用户名: 密码: 验证码:
V_2O_5-WO_3/TiO_2及其F掺杂催化剂的制备、脱硝特性与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性催化还原技术(SCR)是当今各国采取的最为有效的脱除氮氧化物的技术,作为该技术的核心,V2O5-WO3/TiO2催化剂在工业上应用最为广泛。本文在国内外NH3-SCR脱硝过程及其催化剂研究的基础上,开展了WO3促进V2o5-wo3/riO2催化剂脱硝活性机制研究,并对该催化剂进行了F改性,系统地研究了F掺杂对提高V2O5-WO3/TiO2催化剂脱硝活性的过程机理,并对F掺杂催化剂开展了分子模拟及应用研究。本文的研究结果为设计新型宽活性温度窗口的SCR催化剂提供了依据。
     首先,采用溶胶凝胶法制备了TiO2载体,再用过量浸渍法分别负载WO3和V2O5,制备了V2O5-WO3/TiO2催化剂。该催化剂脱硝活性评价结果表明,WO3拓宽了催化剂的活性温度窗口,使催化剂的脱硝活性提高,当WO3含量达到6%时该趋势明显。结合XRD、XPS、PL以及EPR等表征技术,研究了WO3对催化剂结构及表面特性的影响,发现WO3能够与TiO2载体表面氧空位作用,抑制了载体金红石相的产生,使催化剂在高温条件下稳定性增强;WO3具有一定储存和转移电子的能力,促进了V2O5与载体TiO2的作用,使电子更易由载体向V2O5转移,从而使催化剂表面还原态V2O5增多;催化剂表面的还原态V2O5是超氧自由基生成的活性位点,WO3的存在促进了催化剂表面超氧自由基数量的增多,从而使V2O5-WO3/TiO2催化剂脱硝活性提高。
     其次,以研制起活温度较低,且在低V及低W条件下具有较高SCR脱硝活性的V2O5-WO3/TiO2类催化剂为目的,从促进活性物种与载体相互作用进而提高催化剂表面超氧自由基数量的角度出发,提出了F掺杂催化剂的研究思路。采用溶胶凝胶法制备了F掺杂TiO2载体,并用过量浸渍法分别负载WO3和V2O5,制备了F掺杂V2O5-WO3/TiO2催化剂。该催化剂脱硝活性评价结果表明, F掺杂后催化剂在250℃以下脱硝活性明显提高。结合XRD、XPS、PL以及EPR等表征、在线处理与离线表征分析以及瞬态反应技术,研究了F掺杂对催化剂结构及表面特性的影响,发现F掺杂TiO2表面呈现较多的带电氧空位;WO3与带电氧空位作用后催化剂表面还原态WO3数量增加;还原态WO3与O2作用后,自身被氧化为WO3,O2得电子转变为超氧自由基;同时,NH3在催化剂表面扮演着电子源的角色。F掺杂促进了催化剂对NO的氧化,在F掺杂量为摩尔比F/Ti为1.35%、3%WO3负载量、1%V2O5负载量、500ppm NO+500ppm NH3+5%O2、空速为15000h-1的条件下,反应温度为240℃时,F掺杂V2O5-WO3/TiO2催化剂脱硝活性达到96.4%。
     再者,在探明的F掺杂V2O5-WO3/TiO2催化剂表面特性的基础上,建立了该催化剂的分子簇模型。采用密度泛函方法计算了该催化剂表面结构,根据计算的键长、Mulliken电荷以及结构片段能量,进一步分析了F掺杂V2O5-WO3/TiO2催化剂结构特性,发现F掺杂进入TiO2晶格中的位点为桥氧键处的O原子位;氧空位容易在桥氧键处的O原子处产生,并且F掺杂的氧空位对O物种具有较高的活性;与WO3/TiO2相比,F掺杂WO3/TiO2表面在氧空位电子的作用下,W物种显示了还原态特性,并且形成的空间结构更容易使W物种从载体上获得电子;与V2O5-WO3/TiO2相比,F掺杂V2O5-WO3/TiO2表面的W物种依然显示了还原态特性,并且V物种的加入更加降低了W物种的价态,另外,F掺杂也降低了V物种的价态,在还原态W物种促进超氧自由基生成的基础上,部分新生成的还原态V也使催化剂超氧自由基数量进一步升高。
     在上述研究的基础上,开展模块式F掺杂V2O5-WO3/TiO2催化剂制备及应用研究。在此过程中优化了模块式催化剂制备中所涉及的捏合、练泥、挤出等工艺,并重点研究干燥和煅烧技术,制备的75×75×800mm催化剂,轴向最大抗裂强度为1.75MPa,径向最大抗裂强度为0.6MPa;固定床测试商业级原料制备的F掺杂催化剂评价结果与溶胶凝胶-过量浸渍法制备的催化剂评价结果具有相同的趋势;商业钛钨粉制备的模块式F掺杂催化剂具有较高的脱硝活性;70kW模拟烟气脱硝评价装置与100kW真实烟气脱硝评价装置催化剂测试结果表明,模块式F掺杂催化剂脱硝活性温度窗口较宽,且在60h内模块式F掺杂催化剂脱硝活性保持稳定。
The selective catalytic reduction (SCR) of NOx with NH3in the presence of excess oxygen has been proven to be an efficient process for the NOx removal. V2O5+WO3/TiO2has been applied as an industrial catalyst for many years as the core of the SCR technology. Based on the advances of non-medium temperature NH3-SCR process and the relative catalysts, this study has described the promotional effect of WO3on O2-over V2O5/TiO2catalyst for selective catalytic reduction of NO with NH3and V2O5-WO3/TiO2was modified with fluorine. The reactive properties of the F-doped V2O5-WO3/TiO2catalyst in low-temperature SCR process have been systematically investigated. Based on these studies, molecular simulation and pilot experiment for the F-doped catalyt have been studied. The results would be benefit for the design of new low-temperature SCR catalyst and contribute to a better understanding of the low-temperature SCR processes.
     Firstly, V2O5-WO3/TiO2catalyst was prepared by a sol-gel method for titania preparation, followed by impregnation for W and then V. The experimental results showed that temperature window for SCR reaction was greatly widened and NO conversion was improved at non-medium temperature by WO3over the V2O5-WO3/TiO2catalyst. The trend was obvious as WO3loadings to6%. Characterized by XRD, XPS, PL and EPR spectra, the effects of WO3on the structural and surface properties of the V2O5-WO3/TiO2catalyst were studied. It showed that WO3could interact with oxygen vacancies of the TiO2surface that could inhibit the formation of crystallinity of rutile TiO2to improve the catalyst stability at high-temperature. Furthermore, WO3could store electrons and transfer electrons over V2O5-WO3/TiO2catalyst to enhance the interaction of V2O5with TiO2. It was facilitated that electrons could be transferred from TiO2to V2O5to improve the formation of the reduced V2O5. The reduced V2O5over the catalyst was the active sites for the formation of superoxide ions and WO3could increase the amount of superoxide ions that improve the NO convertion of V2O5-WO3/riO2catalyst.
     Then, the aim of the V2Os-WO3/TiO2catalyst design was to improve the activity of a catalyst with low V2O5and WO3loadings. Based on improving the interaction of active species with supporter to increase the amount of superoxide ions, it was described that F-doped catalyst formed by partly substituting the lattice oxygen of the catalyst with fluorine. The F-doped V2Os-WO3/TiO2catalyst was prepared by a sol-gel method for titania preparation, followed by impregnation for W and then V. The experimental results showed that NO conversion of the catalyst was improved by F doping below250℃. Characterized by XRD, XPS, PL and EPR spectra, online processing and offline characterization, and instantaneous reaction, the effects of F doping on the structural and surface properties of the F-doped V2O5-WO3/TiO2catalyst have been studied. It showed that F doping could improve the formation of oxygen vacancies with electron, F doping improved the interaction of WO3with TiO2by oxygen vacancies to facilitate the formation of the reduced WO3, reduced WO3could interact with O2to form superoxide ions. Furthermore, NH3acted as electron donor in the SCR reaction. F doping could improve the NO oxidation. And the catalyst with [F]/[Ti]=1.35×10-2showed the highest NO removal efficiency in SCR reaction at low temperatures. When the reacting mixture contained500ppm NO+500ppm NH3+5vol%O2balanced with N2at a gas hour space velocity of15,000h-1, The NO removal of this F-doped catalyst with1%V2O5and3%WO3was96.4%at240℃.
     Furthermore, based on the study of structural and surface properties, the cluster of the catalyst was created. The structural properties of the F-doped V2O5-WO3/TiO2catalyst were further studied on the basis of bond length, mulliken charge and bond energy of the molecular simulations results using density functional theory. It showed that the structure of F-doped TiO2supporter that F atom instead bridging oxygen of TiO2was stable and oxygen vacancies that formed at bridging oxygen were stable. The oxygen vacancies by F doping exhibited high affinity to oxygen to improve the interaction with W species. It facilitated the formation of reduced W species over WTiF and VWTiF catalyst by F doping. Furthermore, V species could also improve the formation of reduced W species and F doping could enhance the formation of reduced V species. Therefore, these aspects resulted in the increase of the superoxide ions over WTiF and VWTiF catalyst
     Finally, based on the above results, development of monolith honeycomb catalyst of V2O5-WO3/TiO2catalyst and its pilot experiment were studied. The preparation process of the monolith honeycomb catalyst involved vacuum pugging, staleness, kneading, extrusion molding, drying and calcining technology were optimalized. The F-doped catalyst preparation of75×75×800mm was succeed. The axial maximum crack strength of the F-doped monolith honeycomb catalyst was1.75MPa and its radial maximum crack strength was0.6Mpa. The NO removal evaluation results of F-doped catalyst that was prepared by commercial grade materials by the test of fixed bed reactor had the same trend with the one that was prepared by a sol-gel method for titania preparation, followed by impregnation for W and then V. The F-doped monolith honeycomb catalyst that was prepared by commercial titanium tungsten powder had a higher effect of NO removal. The NOx removal results of70kW De-NOx reactor of coal-fired simulated flue gas and100kW generator reactor showed that F-doped V2O5-WO3/TiO2monolith honeycomb catalyst had an ideal NOx conversion and its NOx conversion remained stable in60hours.
引文
[1]钟秦.燃煤烟气脱硫脱硝控制技术及工程实例[M].第二版.北京:化学工业出版社,2007
    [2]孙克勤,韩祥.燃煤电厂烟气脱硝设备及运行[M].北京:机械工业出版社,2011
    [3]李俊华,陈亮,常化振,郝吉明.氮氧化物排放控制原理及新技术[C].北京:中国环境科学学会学术年会论文集,2010,3406-3410
    [4]刘毅,杨景利.江苏阚山发电有限公司脱硝工程概述[C].北京:第二届中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集,2006,9:67-68
    [5]胡永峰,白永峰.SCR法烟气脱硝技术在火电厂的应用[J].节能技术,2007,25(2):152-156
    [6]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2007
    [7]Hayhurst A N, Mclean H-A G. Mechanism for producing NO from nitrogen in flames[J]. Nature, 1974,251(5473):33~35
    [8]Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today,1988,2(4): 369~531
    [9]Fenimore C P. Formation of nitric oxide from fuel nitrogen in ethylene flames[J]. Combustion and Flame,1972,19(2):289~296
    [10]吴占松,马润田,赵满成.煤炭清洁有效利用技术.第一版,北京:化学工业出版社,2007:300-302
    [11]高凤,杨嘉谟.燃煤烟气脱硝技术的应用与进展[J].环境保护科学,2007,33(3):11-13
    [12]Ahmaruzzaman M, Gupta V K. Application of Coal Fly Ash in Air Quality Management. Industrial & Engineering Chemistry Research,2012,51(47):15299~15314
    [13]Khalil E E.燃烧室与工业炉的模拟[J].陈熙,周晓青译.北京:科学出版社,1987
    [14]Zhang Y P, Zhu X Q, Shen K, Xu H T, Sun K Q, Zhou C C. Influence of ceria modification on the properties of TiO2-ZrO2 supported V2O5 catalysts for selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science,2012,376(1):233~238
    [15]李玉江,吴涛.德国燃煤电厂氮氧化物的控制技术[J].环境科学研究,2000,13(4):47-49
    [16]欧盟委员会.大型火力发电厂最佳可行技术参考文[Z],中国一欧盟政策对话支持项目,2006
    [17]井鹏,岳涛,李晓岩,高晓晶,张迎春.火电厂氮氧化物控制标准、政策分析及研究[J].中国环保产业,2009,(4):19-23
    [18]Forzatti P. Present Status and Perspectives in De-NOx SCR Catalysis[J]. Applied Catalysis A: General,2001,222(1-2):221~236
    [19]GB13223-1996.火电厂大气污染物排放标准[S].1996
    [20]中华人民共和国大气污染防治法[Z].2000
    [21]GB13223-2003.火电厂大气污染物排放标准[S].2003
    [22]GB13223-2011.火电厂大气污染物排放标准[S].2011
    [23]苏永.火力发电厂烟气脱硝技术研究[J].热电技术.2009,(2):40-43
    [24]Radojevic M. Reduction of nitrogen oxides in flue gases[J]. Environmental Pollution,1998,102(1): 685~689
    [25]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].第一版.北京:化学工业出版社,2005:70-104
    [26]Lyon R K. The NH3-NO-O2 reaction[J]. International Journal of Chemical Kinetics,1976,8(2): 315~318
    [27]Lyon R K, Tenner A R. Reducing nitrogen oxides emissions by ammonia injection. Proceedings of 71st Annual Meeting of Air Pollution Control Association[C]. Houston, Texas.1978,71:78-85
    [28]Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts[J]. Applied Catalysis B:Environmental, 1996,(10):299~311
    [29]Herrmann J M, Disdier J. Electrical properties of V2O5-WO3/TiO2 EUROCAT catalysts evidence for redox process in selective catalytic reduction (SCR) deNOx reaction[J]. Catalysis Today,2000,56: 389~401
    [30]Ma Z R, Weng D, Wu X D, Si Z S. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia[J]. Journal of Environmental Sciences, 2012,24(7):1305~1316
    [31]Kobylinski T P, Taylor B W. The catalytic chemistry of mitric oxide:Ⅱ Reduction of nitric oxide over noble metal catalysts[J]. Journal of Catalysis,1974,33(3):376~384
    [32]钟秦,曲虹霞,徐复铭.V2O5/TiO2选择性催化还原脱除烟气中的NOx[J].燃料化学学报,2001,29(4):378-380
    [33]贾双燕,路涛,李晓芸,宁献武.选择性催化还原烟气脱硝技术及其在我国的应用研究[J].电力环境保护,2004,20(1):19-21
    [34]Shang X S, Hu G R, He C, Zhao J P, Zhang F W, Xu Y, Zhang Y F, Li J R, Chen J H. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. Journal of Industrial and Engineering Chemistry,2012,18(1):513~519
    [35]Shimizu K-I, Satsuma A, Hattori T. Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts[J]. Applied Catalysis B:Environmental,1998,16(4):319~326
    [36]Krishnan A T, Boehman A L. Selective catalytic reduction of nitric oxide with ammonia at low temperatures[J]. Applied Catalysis B:Environmental,1998,18(3~4):189~198
    [37]Lukyanov D B, Lombardo E A, Sill G A, Itri J L, Hall W K. Selective catalytic reduction (SCR) of NO with methane over CoZSM-5 and HZSM-5 zeolites:On the role of free radicals and competitive oxidation reactions[J]. Journal of Catalysis,1996,163(2):447~456
    [38]Koebel M, Elsener M, Kleemann M. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines[J]. Catalysis Today,2000,59:335~345
    [39]李君华,郝吉明,付立新,等.富氧条件下贵金属催化剂上丙烯选择性还原NO研究[J].高等学校化学学报,2003,24:2060-2064
    [40]Teng H, Hsu L Y, Lai Y C. Catalytic reduction of NO with NH3 over carbons impregnated with Cu and Fe[J]. Environmental Science & Technology,2001,35(11):2369~2374
    [41]Valdes-Solis T, Marban G, Fuertes A B. Low-temperature SCR of NOx with NH3 over carbon-ceramis cellular monolith-supported manganese oxides [J]. Catalysis Today,2001,69(1-4): 259~264
    [42]Devadas M, Krocher O, Elsener M, Wokaun A, Soger N, Pfeifer M, Demel Y. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5[J]. Applied Catalysis B: Environmental,2006,67(3~4):187~196
    [43]Iwasaki M, Yamazaki K. Transient reaction analysis and steady-state kinetic study of selective catalytic reduction of NO and NO+NO2 by NH3 over Fe/ZSM-5[J]. Applied Catalysis A:General, 2009,366(1):84~92
    [44]Colombo M, Nova I, Tronconi E, SchmeiBer V, Konrad B B, Zimmermann L. NO/NO2/N2O-NH3 SCR reactions over a commercial Fe-zeolite catalyst for diesel exhaust aftertreatment:Intrinsic kinetics and monolith converter modeling[J]. Applied Catalysis B:Environmental,2012,111-112: 106~118
    [45]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用[J].热力发电,2004,33(4):1-6
    [46]Liu F D, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:reaction mechanism and H2O/SO2 inhibition[J]. Catalysis Today,2010,153(3): 70~76
    [47]顾卫荣,周明吉,马薇.燃煤烟气脱硝技术的研究进展[J].化工进展,2012,31(9):2084-2092
    [48]刘慷,张强,虞宏,于洪.火电厂脱NOx用SCR催化剂种类及工程应用[J].电力环境保护.2009,25(4):9-12
    [49]宁献武,刘树民,刘志杰,何磊,马楠.SCR脱硝系统对锅炉设备的影响及对策[J].电力环境保护,2009,25(6):34-36
    [50]毛剑虹,宋浩,吴卫红,钟毅,邱坤赞,高翔,骆仲泱,岑可法.制备条件对蜂窝状V2O5-WO3/TiO2催化剂孔结构及活性的影响研究[J].动力工程学报,2011,3(4):300-305
    [51]Koichi Y, Yuji F, Yasuyoshi K, Toshifumi M, Tomohiko S, Katsuhiro Y, Ikuhisa H. Exhaust gas purification catalyst and its production[P]. Japan,07-016462,1995-01-20
    [52]陈杭君,赵华,丁经纬.火电厂烟气脱硝技术介绍[J].热力发电,2005,2:15-18
    [53]张汝松,李志国,张雷.选择性催化还原脱硝催化剂生产技术[J].工业催化,2011,19(8):7-10
    [54]Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2[J]. Journal of Catalysis,2003,217:434-441
    [55]Qi G, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2004,51:93-106
    [56]Long R Q, Yang R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of the American Chemical Society,1999,121(23):5595-5596
    [57]Long R Q, Yang R T. The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. Applied Catalysis B:Environmental, 2000,27:87-95
    [58]Richter M, Trunschke A, Bentrup U, Brzezinkab K-W, Schreiera E, Schneidera M, Pohl M -M, Fricke R. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis,2002,206:98~113
    [59]Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3:Ⅰ adsorption and desorption of the single reaction components[J]. Journal of Catalysis,1997,171:208~218
    [60]Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3:Ⅱ reactivity of adsorbed NH3 and NO complexes[J]. Journal of Catalysis,1997,171:219~230
    [61]唐晓龙.低温选择性催化还原NOx技术及反应机理[M].北京:冶金工业出版社,2007.23-34,110-130
    [62]Kapteijn F, Singoredjo L, Dekker N J J, Moulijn J. Kinetics of the selective catalytic reduction of NO with NH3 over Mn2O3-WO3/γ-Al2O3[J]. Industrial & Engineering Chemistry Research,1993,32: 445~452
    [63]Marban G, Fuertes A B. Kinetics of the low-temperature selective catalytic reduction of NO with NH3 over activated carbon fiber composite-supported iron oxides[J]. Catalysis Letters,2002,84:13~19
    [64]Marban G, Valdes-Solis T, Fuertes A B. Mechenism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4:Acitive phase and role of surface NO species[J]. Physical Chemistry Chemical Physics,2004,6:453~464
    [65]Kijlstra W S, Brands D S, Poels E K, Bliek A. Kinetics of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 catalysts at low temperature[J]. Catalysis Today,1999,50:133~140
    [66]Baltanas M A, Stiles A B, Katzer J R. An infrared spectroscopic study of the adsorption and reactions of oxygen on supported manganese oxides[J]. Journal of Catalysis,1984,88:362-373
    [67]Singoredio L, Korver R, Kapteijn F, Moulijn J. Alumina supported manganese oxides for the low temperature selective catalytic reduction of NO with NH3. Applied Catalysis B:Environmental,1992, 1(4):297-316
    [68]Kapteijn F, Singoredjo L, van Driel M, Andreini A, Moulijn J A, Ramis G, Busca G. Alumina-supported manganese oxide catalysts:Ⅱ. surface characterization and adsorption of ammonia and nitric oxide[J]. Journal of Catalysis,1994,150:105-116
    [69]Pena D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:1. evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221:421-431
    [70]Huang Z G, Liu Z Y, Zhang X L, Liu Q Y. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B:Environmental,2006,63: 260-265
    [71]Amore J M G S, Escribano V S, Ramis G, Busca G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Applied Catalysis B:Environmental,1997,13: 45-58
    [72]Wu Z B, Jiang B Q, Liu Y, Wang H Q, Jin R B. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology,2007,41(16):5812-5817
    [73]Li J H, Chen J J, Ke R, Luo C K, Hao J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catalysis Communications,2007,8: 1896-1900
    [74]Topsoe N-Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR[J]. Journal of Catalysis,1991,128:499-511
    [75]Tops0e N-Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared[J]. Science,1994,265:1217-1219
    [76]Topsoe N-Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia:I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies [J]. Journal of Catalysis,1995,151:226-240
    [77]Schneider H, Tschudin S, Schneider M, Baiker A, Wokaun A. In situ diffuse reflectance FTIR study of the selective catalytic reduction of NO by NH3 over vanadia-titania aerogels[J]. Journal of Catalysis,1994,147:5-14
    [78]Topsee N-Y, Dumesic J A, Topsoe H. Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia:Ⅱ. studies of active sites and formulation of catalytic cycles[J]. Journal of Catalysis,1995,151:241~252
    [79]Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic teduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie International Edition,2001,40(13):2479-2482
    [80]Liang X, Li J H, Lin Q C, Sun K Q. Synthesis and characterization of mesoporous Mn/Al-SBA-15 and its catalytic activity for NO reduction with ammonia[J]. Catalysis Communications,2007,8: 1901-1904
    [81]Datka J, Turek A M, Jehng J M, Wachs I E. Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation[J]. Journal of Catalysis,1992,135(1):186-199
    [82]戴韵,李俊华,彭越,唐幸福.MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响[J].物理化学学报,2012,28(7):1771-1776
    [83]李俊华,郝吉明,付立新,朱天乐,程玲琳.富氧条件下贵金属催化剂上丙烯选择性还原NO研究[J].高等学校化学学报,2003,24:2060-2064
    [84]吕君英,龚凡,郭亚平,薛红丹.选择性催化还原NOx催化剂的研究进展[J].化工进展,2005,24(10):1079-1083
    [85]Burh R, Watling T C. The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by C3H6 under lean-burn conditions[J]. Applied Catalysis B:Environmental,1997,11(2):207-216
    [86]Shen S C, Kawi S. Selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen using Pt/MCM-41[J]. Applied Catalysis B:Environmental,2003,45(1):63-76
    [87]Li J H, Hao J M, Fu L X, Zhu T L, Liu Z M, Cui X Y. Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition[J]. Applied Catalysis A:General,2004, 265(1):43-52
    [88]朱景利,张金昌,马润宇,王艳辉.改性贵金属催化剂催化还原脱除NO[J].环境科学,2006,27(8):1508-1511
    [89]伍斌,郑毅.MnO2/NH4NaY催化剂上的NO低温选择性催化还原(SCR)[J].工业催化,2007,15(10):43-47
    [90]Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B:Environmental,2007,73(1-2):60-64
    [91]刘杨先,张军,盛昌栋,张永春,陈洁,谢芳.NOx低温选择性催化还原催化剂研究进展[J].化工进展,2008,27(8):1198-1203
    [92]Guo Y X, Liu Z Y, Li Y M, Liu Q Y. NH3 regeneration of SO2-captured V2O5/AC catalyst-sorbent for simultaneous SO2 and NO removal[J]. Journal of Fuel Chemistry and Technology,2007,35(3): 344-348
    [93]Yoshikawa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers[J]. Applied Catalysis.A:General,1998,173(2): 239~245
    [94]沈伯雄,郭宾彬,吴春飞,梁才,王成东,史展亮.MnOx/ACF低温选择性催化还原烟气中的NO[J].环境污染与防治,2006,11(28):801-803
    [95]沈伯雄,郭宾彬,史展亮,吴春飞,梁才.CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007,35(1):125-128
    [96]Huang B H, Huang R, Jin D J, Ye D Q. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today,2007,126(3-4):279~283
    [97]Wu Z B, Jin R B, Liu Y, Wang H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low temperature[J]. Catalysis Communications,2008,9(13):2217-2220
    [98]吴碧君,刘晓勤,肖萍,王述刚.Mn-Fe/TiO2低温NH3选择性还原NO催化活性及其反应机制[J].中国电机工程学报,2007,27(17):51-56
    [99]Centeno M A, Carrizosa I, Odriozola J A. In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/Al2O3 catalysts[J]. Applied Catalysis B: Environmental,1998,19(1):67~73
    [100]Ramis G, Larrubia M A. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004, 215(1-2):161~167
    [101]Tang X L, Hao J M, Xu W G. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications,2007,8(3): 329~334
    [102]Man M F, Goo J H. C03O4 based catalysts for NO oxidation and NOx reduction in fast SCR process[J]. Applied Catalysis B:Environmental,2008,78(3-4):267~274
    [103]Kijlstra W S, Biervliet M, Poels E K, Bliek A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental,1998,16(4):327~337
    [104]Kijlstra W S, Komen N J, Andreini A, Poels E K, Bliek A. Promotion and deactivation of V2O5/TiO2 SCR catalysts by SO2 at low temperature[J]. 11Th International Congress on Catalysis-40Th Anniversary,1996, (101):951-960
    [105]Zhang S L, Liu X X, Zhong Q*, Yao Y. Effect of Y doping on oxygen vacancies of TiO2 supported MnOx for selective catalytic reduction of NO with NH3 at low temperature[J]. Catalysis Communications,2012,25:7-11
    [106]张舒乐,刘晓肖,钟秦,姚瑶,李小海.Mn-Y/TiO2低温NH3选择性催化还原NO性能研究[J]. 中国电机工程学报,2011,31(35):1-5
    [107]刘晓肖,张舒乐,钟秦,姚瑶,李小海.SO2和H2O对Y掺杂Mn/TiO2选择性脱除NO的影响[J].化工进展,2012,31(3):522-526
    [108]Cristiani C, Bellotto M, Forzatti P, Bregani F. On the morphological properties of tungsta-titania de-NOxing catalysts[J]. Journal of materials research,1993,8(8):2019~2025
    [109]Ramis G, Busca G., Cristiani C, Lietti L, Forzatti P, Bregani F. Characterization of tungsta-titania catalysts[J]. Langmuir,1992,8(7):1744~1749
    [110]Zheng Y J, Jensen A D, Johnsson J E, Thogersen J R. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants:Elucidation of mechanisms by lab-and pilot-scale experiments[J]. Applied Catalysis B:Environmental,2008,83(3~4):186~194
    [111]Alemany L J, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F. Reactivity and Physicochemical Characterization of V2O5-WO3/T1O2 De-NOx Catalysts [J]. Journal of Catalysis, 1995,155(1):117~130
    [112]Busca G, Lietti L, Ramis G., Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Applied Catalysis B:Environmental, 18(1-2):1-36
    [113]Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts[J]. Applied Catalysis B:Environmental, 1996,10(4):299~311
    [114]Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W. Effect of oxygen concentration on the NOX reduction with ammonia over V2O5-WO3/TiO2 catalyst[J]. Catalysis Today,113(3-4):208~214
    [115]Krocher O, Elsener M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution:Ⅰ. Catalytic studies[J]. Applied Catalysis B: Environmental,2008,77(3-4):218~227
    [116]Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V205/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution:Part II. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B:Environmental,2008, 77(3~4):228~236
    [117]Chen L, Li J, Ge M. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3[J]. The Journal of Physical Chemistry C,2009, 113(50):21177~21184
    [118]Koebel M, Elsener M, Madia G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures[J]. Industrial and Engineering Chemistry Research,2001,40: 52~59
    [119]Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B. A nitrate route for the low temperature fast SCR reaction over a V2O5-WO3/TiO2 commercial catalyst[J]. Chemical Communications,2004, (23):2718~2719
    [120]Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. Journal of Catalysis,2008, 256(2):312~322
    [121]Wang X, Chen H Y, Sachtler W M H. Mechanism of the Selective Reduction of NOx over Co/MFI: Comparison with Fe/MFI[J]. Journal of Catalysis,2001,197(2):281~291
    [122]Li Y T, Zhong Q. The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Journal of Hazardous Materials,2009, 172(2~3):635~640
    [123]Szymanski G S, Grzybek T, Papp H. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3[J]. Catalysis Today,2004,90: 51~59
    [124]Schaub R, Wahlstrom E, Ronnau A, Laegsgaard E, Stensgaard I, Besenbacher F. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface[J]. Science,2003,299:377~379
    [125]Campbell C T, Peden C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science,2005,309: 713~714
    [126]Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z S, Hansen J, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F. The role of interstitial sites in the Ti3d defect state in the band gap of titania[J]. Science,2008,320:1755~1759
    [127]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293:269~271
    [128]Khan S U M, Al-Shahry M, Ingler Jr W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297:2243-2245
    [129]Liu G, Zhao Y, Sun C, Li F, Lu G Q, Cheng H M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J]. Angewandte Chemie International Edition,2008,47:4516-4520
    [130]Zhu W, Qiu X, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer Ⅲ H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B, Eres G, Zhang Z. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity[J]. Physical Review Letters,2009,103(22):226401-1~226401-4
    [131]Akpan U G, Hameed B H. The advancements in sol-gel method of doped-Ti02 photocatalysts[J]. Applied Catalysis A:General,2010,375:1~11
    [132]Liu G, Wang L, Yang H G, Cheng H M, Lu G Q (Max). Titania-based photocatalysts-crystal growth, doping and heterostructuring[J]. Journal of Materials Chemistry,2010,20:831~843
    [133]Yu J C, Ho W K, Yu J G, Hark S K, Lu K. Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films[J]. Langmuir,2003,19(9): 3889~3896
    [134]Hattori A, Yamamoto M, Tada H, Ito S. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J]. Chemistry Letters,1998,27:707~708
    [135]Jiang H F, Song H Y, Zhou Z X, Liu X Q, Meng G Y. The roles of Li+ and F- ions in Li-F-codoped TiO2 system[J]. Journal of Physics and Chemistry of Solids,2007,68:1830~1835
    [136]Wang Q, Chen C C, Zhao D, Ma W H, Zhao J C. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation[J]. Langmuir,2008, 24:7338~7345
    [137]Todorova N, Giannakopoulou T, Vaimakis T, Trapalis C. Structure tailoring of fluorine-doped TiO2 nanostructured powders[J]. Materials Science and Engineering B,2008,152:50~54
    [138]Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar N K. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J], Journal of Fluorine Chemistry,2005,126:69~77
    [139]Li D, Haneda H, Labhsetwar N K, Hishita S, Ohashi N. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies [J]. Chemical Physics Letters,2005,401:579~584
    [140]Wu Z B, Dong F, Zhao W R, Guo S. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride[J]. Journal of Hazardous Materials, 157(1):57~63
    [141]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [142]Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M, Fu H G. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity[J]. Journal of Solid State Chemistry, 177(10):3375~3382
    [143]辛柏福,井立强,范乃英,孙晓君,蔡伟民,付宏刚.TiO2纳米粒子的制备和表征及光催化活性[J].黑龙江大学自然科学学报,2004,21(2):113-117
    [144]Li X Z, Li F B, Yang C L, Ge W K. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry.2001,141(2-3):209~217
    [145]Ke D N, Liu H J, Peng T Y, Liu X, Dai, K. Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles[J]. Materials Letters,2008,62(3):447~450
    [146]Yang H M, Shi R R, Zhang K, Hu Y H, Tang A D, Li X W. Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. Journal of Alloys and Compounds,2005,398(1~2):200~202
    [147]Kobayashi M, Hagi M. V2O5-WO3/TiO2-SiO2-SO42- catalysts:Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B:Environmental,2006,63(1~2):104~113
    [148]Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A. Energy Storage of TiO2-WO3 Photocatalysis Systems in the Gas Phase[J]. Langmuir,2002,18(21):7777~7779
    [149]Zhong Q, Zhang T J, Li Y T, Ma W H, Qu H X. NO (or NH3)+O2 adsorption on fluorine-doped vanadia/titania and its role in the mechanism of a two-step process characterized by EPR[J]. Chemical Engineering Journal,2011,174(1):390~395
    [150]Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B. Enhancing Visible Light Photo-oxidation of Water with TiO2 Nanowire Arrays via Cotreatment with H2 and NH3:Synergistic effects between Ti3+ and N[J]. Journal of the American Chemical Society,2012,134(8):3659~3662
    [151]Nakajima F, Hamada I. The state-of-the-art technology of NOx control[J]. Catalysis Today,1996, 29(1~4):109~115
    [152]Tuenter G, van Leeuwen W F, Snepvangers L. Kinetics and Mechanism of the NOX Reduction with NH3 on V2O5-WO3-TiO2 Catalyst[J]. Industrial & Engineering Chemistry Product Research and Development,1986,25(4):633~636
    [153]Ciardelli C, Nova I, Tronconi E, Chatterjee D, Burkhardt T, Weibel M. SCR of for diesel exhausts aftertreatment:role of in catalytic mechanism, unsteady kinetics and monolith converter modelling[J]. Chemical Engineering Science,62(18-20):5001~5006
    [154]Uddin M A, Shimizu K, Ishibe K, Sasaoka E. Characteristics of the low temperature SCR of NOx with NH3 over TiO2[J]. Journal of Molecular Catalysis A:Chemical,2009,309(1-2):178~183
    [155]Lei Y, Zhang L D, Meng W, Li G H, Zhang X H, Liang C H, Chen W, Wang S X. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays[J]. Applied Physics Letters,2001,78(8): 1125~1127
    [156]Yu J C, Ho Y, Zhang J. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders[J]. Chemistry of Materials,2002,14(9):3808~3816
    [157]Keller V, Garin F. Photocatalytic behavior of a new composite ternary system:WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase[J]. Catalysis Communications,2003,4(8):377~383
    [158]Tatsuma T, Saitoh S, Ohko Y, Fujishima A. TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability[J]. Chemistry of Materials,2001,13(9):2838~2842
    [159]Serpone N. Is the Band Gap of Pristine TiO2 Narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts[J]. The Journal of Physical Chemistry B.2006,110(48): 24287-24293
    [160]Mori K, Maki K, Kawasaki S, Yuan S, Yamashita H. Hydrothermal synthesis of photocatalysts in the presence of and their application for degradation of organic compounds[J]. Chemical Engineering Science,2008,63(20):5066~5070
    [161]Yang S X, Zhu W P, Jiang Z P, Chen Z X, Wang J B. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science,2006,252(24): 8499~8505
    [162]Fang J, Bi X Z, Si D J, Jiang Z Q, Huang W X. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science,2007,253(22):8952~8961
    [163]Kang M, Park E D, Kim J M, Yie J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General,2007,327(2):261~269
    [164]Yu D Q, Liu Y, Wu Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catalysis Communications,2010,11(8):788~791
    [165]Cheng P, Deng C S, Dai X M, Li B, Liu D N, Xu J M, Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,195(1):144~150
    [166]Al-Kandari H, Al-Kharafi F, Al-Awadi N, El-Dusouqui O M, Katrib A. Katrib A. Surface electronic structure-catalytic activity relationship of partially reduced WO3 bulk or deposited on TiO2[J]. Journal of Electron Spectroscopy and Related Phenomena,2006,151(2):128~134
    [167]Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T. Transport properties and electronic states of anatase Ti1-xWxO2 epitaxial thin films. Journal of Applied Physics[J]. Journal of Applied Physics,2010,107(2):023705-023709
    [168]Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A. Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark[J]. Electrochemistry Communications,2003,5(9):793~796
    [169]Lietti L, Svachula J, Forzatti P, Busca G, Ramis G, Bregani P. Surface and catalytic properties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction of nitrogen oxides[J]. Catalysis Today,1993,17(1~2):131~139
    [170]Kasaoka S, Sasaoka E, Iwasaki H. Vanadium Oxides (V2Ox) Catalysts for dry-type and simultaneous removal of sulfur oxides and nitrogen oxides with ammonia at low temperature[J]. Bulletin of the Chemical Society of Japan,1989,62:1226~1232
    [171]Marban G, Antuna R, Fuertes A B. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides[J]. Applied Catalysis B:Environmental,2003,41:323~338
    [172]Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. Molecular structure and catalytic activity of V20s/TiO2 catalysts for the SCR of NO by NH3:in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. Journal of Catalysis,2006,239:1-12
    [173]Liu Z Y, Sun D D, Guo P, Leckie J O. One-Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates[J]. Chemistry-A European Journal,2007,13(6):1851-1855
    [174]Pretsch E, Seibl J, Simon W. Tabellen zur struckturaufkl rung organischer verbindungen mit spektroskopischen methoden[M]. Berlin:Springer Verlag H60,1981
    [175]罗晶,童志权,黄妍,夏斌,罗河.H20和SO2对Cr-Ce/TiO2催化氧化NO性能的影响[J].环境科学学报,2010,30(5):1023-1029
    [176]Koch W, Holthausen M C. A Chemist's Guide to Density Functional Theory[M]. ed.2. Weinheim: Wiley-VCH,2002
    [177]Dreizler R, Gross E. Density Functional Theory[M]. New York:Plenum Press,1995
    [178]Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules[M]. New York:Oxford University Press,1989
    [179]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review,1964,136:B864-B871
    [180]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140:1133~1138
    [181]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37:785~789
    [182]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. Journal of Chemical Physics,1993,98:5648~5652
    [183]Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry,1994,98:11623~11627
    [184]http://www.hongcam.com.cn/backback/lh/adf.htm
    [185]Baerends E J, Ellis D E, Ros P. Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure[J]. Chemical Physics,1973,2:41~51
    [186]Velde G T, Baerends E J. Numerical integration for polyatomic systems[J]. Journal of Computational Physics,1992,99:84~98
    [187]Guerra C F, Visser O, Snijders J G, Velde Gt, Baerends E J. Methods and Techniques in Computational ChemistryfJ]. METECC-95, Publisher:STEF, Cagliari,1995,305
    [188]Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature,2008,453(29):638~642
    [189]Liu Z X, Lin Z D, Fan H J, Li F H, Bao Q, Zhang S. Dispersion of V2O5 supported on a TiO2 by x-ray photoelectron spectroscopy surface[J]. Applied Physics A:Materials Science & Processing, 1988,45:159~164
    [190]Vittadini A, Selloni A, Rotzinger F P, Gratzel M. Structure and Energetics of Water Adsorbed at TiO2 Anatase\(101\) and\(001\) Surfaces[J]. Physical Review Letters,1998,81(14):2954-2957.
    [191]Barnard A S, Zapol P. Effects of particle morphology and surface hydrogenation on the phase stability of TiO2[J]. Physical Review B,2004,70(23):235403-235416
    [192]Burkardt A, Weisweiler W, van den Tillaart J A A. Schafer-Sindlinger A, Lox E S. Influence of the V2O5 Loading on the Structure and Activity of V2O5/TiO2 SCR Catalysts for Vehicle Application[J]. Topics in Catalysis,2001,16~17:369~375.
    [193]Kachurovskaya N A, Mikheeva E P, Zhidomirov G M. Cluster molecular modeling of strong interaction for VOx/TiO2 supported catalyst[J]. Journal of Molecular Catalysis A:Chemical,2002, 178:191~198
    [194]Herman G S, Dohnalek Z, Ruzycki N, Diebold U. Experimental Investigation of the Interaction of Water and Methanol with Anatase-TiO2(101)[J]. The Journal of Physical Chemistry B,2003,107(12): 2788~2795
    [195]柳清菊,张瑾,朱忠其,王庆辉,靳映霞,吴兴惠.TiO2薄膜光诱导超亲水性作用机理的研究[J].功能材料,2004,35:1779-1781
    [196]McCormick J R, Zhao B, Rykov S A, Wang H, Chen J G. Thermal Stability of Flame-Synthesized Anatase TiO2 Nanoparticles[J]. The Journal of Physical Chemistry B,2004,108:17398~17402
    [197]Xu B L, Fan T N, Liu L, Lin M, Chen Y. Disoersion state and catalytic properties of vanadia species on the surface of V2O5/TiO2 catalysts[J]. Science in China Series B:Chemistry,2002,45(4): 407~415
    [198]Burrows A, Kiely C J, Joyner R W, KnoSzinger H K, Lange F. An HREM study of the WO3/TiO2 monolayer catalyst system. Proposals for the overlayer structure[J]. Catalysis Letters,1996,39: 219-231
    [199]Sun C Z, Dong L H, Yu W J, Liu L C, Li H, Gao F, Don g L, Chen Y. Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5-WO3/Ti0.5Sn0.5O2 catalyst:Experiments combined with DFT calculations[J]. Journal of Molecular Catalysis A:Chemical,2011,346 (1-2):29~38
    [200]Hattori A, Yamamoto M, Tada H, Ito S. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J]. Chemistry Letters,1998,27:707~708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700