical properties of NC are relatively not good due to its high glass transition temperature, which limits its application in gun propellant. Glycidyl azide polymer (GAP) which is a novel energetic binder being is considered as the key component of gun propellants due to its insensitivity and high energy. The pendant azide group of GAP main chain results in low mechanical properties of gun propellants, so it is necessary to improve the mechanical properties of GAP binder. In this paper, NC and GAP were modified by the reinforcing mechanism of polymers in order to obtain the complementary of energetic binder which hopes to meet the demands of gun propellant and propellant. Recently, plastic belt especially PA66and POM have been widely used in new kinds of projectiles. The tensile strength of potassium titanate whisker reaches to7000MPa, and it also shows well wear resistance, heat resistance and low cost. So in this paper, potassium titanate whisker is tried to modify PA66and POM. The main work is as follows:
     Gap-based polyurethane elastomer (GAPE) with different hard segment contents were synthesized with4,4'-Diphenylmethane diisocyanate (MDI),1,4-butylene glycol(BDO) as hard segments and GAP as soft segments. The results showed that with33wt%of hard segment, the stiffness and flexibility of GAPE-2were better. The αf of GAPE-2at low temperature was larger. What's more, the low-temperature fragility parameter and activation energy of GAPE-2were lower, respectively,55.6and271.0kJ·mor-1. As the mass fraction of hard segment increased from30%to36%, the density GAPE increased from1.35g-cm-3to1.52g·cm-3. With33wt%of hard segment, the tensile strength of GAPE-2was up to maximum13.3MPa, which was equivalent to about209%higher than that of GAPE-1with30wt%of hard segment and87.3%higher than that of GAPE-3with33wt%. And the breaking elongation of GAPE was better.
     Two series of blends of GAPE/NC (WN=12.0%),GAPE/NC(WN=13.5%) were prepared by solution mixing. The properties of the blends were analyzed by means of true Density, FTIR spectroscopy, dynamic mechanical analysis (DMA) and tensile testing. The Tg at low temperature of GAPE/NC (WN=13.5%) was below-3℃. The Tg at low temperature of GAPE/NC (WN=12.0%) was below-10℃. The mechanical properties of NC at low temperature were improved. When the mass fraction of GAPE was30%, the blends of GAPE/NC (WN=12.0%) exhibited good compatibility. When the mass fraction of GAPE was40%, the blends of GAPE/NC (WN=13.5%) exhibited good compatibility.What's more, the low-temperature brittleness and flexibility of the two ratio were better. When the mass fraction of GAPE was30%, the tensile strength of GAPE/NC (WN=12.0%) was43.3MPa and its elongation was33.5%, which was5times more than that of NC. When the mass fraction of GAPE was30%, the tensile strength of GAPE/NC (WN=13.5%) was63.5MPa and its elongation was30.5%.
     Based on the modification of the mechanical properties of the nitrocellulose by GAPE, two blends of GAPE/TEGN/NC were prepared by solution mixing. With the GAPE content increasing, the tensile strength and the elongation of samples increased first and then decreased. When the mass fraction of GAPE-3(with36wt%of hard segment) was5%, the tensile strength of the blends increased from24.7MPa to32.1MPa and the elongation of the blends increased from37.0%to54.4%. When the mass fraction of GAPE-2(with33wt%of hard segment) was5%, the tensile strength of the blends increased from24.7MPa to32.4MPa and the elongation of the blends increased from37.0%to58.5%. TG showed that the decompostion temperature of GAPE/TEGN/NC was105℃while the decompostion temperature of TEGN/NC was127℃. This suggested that GAPE could promote the thermal decomposition process and reduce the temperature of thermal decomposition. The DMA analysis showed that the compatibility got better with GAPE adding.
     The polyurethane prepolymer was synthesized based on diphenylmethane4,4'-diisocyanate (MDI) and GAP, and then the prepolymer was grafted onto NC, the graft-polymer was gained. Experiments showed when the mass fraction of GAP was50%, the ε of the graft-polymer could increase to61.7%. It was obviously higher than the ε of NC. The DMA analysis indicated that the chain flexibility increased. What's more, The lower Tg was-9.5℃, it illustrated that the mechanical properties at low temperature were improved.
     In order to meet the requirements of the mechanical strength and dimensional stability of plastic belts, potassium titanate whisker were used to modify PA66and POM. When the mass fraction of potassium titanate whisker was30%, the tensile strength of POM increased from55.9MPa to86.0MPa, increased by53.8%and the tensile strength of PA66increased from68.2MPa to127.6MPa, increased by87.1%. When injection temperature was210℃, mold temperature was90℃and injection pressure was55MPa, the tensile strength of ZA343was89.1MPa. When injection temperature was315℃, mold temperature was60℃and the injection pressure was60MPa, the tensile strength of ZN262B was127.6MPa.
引文
[1]李向东,钱建平,曹兵,等.弹药概论[M].北京:国防工业出版社,2004.
    [2]于骐.弹药学[M].北京:国防工业出版社,1987,1-7.
    [3]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995,204~358.
    [4]何利明,肖忠良,张续柱,等.国外火药含能粘结剂研究动态[J].含能材料,2003,11(2):99.
    [5]Beaupre F, Ampleman G, Ahad E. Application of GAP-based binders to low vulnerability gun propellant formulations [A].6th International Gun Propellant & Pr opulsionSymposium[C],1994.
    [6]Beaupre F, Ahad E. Preliminary studies of H ELOVA type gun propellant formulations containing energetic binders [A].International Symposium Ener getic Materials Technology [C],1994.
    [7]Ampleman G, Beaupr e F. Synthesis of linear GAP-basedenergetic thermoplastic elastomers for use in H ELOVAgun propellant formulations [A].27t h Inter national ICT.Conference[C],1996.
    [8]Beaupre F, Ampleman G. Processing and evaluation of gun propellant formul ations containing energetic thermoplstic elastomers [A].NDIAIM/EM Symposi um[C],1998.
    [9]Ampleman G, Marois A, Beaupre F. Synthesis of energetic copolyurethane thermoplastic elastomers for recy clable GAP-based HELOVA gun propellants[A].NDIA IM/EM Symposium[C],1998.
    [10]Michael G L, Frederick B P.High-rate mechanical response of next-generation gun proprllants [R]. Aberdeen:Army Research Lab,2001.
    [11]张君启,张炜,朱慧等.固体推进剂含能黏合剂体系研究进展.化学推进剂与高分子材料,2006,4(3):6.
    [12]Andrew J.Sanderson, Wayne Edwards.Synthesis of energetic thermoplastic elastomers containing oligomeric urethane linkages[P].usp0074215,2006.
    [13]刘建平.国外固体推进剂技术现状与发展趋势.固体火箭技术,2000,23(1):22.
    [14]李上文,赵凤起.国外固体推进剂研究与开发的趋势[J].固体火箭技术,2002,25(2):36~42.
    [15]徐复铭.21世纪先进发射药(1):低敏感高能发射药-新材料和新实验技术[J].南京理工大学学报,2003,27(5):551~560.
    [16]徐复铭.21世纪先进发射药(2):低敏感高能发射药-新配方、装药、点火和理论 模拟技术[J].火炸药学报,2003,26(4):1-4.
    [17]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [18]张端庆.火药用原材料性能与制备[M].北京:北京理工大学出版社,1995.
    [19]马卿,李金山,李洪珍.含能粘结剂聚缩水甘油硝酸酯的合成与表征[J].合成化学,2008,16(6):628~631.
    [20]周建华,李金山,马卿,夏敬琼.聚缩水甘油硝酸酯的热安定性和相容性研究[J].化学研究与应用,2009,21(8),1136~1139.
    [21]甘孝贤,邢颖,李娜,等.3-叠氮甲基-3-氰乙氧基甲基氧丁环均聚物的合成与性能[J].火炸药学报,2004,27(4):10~13.
    [22]郑晓东,马晓东,邱少君,等.一种新型叠氮含能固化剂的合成及性能[J].火炸药学报,2006,29(5):63~66.
    [23]张志刚,卢先明,甘孝贤相转移催化法合成BBMO和BAMO[J].火炸药学报,2007,30(5):32~37.
    [24]甘孝贤,邱少君,卢先明,等.3-叠氮甲基-3-硝酸酯甲基氧丁环及聚合物的合成及其性能[J].火炸药学报,2003,26(3):12-17.
    [25]李娜,甘孝贤,邢颖,韩涛含能粘合齐PAMMO的合成与性能研究[J].含能材料,2007,15(1):53~57.
    [26]Provalas Arthur.Energetic Polymers and plasticisers for Explosive.Formulations-A Review of Recent Advances[R].DSTO-TR-0966:10,29.
    [27]Gregory Y, Kuo K K.Characterization of combustion and propulsive behavior of NF2-based solid propellant [A].50th JANNAF Propulsion Meeting[C].2001.
    [28]陈莹.聚NIMMO基LOVA炮药的进展.兵器快报,1999,4(7):10
    [29]邵自强.硝化纤维素生产工艺及设备[M].北京:北京理工大学出版社,2002.
    [30]郝自强,杨斐霏,王文俊,王飞俊.新一代纤维素基高性能黏合剂的研究和发展[J].火炸药学报,2006,29(2),55~57.
    [31]日本复合改性双基推进剂的研究概况[J].国外兵器技术,化工类(5),1984,20~21.
    [32]范夕萍,谭惠民,张磊,初立秋.热塑性弹性体在复合改性双基推进剂中的应用[J].推进技术,2008,29(1),124~128.
    [33]宋子明,谭惠民.火药用硝化纤维素接枝的研究[D].北京:北京理工大学,1991.
    [34]冯增国,侯竹林,王恩普.少烟复合改性双基(CMDB)推进剂力学性能研究[J].推进技术,1994,15.
    [35]吴艳光,罗运军,葛震.GAP型交联改性双基推进剂黏合剂的力学性能[J].火炸药学报,2012,35(2):66~69.
    [36]杨斐霏,邵自强,王飞俊,等.叠氮侧链支化NC的合成和表征[J].含能材料,2011,19(4):391~395.
    [37]左海丽,肖乐勤,营晓霞,周伟良.NC/GAP-TPE共混聚合物的制备和性能研究[J].固体火箭推进技术,2011,34(4):488~491.
    [38]Michael N.Compounding of glycidyl azide polymer with nitrocellulose and its influence on the properties of propellant [J].Propellants, Explosives, Pyrotechnics,2000,25:236-240.
    [39]Carignan. A zidodeoxycellulo se nit rate:U S,H430,[P].1988.
    [40]Gilbert. Process for making azido deoxycellulose:US,4849514[P].1989.
    [41]邵自强,王飞俊.新型纤维素热塑性含能黏合剂中间体合成[C] 2002全国火炸药技术及钝感弹药学术研讨会论文集.绵阳:中国工程物理研究院,2002:270~273.
    [42]邵自强,王飞俊,徐坤,等.三羟丁基纤维素醚的制备方法及合成:CN,031046398[P].2003.
    [43]Wardle R B,etal.Development of an oxetane binder poly(BAMO/AMMO) as an insensitive propellamt binder [R].International Symposium on Energetic Materials Technology Proce-edings.Florida Orlando,3862392,1994.
    [44]Robert Wardle, etal.High energy oxetane/HNIW gun propellant[C].Int. Annu.Conf. ICT 27th,52.17,1996.
    [45]Robert B Wardle, et al. Polyox etane thermoplastic elastomers as gun propellant binders [A].6th International Gun Pro pellant & Propulsion Symposium[C],1994.
    [46]李辰芳.含能(?)BAMO/AMMO粘合剂及其在固体推进剂中的应用研究[J].飞航导弹,1997,1:42~45.
    [47]ToshioMiyazaki,et al.Energetics of BAMO[J].Propellants Explosive Pyrotechnics,1992,17:5.
    [48]JUDGE D M, BADEEN M C, Jones E G D. An Advanced GAP/AN/TAGN Propellant. Part Ⅱ:Stability and Storage Life [J]. Propellants, Explosives, Pyrotechnics,2007,32 (3):227-234.
    [49]庞爱民,郑剑.高能固体推进剂技术未来发展展望[J],固体火箭技术,2004,27(4):289~293.
    [50]李再峰,冯国增.端羟基叠氮缩水甘油醚(GAP)聚氨酯某些性能的研究[J].弹性体,1996,6(4):25~27.
    [51]Ampleman G, Desilets S, Marois A. Energetic thermoplastic elastomers based on glycidyl azide polymers with increased functionality [C],27th ICT,1996.
    [52]Volkov E.N, Paletsky A.A, Tereshchenko A.G.Molecular Beam Mass Spectrometric Study of the Flame Structure of Composite Propellants Based on Nitraraines and Glycidyl Azide Polymer at a Pressure of 1 MPa [J]. Combustion, Explosion and Shock waves,2006,42(6):663-671.
    [53]Volkov E.N, Paletsky A.A, Tereshchenko A.G.Synthesis and Characterization of Deuterated Glycidyl Azide Polymer (GAP) [J].Propellants, Explosives, Pyrotechnics,2006,131(2):131-138.
    [54]Beaupre F, Ampleman G, Ahad E. Application of GAPbased binders to low vulnerability gun propellant formulations [A].6th International Gun Propellant& Propulsion Symposium[C],1994.
    [55]Beaupre F, Ahad E. Preliminary studies of H ELOVA type gun propellant formulations containing energetic binders[A].International Symposium Energetic Materials Techno-logy[C],1994.
    [56]Ampleman G, Beaupr e F. Synthesis of linear GAP-based energetic thermoplastic elastomers for use in H ELOVA gun propellant formulations [A].27th International ICT Conference[C],1996.
    [57]Beaupre F, Ampleman G.Processing and evaluation of gun propellant formulations containing energetic thermoplastic elastomers [A].NDIA IM/EM Symposium[C],1998.
    [58]Ampleman G, Marois A, Beaupre F. Synthesis of energetic copolyurethane thermoplastic elastomers for recy clable GAP-based HELOVA gun propellants [A]. NDIA IM/EM Symposium[C],1998.
    [59]SYLVAIN D, ANDRE M, AMPLEMAN G.Energetic compolyurethane thermoplastic elastomers:CA2330713 [P],2001-09-02.
    [60]Ampleman.New Insensitive melt2cast exp losives based on energetic thermoplastic elastomers[A].Insensitive Munitions& Energetic Materials technology Symposium[C], Quebec,2001.
    [61]Patrick Brousseau, Guy Ampleman, Sonia Thiboutot. New melt cast explosives based on energetic thermoplastic elastomers [A].33th ICT[C], Karlsruhe,2002.
    [62]G Ampleman,S Desilets,A Marois Energetic thermoplastic elastomers based on glycidyl azide polymers with increased functionality [A],2 th ICT[C],Karlsruhe,1996.
    [63]P Braithwaite, W Edwards, A J Sanderson. The Synthesis and combustion of high energy thermoplastic elastomer Binders[A].32th ICT[C], Karlsruhe,2001.
    [64]曹一林,张九轩.四氢呋喃共聚型GAP粘合剂研究[J].固体火箭技术,1997,(20):45~51.
    [65]Subramanian K.Hydroxylterminated poly(azidomethyl ethylene oxide-b-butadie nebazidomethyl ethylene oxide) synthesis, characterization and its potential as a propellant binder[J]. European polymer Journal,1999,35(8):1403-141 1.
    [66]Mohan.Y.M., Raju M.P., Raju K.M.Synthesis and characterization of GAP-PEG copolymers [J]. Journal of Polymer Materials,2005,54(7):651-666.
    [67]Byoung Sun Min.Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and its Propellants[J].Propellants,Explosives,Pyrotechnics,2008,33:131.
    [68]Hulya Arslan, Mehmet S. Eroglu, Baki Hazer. Cericion initiation of methyl methacrylate from poly (glycidyl azide) diol[J]. Eur Polym J,2001,37 (3): 581-596.
    [69]菅晓霞,肖乐勤,左海丽,等.GAP基热塑性弹性体的合成及表征[J].含能材料,2008,16(5):614~617.
    [70]左海丽,肖乐勤,菅晓霞,等.GAP/MDI/DEG含能热塑性弹性体的合成与性能[J].高分子材料科学与工程,2010,26(12):20~23.
    [71]史永高,陈阳泉.塑料弹带[M].西安,陕西科学技术出版社,1995.
    [72]王从贵,洪采珍,陈铨基,等.塑料弹带的研究[J].工程塑料用,1983,(3),28~31.
    [72]王树伦,章玉斋.塑料弹带和塑料弹托的应用进展[J].工程塑料应用,2008,36(12):75~78.
    [73]史永高.塑料弹带减小发射过程中起始扰动的研究[C].中国兵工学会应用力学第八次学术年会论文集.北京:[出版者不详],1994.
    [74]史永高.塑料弹带的作用分析[J].弹箭技术,1988(2).
    [75]史永高,刘新龙,胡桂梅,等.塑料弹带设计中常见问题分析[J].西安工业学报,2000,20(4):338~341.
    [76]宁俊生.发射初期弹带材料对弹带及弹托中应力的影响[J].兵器材料科学与工程,1995,18(5):39~44.
    [77]Holtzman,A.l:Goodson,F.R.Plastic Composite Sabot.US4735148,1988.
    [78]杨淑丽.塑料及符合材料弹托[J].弹箭技术,1998(2):42-45.
    [79]顾文彬,赵有守,陶耀兴,等.尼龙弹带坡膛挤进过程中应力应变分析[J].弹道学报,1994(3):5-13.
    [80]张福德,程传文.MC尼龙弹带在脱壳穿甲弹中的应用分析[J].弹箭与制导学报, 2003,23(3),119~121.
    [81]梁振芬.钛酸钾晶须在工程塑料中应用的研究[J].化学工程师,2005(2):12-14.
    [82]熊英,陈光顺,郭少云等.聚氯乙烯/钛酸钾晶须复合材料性能的研究[J].塑料工业,2004(7):32~35.
    [83]龚世杰.GAP推进剂综述[J].推进技术,1991,14(1):67~70.
    [84]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [85]Xia Sheng, Mufit Akinc, Michael R. Kessler. Creep behavior of bisphenol E cyanate ester/alumina nanocomposites[J].Materials Science and Engineering A,2010,527(21):5892-5899.
    [86]张伟,樊学忠,张腊莹,等.NEPE推进剂低温瞬态的粘弹特性[J].固体火箭技术,2009,32(3):298~301.
    [87]Holl G,Wilker S,Kaiser M,et al.Former and modern method for the determination of service life of rocket propellant[R].AD-A330303,1997.
    [88]WarrenRC.Transition and relaxation in plasticized nitrocellulose [J].Polymer,l 988,29:919-923.
    [89]过梅丽.世界先进的动态机械热分析仪(DMTA)及其应用[J].现代科学仪器,1996,1:55~58.
    [90]洪晓斌,杜磊,张小.高增塑聚乙二醇聚氨酯弹性体形态结构的研究[J].推进技术,1999,20(3):100~102.
    [91]何吉宇,谭慧民.热塑性聚氨酯复合固体推进剂[J].宇航学报,2008,29(1):252~254.
    [92]谢富春,余东升,胡治元.透明聚氨酯弹性体的合成[J].粘结,2007,28(2):21-23.
    [93]詹小丽.基DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学交通科学与工程学院,2007.
    [94]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:38-83.
    [95]Simatos D, Blond G, Roudaunt G, et al.Influence of heating and cooling ra tes on the glass transition temperature and the fragility parameter of sorbitol and fructose as measured by DSC[J].Journal of Thermal Analysis,1996,47 (5):1419-1436.
    [96]Stacer R G,Husband D M.Molecular structure of the ideal solid propellant b inder[J].Propellants, Explosives,pyrotechnics,1991,16(4):167-176.
    [97]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [98]许戈文.水性聚氨酯材料[M].北京:化学工业出版社,2006.
    [99]刘涛,叶林,刘永刚,等.热塑性含氟聚氨酯弹性体的制备与性能[J].高分子材料科学与工程,2009,25(6):143~146.
    [100]甄建军,翟文.微相分离对聚氨酯耐热性能的影响研究[J].弹性体,2009,19(1):23~25.
    [101]刘允航,孔凡家,杨晓慧,等.含砜基扩链剂对聚氨酯微相分离和性能的影响[J].聚氨酯工业,2009,24(3):13~16.
    [102]AfshaniM E, Sahafian A,Hamidi A.Experimental research on composite modified doule base propellats[C].Proceedings of the 2003 Internationl Autmn Seminar on Propellants, Explosives and Pyrotechnics.Guilin,2003:491-498.
    [103]Liang Shunhua.Preparation process of porous ammonium perchlorate and its effect on the burning rate of solid propellant[J].Journal of Propulsion Tech nology,1993(4):72-78.
    [104]Ram an K V, Singh H, Rao K R K. Ballistic modification of composite modified double-base propellants containing ammonium perchlorate[J].Propell ants, Explosives, Pyrotechn ics,1987,12:13-16.
    [105]Beckwith SW, Carroll H B.Bulk modulus determination of solid propellant void content [J]Journal of Spacecraft and Rockets,1985,22 (2):156-161.
    [106]任玉立,陈少镇.单基火药中硝化纤维素溶解性能的研究[J].化工通讯,1981(2).
    [107]夏正斌,涂伟萍,杨卓如,等.涂料中溶剂的选择[J].涂料工业,2000,(5):35~39.
    [108]宁斌科,刘蓉,杨正权,等.硝化棉一级催化分解反应动力学参数树脂模拟[J].含能材料,1999,7(4):162~165.
    [109]吴培熙,张留城.聚合物共混改性原理及工艺[M].北京:轻工业出版社,1984.
    [110]徐皖育,何卫东,王泽山.高能量高强度发射药配方研究[J].火炸药学报.2003,26(3):44~46
    [111]MULLERD.New High Energetic Gun propellant with CL20[R].Insensitive Munitions and Energetic Materials Technology Symposium,1998.
    [112]王泽山.发射药技术展望[J].华北工学院学报(社科版),2001(增刊):36-40.
    [113]郑林.国外热塑性弹性体发射药的发展概况[J].火炸药学报,2007,30(6):64~71.
    [114]黄振亚,杨丽侠,余斌,等.高能硝胺发射药的膛内基本燃烧特征[J].火炸药学报,1997,20(2):1-5
    [115]张邹邹,蒋树君,张玉成,等.NGu对含RDX硝胺发射药燃烧性能的影响[J].火炸药学报,2007,30(3):72~74
    [116]Jeevananda, Iddaramaiah T.Synthesis and Characterization of Polyaniline Fil led PU/PMMA Interpenetrating Polymer Networks [J].European polymer jou rnal,2003,39(3):569-578.
    [117]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(2):63~65.
    [118]赵凤起,徐司雨,郑林,等.燃速催化剂对太根发射药燃烧性能的影响[J].火炸药学报,2007,30(4):38-42.
    [119]王琛.高分子材料改性技术[M].北京:化学工业出版社,2007:6~20.
    [120]潘祖仁.高分子化学[M].北京:化学工业出版社,1997.
    [121]复旦大学高分子科学系.高分子化学[M].上海:复旦大学出版社,1995.
    [122]史永高,韩静.滑动式塑料弹带的结构对弹丸转速的影响[J].弹箭与制导学报,1996(1):56~60.
    [123]宋顺成,王立彬,袁书强,等.弹带槽底压力作用下的弹体符合结构应力分[J].兵器材料科学与工程,1998,21(5):28~31.
    [124]史永高,陈阳泉.塑料弹带减少起始扰动的试验研究[J].弹道学报,1995,7(2):74.
    [125]冯新,吕家桢,陆小华,等.钛酸钾晶须在复合材料中的应用[J].复合材料学报,1999,16(4):1-7.
    [126]贾巧英,马晓燕,梁国正,等.晶须及其在高分子材料中的应用[J].高分子通报,2002(6):71~78.
    [127]内田盛野编,石行,等译.高物性新型复合材料.北京:航空工业出版社,1992.
    [128]孟庆浩,李啸风,杜克强,等.高长径比钛酸钾晶须的合成及其结构研究[J].化学通报,2002,65(7):482~484.
    [129]吕通建,隗学礼,赵宽放,等.钛酸钾晶须增强PA6的研究[J].工程塑料应用,1995,23(6):5-8.
    [130]杨宁,贵大勇,田军.晶须增强尼龙66及其合金力学性能研究[J].塑料,2006,35(2):14~18.
    [131]Joseph et al.An experimental study on the effect of polymer viscoelasticity on layers rearrangement in coextrusion structures [J]. Poly m End Sci,1998,38 (7):1060-1071.
    [132]K matsunga,T kajiwara,K Funastu.Numerical simulation of multi-layer flow for polymer melts[J].Polym End Sci,1998,38(7):1099-1111.
    [133]于建.聚甲醛的合金化及其复合增强研究[J].工程塑料应用,2001,29(7):47~51.
    [134]孙群辉,贾德民,罗征祥,等.注塑成型条件对聚甲醛制品冲击性能的影响[J].塑料工业,1995,23(1):8-11.
    [135]李雪峰,郭绍辉,冯嘉春,等.注射工艺对稀土β成核剂改性PP力学性能影响[J].现代塑料加工应用,2008,20(1):11~14.
    [136]许福,张平,丁燕怀,等.PA66/PTT共混物的吸水性和力学性能[J].高分子材料科学与工程,2010,26(2):73~76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700